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Abstract

Background: Whole-genome sequencing (WGS) plays an increasingly important role in clinical practice and
public health. Due to the big data size, WGS data analysis is usually compute-intensive and IO-intensive.
Currently it usually takes 30 to 40 h to finish a 50× WGS analysis task, which is far from the ideal speed
required by the industry. Furthermore, the high-end infrastructure required by WGS computing is costly in
terms of time and money. In this paper, we aim to improve the time efficiency of WGS analysis and minimize
the cost by elastic cloud computing.

Results: We developed a distributed system, GT-WGS, for large-scale WGS analyses utilizing the Amazon Web
Services (AWS). Our system won the first prize on the Wind and Cloud challenge held by Genomics and
Cloud Technology Alliance conference (GCTA) committee. The system makes full use of the dynamic pricing
mechanism of AWS. We evaluate the performance of GT-WGS with a 55× WGS dataset (400GB fastq) provided
by the GCTA 2017 competition. In the best case, it only took 18.4 min to finish the analysis and the AWS
cost of the whole process is only 16.5 US dollars. The accuracy of GT-WGS is 99.9% consistent with that of
the Genome Analysis Toolkit (GATK) best practice. We also evaluated the performance of GT-WGS
performance on a real-world dataset provided by the XiangYa hospital, which consists of 5× whole-genome
dataset with 500 samples, and on average GT-WGS managed to finish one 5× WGS analysis task in 2.4 min at
a cost of $3.6.

Conclusions: WGS is already playing an important role in guiding therapeutic intervention. However, its
application is limited by the time cost and computing cost. GT-WGS excelled as an efficient and affordable
WGS analyses tool to address this problem. The demo video and supplementary materials of GT-WGS can be
accessed at https://github.com/Genetalks/wgs_analysis_demo.
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Background
Whole-genome sequencing is prevalently used in re-
search, and it has been increasingly popular in clinics in
recent years [1–3]. WGS data plays an important role in
guiding disease prevention, clinical diagnoses and thera-
peutic intervention [4, 5]. In some cases, WGS can help
make clinical diagnoses that cannot be easily ascertained
by conventional approaches [6, 7]. WGS by NGS is now
transforming the diagnostic testing, treatment selection,
and many other clinical practices, due to its ability to
rapidly test almost all genes potentially related to
diseases and help reveal the pathogenesis beneath symp-
toms, which is particularly meaningful in dealing with
some rare or complex diