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Abstract

Background: MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression of target mRNAs involved
in plant growth, development, and abiotic stress. As one of the most important model plants, peach (Prunus persica) has
high agricultural significance and nutritional values. It is well adapted to be cultivated in greenhouse in which some
auxiliary conditions like temperature, humidity, and UVB etc. are needed to ensure the fruit quality. However, little is
known about the genomic information of P. persica under UVB supplement. Transcriptome and expression profiling data
for this species are therefore important resources to better understand the biological mechanism of seed development,
formation and plant adaptation to environmental change. Using a high-throughput miRNA sequencing, followed by
gRT-PCR tests and physiological properties determination, we identified the responsive-miRNAs under low-dose UVB
treatment and described the expression pattern and putative function of related miRNAs and target genes in chlorophyll
and carbohydrate metabolism.

Results: A total of 164 known peach miRNAs belonging to 59 miRNA families and 109 putative novel miRNAs were
identified. Some of these miRNAs were highly conserved in at least four other plant species. In total, 1794 and 1983 target
genes for known and novel miRNAs were predicted, respectively. The differential expression profiles of miRNAs between
the control and UVB-supplement group showed that UVB-responsive miRNAs were mainly involved in carbohydrate
metabolism and signal transduction. UVB supplement stimulated peach to synthesize more chlorophyll and sugars, which
was verified by gRT-PCR tests of related target genes and metabolites’ content measurement.

Conclusion: The high-throughput sequencing data provided the most comprehensive miRNAs resource available for
peach study. Our results identified a series of differentially expressed miRNAs/target genes that were predicted to be
low-dose UVB-responsive. The correlation between transcriptional profiles and metabolites contents in UVB supplement
groups gave novel clues for the regulatory mechanism of miRNAs in Prunus. Low-dose UVB supplement could increase
the chlorophyll and sugar (sorbitol) contents via miRNA-target genes and therefore improve the fruit quality in protected
cultivation of peaches.
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Background

As an important environment signal, sunlight provides
energy for the growth and development of plants [1],
but its ultraviolet (UV) radiation part causes abiotic
stress potentially influence the biological processes of
plants. Since the late 1980s when awareness of strato-
spheric ozone layer depletion triggered concerns about
the potentially harmful effects of increased UVB
radiation, many studies have shown that UVB causes
non-specific damage to DNA, proteins and lipids [2—4].
On the other hand, there is overwhelming evidence that
other than substantially impeding plant growth, low-
dose UVB is an environmental regulator affecting gene
expression, cellular and metabolic activities, and growth
and development [5-8]. Whether UVB radiation is a
stressor or a regulator is determined by the fluence rate
and exposure time [4]. Nevertheless, the regulatory
mechanism of plants responding to the UVB-lack envir-
onment, for example in the greenhouse where the UVB
radiation level is 30%-70% lower than outdoors, were
rarely reported [9].

Most of the photomorphogenic responses to low-dose
UVB are mediated by the photoreceptor UV RESIST-
ANCE LOCUS8 (UVR8). Subsequent structural and func-
tional characterization revealed that the UVR8 has a
unique regulatory mechanism in photoreception [10-12].
After UVB treatment, UVRS interacts with the E3 ubiqui-
tin ligase (transducin/WD40 repeat-like superfamily
protein) CONSTITUTIVELY PHOTOMORPHOGENIC1
(COP1), following the ubiquitination of the basic leucine-
zipper (bZIP family) transcription factor ELONGATED
HYPOCOTYL5 (HY5) which is primarily in the initiation
of photo-morphogenesis [13-16].

MiRNAs, small endogenous non-coding RNAs ap-
proximately 21-24 nucleotides (nt) in length, play an
important role in regulating gene expression at the
post-transcriptional level [17-19]. A large number of
miRNAs have been recently identified in plants via high-
throughput sequencing, and numerous miRNAs have
been entered into the miRBase 21. MiRNAs are involved
in regulating growth, development, root initiation and
development, hormone balance, floral morphogenesis
and reproductive performance [20, 21]. Stress-regulated
miRNAs in plants confer resistance to the extreme
conditions, including UVB, drought, salt, cold and heat.
In addition, the expression of miRNAs can alter the
behavior of plants in response to both abiotic and biotic
stresses [21, 22]. Previous reports have shown that
miRNA induction was involved in regulating auxin sig-
naling via miR160, miR167 and miR393 thus, becoming
an important strategy for photomorphism in plants [23].

China is the largest producer of both outside-grown
and inside-grown peaches and nectarines in the world.
There are nearly 16,000 ha of protected peach and
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nectarines cultivation, 2.3% of the total area [24]. As a
new agricultural form, protected production has been
rapidly developed. Peach (Prunus persica), which has
been cultivated for more than 4000 years, is one of the
most important fruits in the world [25]. Peach has a
small genome and it reaches reproductive maturity in a
relatively short time. In 2010, the Genome Sequencing
Project of the peach double haploid cultivar ‘Lovell’ was
completed, which generated, 230 Mb genome sequence
and 202 assembly scaffolds [26]. Therefore, peach is con-
sidered to be a useful forest model species for genetic
and ecological research. Following these findings, several
reports on the identification of miRNAs in different
peach tissues have been published [27-29]. Meanwhile,
peach has some unique biological features not com-
monly found in other model organisms, such as a 3—
5 year juvenile period before blossom, the formation of
fleshy fruit with a hardened endocarp and chilling-
requirement dormancy mechanism [30-34]. Nectarine,
because of its low-chill and nutritional value, is selected
as one of the most important fruits in the protected
cultivation industry which targeted early and high
markets. In previous research, we found that the supple-
ment of UVB radiation can improve the fruit quality and
the ability to compete for C-assimilate [35, 36]. Consid-
ering the distinct environment especially the light condi-
tion in greenhouse, more deep studies related to the
molecular and metabolic mechanism under UVB irradi-
ance are needed.

In this study, we generated over 2 billion bases of
high-quality RNA sequence with Illumina platform. In a
single run, we identified 31,763,592 raw sequences
including thousands of seed target and metabolism
genes. Our results identified a series of differentially
expressed miRNAs/target genes that were predicted to
be low-dose UVB-responsive. The correlation between
transcriptional profiles and metabolites’ contents helped
elucidate the regulatory mechanisms of peach under the
UVB supplement. Our findings of correlation among
miRNA, target genes and metabolites provided clues for
breeding with high-quality fruit and other properties
which are suitable for greenhouse cultivation.

Results

Analysis of miRNA sequences

Using Illumina sequencing, a total of 74,119,581 and
76,123,247 raw reads were obtained from control and
UVB-treatment groups, respectively (Table 1). After dis-
carding 3’ adapter deletions, insertion deletions, 5’
adapter contaminants, poly-A sequences and sequences
less than 18 nt from the high-quality reads, 52,375,087
and 56,244,851 clean reads were used for further ana-
lysis. The proportions of clean reads were 70.79% and
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Table 1 The quality control of the clean data
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Sample  Num. of Reads Raw Clean Reads % Remove Adapter% Insert Null% N %  Too short % Poly-A % Too long % Low quality %
CK1 23,619,871 76.50% 0.06% 2.18% 017% 13.86% 0.06% 7.04% 0.12%
CK2 25,100,163 68.65% 0.09% 1.27% 0.16% 24.63% 0.05% 5.05% 0.11%
CK3 25,399,547 67.22% 0.09% 1.34% 0.16%  29.78% 0.04% 1.25% 0.11%
T 25,154,335 74.96% 0.07% 2.16% 0.17% 15.86% 0.06% 6.60% 0.11%
T2 26,168,148 75.67% 0.10% 0.65% 0.18% 14.36% 0.05% 8.88% 0.11%
T3 24,800,764 70.92% 0.11% 0.64% 0.16% 21.37% 0.05% 6.65% 0.11%

CK control groups without UVB treatment, T UVB treatment groups
N% means the percentage of loci that fail to distinguish specific bases

73.85% of the total reads obtained from the two libraries,
respectively.

The small RNA (sRNA) reads were typically 18 to 30 nt
in length (Fig. 1). Among these sequences, 21 nt sRNAs
were the most abundant in the two libraries, accounting
for 16.56% and 13.22% of the total reads, followed by
24 nt sRNAs, which accounted for 11.79% and 10.26% of
the total reads, respectively. Furthermore, we observed
that the number of less than 24 nt length sequences in the
control libraries was more abundant than that in the
treatment libraries (74.08% and 64.14%, respectively).
Additionally, a large proportion of unique sequences
(>85% in both libraries) were unclassified sSRNAs, suggest-
ing a broad existence of miRNAs in peach.

Known miRNAs in peach
Known miRNAs in peach affected by UVB were identified
through homologous alignment analysis using the plant
miRNA in miRBase 21. A total of 164 known miRNAs
belonging to 59 families were obtained from the deep
sequencing. The dominant miRNA families are shown in
Additional file 1: Table S1, and most of these miRNAs
were largely conserved in various plant species. The ex-
pression levels of a few miRNA families, such as miR166,
miR1511 and miR398, were evidentially high in both
libraries. Some conserved miRNAs were reported only in
few species, such as miR3627 in five (Vitis vinifera, Popu-
lus trichocarpa, Malus domestica, Solanum tuberosum,
and P. persica), miR1511 in three (M. domestica, S. tuber-
osum, and P. persica), while miR8133 only in P. persica.
MiRNAs have a broad range of expression levels, vary-
ing from several to millions of reads. Most of the
conserved miRNAs were identified from the two librar-
ies, and certain miRNAs were abundant in some samples
but scarce or even lacking in other samples. For ex-
ample, the expression of miR159 generated 323,238 and
128,812 reads in the CK and UVB libraries respectively.
Moreover, the number of reads for different members of
the same family varied widely. For example, the expres-
sion of miR7122a in both libraries generated 21,291
reads while only 417 reads of miR7122b in both
libraries.

Novel miRNAs in peach

In the present study, 109 novel miRNAs from peach
deep sequencing were identified (Additional file 2: Table
S2). The most abundant miRNA was Pp04_27840-3p,
with 33,630 and 42,292 reads in the UVB libraries and
CK libraries, respectively. Many novel miRNAs from our
database were conserved with miRNAs from other
species to a certain degree (<50%), such as Pp02_15663-
5p and Pp03-22,312-3p corresponding to miR172d and
miR2950-5p in grape (Vitis vinifera), respectively.

Differential expression of miRNA

The comparison of the miRNA expression levels in CK
and UVB groups showed that 164 known and 109 novel
miRNAs were identified in the two libraries. The analysis
of the differential expression of miRNAs in the UVB
treatment and control libraries showed that 9 known
and 6 novel differentially expressed miRNAs from the
two libraries might play important roles in the UVB
response(Fig. 2). In brief, 8 miRNAs were up-regulated,
including Pp03-22,312-3p, Pp03-22,312-5p, Pp05—
19,842-3p, Pp06-35,148-3p, Pp06-35,148-5p, miR397,
miRNA171d-3p and miRNA3627-5p, and 7 miRNAs
were down-regulated, including miRNA395d, miR-
NA395e, miRNA7122b-5p, miRNA399a, miRNA399b,
miRNA8133-3p, and Pp05-28,899-3p in UVB treatment.

Target prediction and functional analysis

A large number of targets were predicted for most differ-
entially expressed miRNAs. As for the known miRNAs,
there were 1928 pathways that accounted for the largest
percentage of the total targets. The results of Gene ontol-
ogy classification and top 30 preferential KEGG pathway
analysis revealed that target genes of these miRNAs were
involved in various biological and biochemical processes
in plant growth and development (Figs. 3 and 4)
(Additional file 3: Table S3, Additional file 4: Table S4),
such as porphyrin and chlorophyll metabolism (pper00860),
pentose and glucuronate interconversions (pper00040),
citrate cycle (TCA cycle, pper04712 and pper00020), circa-
dian rhythm - plant and metabolic pathways (pper01100).
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Fig. 1 The analysis of SRNA between the CK and UVB-treated groups. a Length distribution of sRNAs. The length distribution of high-quality obtained
from the UVB and CK libraries. The distributions of the total reads were shown as percentages. b The sRNA classification of the total and unique
sequences between control and treatment libraries. Total sSRNAs and unique sRNAs are shown in the left and the right panel, respectively
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Expression validation of UVB-responsive miRNA

Totally, we verified the expression of 31 miRNAs (Table 2)
via qRT-PCR in which 15 miRNAs were retrieved in the
database (Fig. 5). We selected miR5059 as reference
miRNA [37] and 15 other miRNAs that related to UVB
irradiance. The primers were listed in Additional file 5:
Table S5. The qRT-PCR results showed the consistency
with sequencing data except that miR397 levels under
UVB treatment did not have significant difference with
CK. The results showed some difference with the data-
base. Many miRNAs were up-regulated other than down-
regulation from high-throughput sequencing, such as
miR398a-5p (6.67-fold), miR398a-3p (2.09-fold), miR6263
(5.21-fold), miR6260 (2.31-fold), and miR319a (1.75-fold).
On the contrary, miR1511 (2.31-fold), miR171c (2.31-
fold), and miR3627-3p (1.61-fold) were down-regulated

under UVB treatment (Table 2; Fig. 5). Some conserved
UVB-responsive miRNAs were not remarkably expressed
such as miR156a, miR160a, miR166a, miR393a, miR402a
which were considered to be involved in plant acclimation
and adaptation of biotic or abiotic stress.

Chlorophyll metabolism under UVB treatment

KEGG pathway analysis of miRNA target genes (Fig. 4)
showed that genes involved in chlorophyll metabolism
might be significantly regulated by UVB. We determined
chlorophyll content and crucial miRNA/genes expres-
sion levels to give clues for UVB effects on chlorophyll
metabolism. Spectrophotometry results showed that the
content of chlorophyll was gradually increased during
the whole development period (Fig. 6a). Its content
reached up to 5.24 mg/g Fw in the mature stage of
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Fig. 2 The differentially expressed miRNAs between the CK and UVB-treated groups. a Scatter diagram of the differential read counts of known miRNAs.
Each point in the figure represents a miRNA. b Heat map of differentially expressed known miRNAs between the control and UVB-treated groups. ¢ Scatter
diagram of the differential read counts of novel miRNAs. Each point in the figure represents a miRNA. d Heat map of differentially expressed novel miRNAs

between the control and UVB-treated groups. Red points represent miRNAs showing a > 2-fold change of expression; green points represent miRNAs
showing 1/2 < fold change < 2; black points represent miRNAs showing a fold change < 1/2

UVB-group, higher than 4.17 mg/g Fw of the control
group. The expression levels of miR171c in UVB-group
were lower than the untreated samples, which was 2.3-
fold difference in the mature stage (Fig. 6b). Fig. 6¢
showed the different expression profiles of genes
involved in chlorophyll metabolism. Scarecrow-like
protein (SCL), the target gene of miR171c, was highly
up-regulated during the developmental period. On the
contrary, pchlide oxidoreductase C (PORC), the down-
stream gene of SCL was remarkably down-regulated.
The others did not show significant difference between
CK and UVB groups. Specifically, SCL was up-regulated
by 2.2-fold after UVB treatment in fruit mature phase.
PORC was down-regulated by 2.8-fold (Fig. 6c). The
gene information and sequences of primers were listed
in Additional file 6: Table S6.

Carbohydrate metabolism under UVB treatment
Carbohydrate metabolism was another pathway targeted
by miRNAs predicted by KEGG analysis. The contents

of carbohydrates in leaves were significantly affected by
UVB treatment (Fig. 7). Sorbitol, the main form of sugar,
was up-regulated by 1.24-fold with UVB stimulation in
the mature period (Fig. 7a), while the content of sucrose
was dramatically decreased and did not show significant
difference with/without UVB treatment (Fig. 7b). Fruc-
tose and glucose contents were increased with the devel-
opmental process, and the UVB-groups were higher
than the control samples (Fig. 7c and d).

We screened 19 genes related with sugar metabolism
from P. persica genome, and applied qRT-PCR assay to
investigate the correlation between sugar synthesis and
miRNA under UVB treatment (Fig. 8). The crucial genes
involved in sucrose pathway did not show significant
difference between UVB and control groups (Fig. 8a).
However, genes in sorbitol metabolism were expressed
distinctly after UVB stimulation (Fig. 8b). The expression
levels of Sorbitol —3-orbitol —6-phosphate dehydrogenase
(S6PDH), NADP dependent sorbitol dehydrogenase
(NADP-SDH) and Sorbitol transporter (SOT) were
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These results indicated that UVB had a major influence
were listed in Additional file 6: Table S6.

t, molecular function and biological progress, respectively

= Biological Process # Celluar Component ® Molecular Function

in hexose pathway

a Gene ontology classification of the known differential mIRNA target genes. b Gene ontology classification of the novel differential miRNA target genes.

Fig. 3 Gene ontology classification of potential target genes for differentially expressed miRNAs. The x-axis indicates the category name of GO annotation.
Blue, green and red represent three GO ontologies: cellular componen

The right y-axis indicates the number of unigenes in a category. The left y-axis indicates the percentage of a specific category of unigenes in that main

category. The solid bars show the target genes of differentially expression miRNAs
increased by 2.9-fold, 6.1-fold and 2.0-fold respectively

under UVB treatment compared to the control groups.
However, NAD dependent sorbitol dehydrogenase (NAD-

SDH) was rarely expressed under UVB treatment. More-
over, the expression levels of Pyrophosphate—fructose

6-phosphate 1-phosphotransferase subunit alpha (PFP-a)

and Phosphofructokinase (PFK)
werel.8-fold and 1.6-fold higher in UVB group than those

in control group (Fig. 8c). Hexose carrier protein (HEX6)
showed a 3.2-fold decrease after UVB stimulation (Fig. 8c).
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Fig. 4 The KEGG analysis of the target genes for differentially expressed miRNAs. a Targets of known miRNA. b Targets of novel miRNAs

efficiency etc. [38]. It is mainly ascribed to the weak light
irradiance and quality, and the quality of fruits in the
greenhouse is worse than that in the outdoor cultivation
[39]. Our investigation on the regulatory mechanism of
complementary UVB will provide significant effects for
elucidating the growth and development pattern of P.
persica, thus increasing the fruit quality.

High-dose UVB may produce phenols, ROS and cause
damage to DNA, proteins, and membranes [40-42].
However, low-dose UVB may trigger early adaptation to
environment and regulate plants seeding, development
and growth such as the induction of alterations in anti-
oxidant status, the regulation of phenylpropanoids, cin-
namates, or flavonoids pathways, chlorophyll and
pyridoxine biosynthesis pathways [43]. In our previous
study, Chen et al. selected three UVB radiation levels
and 1.44 Kj m™2 d™' showed the most effective function
on the improvement of total soluble solid, anthocyanin
and the repression of total acid in peach cultivated in
greenhouse [44]. Therefore the UVB radiation level (1.44

Kj m2 d') was applied in this study as the most suit-
able dose to regulate the growth and fruit quality of P.
persica in the greenhouse environment.

MiRNAs play important roles in plant response and
adaptation to environmental change. Thus, understand-
ing the miRNA-mediated regulatory network of UVB
supplement will lay the foundation for unraveling the
complex molecular genetic mechanism of positive effects
on fruit’s agronomic traits improvement. A growing evi-
dences suggested that miRNA-guided gene regulation
could play a vital role in plant response to UVB radi-
ation [42, 45, 46]. In the present study, a total of 4.02 M
and 3.83 M unique sRNA sequences were obtained from
the control and UVB-treatment libraries, respectively,
suggesting adequate sequencing depth for further ana-
lysis. The majority of total sSRNA reads ranged from
18 nt to 30 nt in length (Fig. 1), which was consistent
with the typical size for Dicer-derived products [47]. The
most abundant length is 21 nt followed by 24 nt which
was consistent with previous studies in peach [48-51].
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Table 2 The comparison of fold change (from sequencing libraries) and expression levels (via gRT-PCR) of typical miRNAs

MiRNA Source Target Annotation Sequencing gRT-PCR
(Fold-change) (Fold-change)
Down-regulation miR159 Ptc [27],Ath,Pte [22] MYB33 leaf development - -
Pp05-28,899-3p Sequencing 047 -
miR395d Sequencing, Ath APS,AST68 sulfate translocation 0.5 80.75
[22],Ptc [27] and assimilation.
miR7122b-5p Sequencing HOS 047 17.55
miR8133-3p Sequencing 0.32 13.93
miR399a Sequencing, Ath UBC24 0.18 13.18
[22],Ptc [27]
miR395e Sequencing, Ath APS,AST68 sulfate translocation 05 2.89
[22],Ptc [27] and assimilation.
miR1511 Ppe [37] unique - 231
miR171c Ath [52] SCL chlorophyll synthesis - 231
miR399b Sequencing 0.29 2.09
miR3627-3p Ppe [58] TCA, EMP - 161
miR393a Ath,Pte [22] AFB2,TIRT, Antibacterial Resistance, - 141
SCF abiotic stress tolerance
miR5072 Ppe [37] alternative reference - 1.25
miR166a Ath,Pte [22] HD-ZIP abiotic stress tolerance - 1.05
miR156a Ath,Pte [22] SPL abiotic stress tolerance - 1.05
Reference miR5059* Ppe [37] reference® - 1
Up-regulation miR397 Sequencing Laccase 242 1.07
miR160a Ath,Pte [22] ARF17 Leaf development - 1.24
miR402 Ppe [37] abiotic stress tolerance - 1.28
miR319a Ath [21] flowing time - 1.75
Pp03-19,842-3p Sequencing 523 2.04
miR398a-3p Ath,Pte [22] CSD1,2 protection from - 2.09
oxidative stress
miR6260 Ppe [37] unique - 231
miR171d-3p Sequencing 5.1 243
Pp03-22,312-5p Sequencing - 3.77
Pp03-22,312-3p Sequencing 242 4.15
miR6263 Ppe [37] unique 467 521
miR3627-5p Sequencing 6.02 524
Pp06-35,148-3p Sequencing 2.57 6.09
miR398a-5p Ath,Pte [22] CSD1,2 protection from - 6.67
oxidative stress
Pp06-35,148-5p Sequencing 475 11.99

Abbreviations: Ath Arabidopsis thaliana, Ptc Populus trichocarpa, Pte Populus tremula, Ppe Prunus persica

In our study, the expression levels of 2 known miRNAs
were highly up-regulated (miR171d-3p, miR3627-5p) and
6 known miRNAs showed significant down-regulation
(miR395d, miR395e, miR399a, miR399b, miR7122b-5p,
miR8133-3p). These miRNAs were predicted to be
involved in distinct metabolic pathways.

MiR171c was predicted to target SCL6, SCL22 and
SCL27, a family of transcription factors which were

involved in the morphogenesis, proliferation of meri-
stematic cells, polar organization and chlorophyll
synthesis [52—54]. Further study found that its target
gene tomato (Solamum lycopersicum) gras transcription
factor gene (SIGRAS24) impacts multiple agronomical
traits, such as plant height, flowering time, leaf architec-
ture, lateral branch number, root length, fruit set and
development, via regulating gibberellin and auxin
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homeostasis [55, 56]. It is indicated that the UVB-
responsive miRNA171 plays an important role in regu-
lating the growth and development of plant. In the
present study, we investigated the potential relation be-
tween miR171c and chlorophyll synthesis. The content
of chlorophyll was gradually increased during the whole
development period under UVB treatment, which was in
accordance with the studies by Chen [44]. Although pre-
vious reports showed that miRNA171 was up-regulated
under light [57], our results found that miRNA171c was
less expressed after UVB stimulation. Further analysis
on genes involved in miR171-SCL model showed that
SCL and PORC were up-regulated and down-regulated
respectively, which was in accordance with this model.
PORC had positive effects as an upstream gene of
chlorophyll synthetic pathway. However, our results
showed an opposite regulation pattern between PORC
and chlorophyll content. Interestingly, the expression
levels of Chlorophyll a-b binding protein (CBR) and Red
chlorophyll catabolite reductase (PCCR) (genes involved
in chlorophyll degradation) had no change after UVB
treatment, while the CHLG was up-regulated by 1.6-fold.

According to these results, we presumed that the increase
of chlorophyll content under UVB might be not only
related with miR171-SCL model but also regulated by non
miR171-SCL pathway like the regulation of CHLG. Fur-
ther verification is needed to illustrate the regulatory
mechanism of chlorophyll metabolism under UVB.

A conserved miRNA family (miR3627) was reported
only in five species (Solanum tuberosum, Malus domes-
tica, Populus trichocarpa, Citrus trifolia, and Prunus per-
sica), and was identified as a chilling responsive miRNA
in P. persica [58]. In our study, miRNA3627-5p was up-
regulated under UVB treatment, and we found an
interesting physiological phenomenon that the germin-
ation rate of treatment group (89.2%) was 12% higher
than the CK group (77.5%), which occurred 8 months
after the termination of UVB treatment. It implied that
UVB radiation may have a long-term and sustainable
influence on plants via modification called “UVB mem-
ory” [59], and this phenomenon involved a series of
miRNAs such as miR3627-5p. Bioinformatics analysis of
miR3627-5p in our libraries showed that it had 415 tar-
get genes which referred to many pathways such as
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metabolic, protein and amino acid metabolism, RNA
transport and circadian rhythm. However, the molecular
mechanism of miR3627-5p regulation in chilling still
needs more experimental studies.

The target genes of miR3627-5p: ppa025787mg,
ppa007623mg, ppa016917mg, ppa021860mg were in-
volved in pentose and glucuronate interconversions,
starch and sucrose metabolism. Besides, miR3627-5p

target gene ppa007934mg is involved in carbon metabol-
ism and TCA cycle. The expression levels of these five
target genes were all down-regulated (Additional file 7:
Figure S1), which were consistent with the up-regulation
of miR3627-5p. Also the predicted target genes of novel
miRNA Pp03_22,312-5p (upregulated) were involved in
sugar metabolism. This indicated that miRNA may par-
ticipate in the formation of fruit sweetness, an essential
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characteristic of fruit quality which was in accordance
with previous reports [60].

Different sugar components in leaves were analyzed by
High Performance Liquid Chromatography (HPLC) and
we found that the carbohydrate contents changed
variously under UVB treatment (Fig. 7). Accordingly, we
speculated some UVB-responsive miRNAs which
targeted sugar-metabolizing pathway, such as miR3627-
5p. Further qRT-PCR showed relative expression of the
key genes in different sugar metabolic pathways (Fig. 8).
Sorbitol is the main form of sugar in Rosaccae leaves
and is transferred to fruits for the storage of carbohy-
drates in the mature stage. The content of sorbitol in
our study was gradually increased with the developmen-
tal process, which was assistant with previous reports
[61]. qPCR results showed that sorbitol-related genes

were distinctly expressed with UVB treatment. The rela-
tive expression levels of S6PDH was remarkably up-
regulated in UVB-group, indicating the increase of
S6PDH activities and therefore stimulating the synthesis
of sorbitol. NAD-SDHI and NAD-SDH2 were down-
regulated while the levels of NADP-SDH were increased
after UVB treatment. This suggested that the plants
restricted NAD-SDHs expression to reduce sorbitol deg-
radation while increased NADP-SDH transcripts for the
synthesis of fructose from sorbitol under UVB treat-
ment. SOT was up-regulated, responsible for more active
transportation of sorbitol, which accorded with the
increase of sorbitol contents.

The content of sucrose did not change obviously dur-
ing the continuous growth period, which could be
explained by the slight change of expression levels of
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genes involved in sucrose metabolism, such as Sucrose
synthase (SUS), Sucrose transporter (SUT), Tonoplast
monosaccharide transporter (TMT) etc. In hexose path-
way, the crucial genes PFP-a and PFK were up-regulated
while Fructose-1,6-bisphosphatase (FBPase) and HEX6
were down-regulated, implying the UVB treatment had
an influence on hexose metabolism.

In our study, the UVB treatment led to different
expression patterns of genes related with sugar metabol-
ism. Previous research have shown that the regulation
was mainly mediated by miRNA. Our results were
essentially in agreement with these reports, and more
investigations on functional verification need to be
performed.

Conclusions

In this study, we constructed 2 miRNA libraries for low-
dose UVB radiation groups and control groups of P.
persica in greenhouse. A total of 164 known and 109 novel
miRNAs were identified. In brief, 8 miRNAs were highly
up-regulated and 7 miRNAs were significantly down-
regulated in the UVB treatment groups, which were
mainly predicted to be targeted in signal transduction,
carbohydrate metabolism and stress response etc. Com-
bined with qRT-PCR tests and the measurement of the
related metabolites, our results showed that low-dose
UVB radiation could regulate the expression patterns of
some miRNAs e.g. miR3627-5p and Pp_22,312, and cause
the expression levels of genes in carbohydrate (sorbitol,
fructose, and glucose etc.) and chlorophyll pathway, and
therefore indirectly affect sugar contents and fruit quality
(Fig. 9). Our study provided a comprehensive database of
miRNA for P. persica and a theoretical basis for further
investigations of the function of miRNA in regulating the
biological features of peach in greenhouse.
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Methods

Plant material and tissue collection

The experiment was carried out on 7-year-old peach
trees (Prunus persica var. nectarine Zhongyou No.5)
cultivated in experimental station of Shandong Agricul-
ture university, Taian, China. The trees were treated with
144 Kj m™> d' UVB radiation during the whole
growing period. UVB was provided by the dedicated UV
lamp of 40 W, 297 nm (Nanjing Kazhi), hanging at the
position of 1.5 m above the plants. UVB-type single-
channel UV irradiator (Beijing Normal University
Photoelectric Instrument Factory) equipped with
297 nm probe was used to determine the UVB radiation
dose of 1.44 Kj m™ d™*. The function leaves within the
range of 80-120 c¢cm below the lamp were selected. The
on/off time of UV light was controlled through the
electronic automatic control device, from 7 days after
blossom to the fruit mature stage. UV light was kept on
from 9 h30 to 10 h30 every day and stopped at cloudy,
rainy and snowy days. Function leaves were sampled on
the 7th day after blossom and every week after, until the
mature period. These samples were washed with DEPC-
treated H,O, immediately frozen in liquid nitrogen and
stored at —-80 °C until use. The function leaves of fruit
mature stage were selected for high-quality deep-
sequencing.

Small RNA isolation and Illumina sequencing

Total RNA in peach was isolated using the mirVan miRNA
Isolation kit (Ambion; Thermo Fisher Scientific, USA) and
purified using the miRNeasy Mini kit (Qiagen, Germany),
following the manufacturer’s instructions. RNA was quanti-
fied using a spectrophotometer (NanoDrop, Thermo Fisher
Scientific, USA). Purified RNA was frozen in liquid nitro-
gen and then stored at —80 °C until required.
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We constructed an RNA library using the NEBNext
Ultra RNA Library Prep kit for Illumina (New England
Biolabs, USA). There were four steps: Firstly, total RNA
(approx. 1 pg) was spliced into shorter fragments
(200-500 bp) in the NEBNext First Strand Synthesis
Reaction Buffer and the fragments were used to produce
the double-stranded cDNA; secondly, the cDNA was
end-repaired and ligated with Illumina-specific adaptors;
thirdly, we used 200 bp inserts from the library and
selected suitable fragments for PCR amplification; last,
we performed PCR using Phusion High-Fidelity DNA
polymerase (New England Biolabs, USA) and purified
the products with a QIAquick Nucleotide Removal kit
(Qiagen, Germany). Then we sequenced the new RNA
library on an Illumina HiSeq 2500 system using 2 x 150
base pairs paired-end sequencing.

Analysis of sequencing data

Clean reads were obtained from raw reads after remov-
ing low-quality and adapter reads. SOAP software was
used for the mapping of clean reads to the peach
genome. The non-coding RNAs, including rRNAs,
scRNAs, snoRNAs, snRNAs, and tRNAs deposited in
the NCBI GenBank database and Rfam (11.0) database,
were removed. We also excluded the small RNAs corre-
sponding to the exons and introns of mRNA and repeat
sequences. The remaining SRNA sequences were aligned
to the miRBase 21 database, with a maximum of two
mismatches, to identify known miRNAs in P. persica.
The obtained sequences were used to predict hairpin
structures using the perpl program. The remaining
unannotated sRNAs were used to predict novel miRNAs
using Mireap software [62].

Target prediction of miRNAs and functional analysis
Target prediction of miRNAs followed rules referring to
Allen et al. [63]: a. <two adjacent mismatches in the
miRNA/target duplex; b. < four mismatches between the
sRNA and target gene; c. < 2.5 mismatches at positions
1-12 of the 5'-miRNA/target duplex; d. no mismatches
at 10-11 of the miRNA/target duplex; e. no adjacent
mismatches at 2—12 of the miRNA/target duplex; f. the
minimum free energy (MFE) of the miRNA/target
duplex should be 75% of the MFE bound to the perfect
complement. Target genes were searched using peach
genome information. To better understand the roles of
miRNAs in peach under low-dose UVB treatment, the
potential target functions were annotated using the Gene
Ontology and KEGG pathway database.

Differential expression analysis of miRNAs

The miRNA reads were used to analyze differential
expression and determine significant differences between
the control and treatment libraries. The frequency of
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miRNAs was normalized to one million to reduce
potential errors before calculating the fold-change, P-
value and ratio. Normalized expression = (actual miRNA
counts/total counts of clean reads) x 1,000,000. Fold-
change =log2 (miRNA normalized read counts in the
treatment library/ in the control library).

A fold change larger than 1 or less than -1 and a
P-value less than 0.01 suggested the highly significant
difference in the miRNA expression between two librar-
ies. When the fold-change was greater than 1 or less
than -1 and the P-value was between 0.01 and 0.05, the
expression of the miRNA was significantly different
between the two libraries. The ratio of miRNA normal-
ized read counts in treatment library/in control library
was used to determine changes in the expression of an
miRNA in the treatment samples compared with the
control samples. When the ratio was more than 2, the
miRNA was indicated as up-regulated, and when the ratio
was less than 1/2, the miRNA was down-regulated [64].

Relative expression of miRNA and target genes

qRT-PCR was performed to verify the expression levels
of identified miRNAs and targets genes using the IQ5
Quantitative Real-time PCR Detection System (Bio-Rad,
California, USA) with the SYBR® PrimeScript™ miRNA
RT-PCR Kit (TaKaRa, Dalian, China). The reactions were
performed in a total volume of 25 pL containing 2.0 pL
of diluted cDNA (100 ng/pL), 1 pL of each primer
(10 uM), and 12.5 pL of SYBR Green premix Ex Taq II
with the following reaction conditions: 95 °C for 30 s,
followed by 40 cycles of 95 °C for 5 s and 60 °C for 20 s,
then dissociation curve with 95 °C for 60 s, 55 °C for
30 s and 95 °C for 30 s. The reference genes for qRT-PCR
of miRNA and target genes were miR5059 and beta-actin,
respectively [65, 66]. Each sample was processed in tripli-
cate. All validated primer sequences of miRNAs/target
genes are listed in Table S5 and Table S6.

Metabolites analysis by HPLC

Four sugar components: sucrose, sorbitol, glucose and
fructose of leaves, were analyzed according to the
method of Karkacier et al. [67]. In a mortar pre-cooled
in the —-20 °C refrigerator, 100 mg of fresh leaves were
ground with liquid nitrogen and extracted with 1 mL
NANO pure water into a 2 ml tube. The tubes were
then vigorously shaken for 15 s, sonicated for 15 min
and centrifuged at 12,000 rpm for 15 min. The super-
natant was sterilized by filtering through a 045 pum
membrane filter and stored at —20 °C prior to sugar
components’ measurement using HPLC. The HPLC sys-
tem was programmed to inject 50 pL crude extracts
automatically. Online detection was performed using a
Waters 410 differential refractrometer detector and the
data were analyzed by Oirigin75 software. The whole
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program used a MetaCarb 87 °C equipped with a guard
column as the analytical column, and the deionized
water as the mobile phase with a 0.5 mL min™" flow rate.
Glucose, sorbitol, fructose and sucrose purchased from
company were used as standards [68].

Chlorophyll content

Function Leaves were taken every 7 days after flowering
to measure chlorophyll content via spectrophotometry.
The maximum UV absorption wavelength of chlorophyll
a and chlorophyll b is 645 nm and 663 nm respectively.
The total chlorophyll content was analyzed with the
following formula [69]:

Cr=C,+Cp,=20.29 Agys + 8.05 Ages.
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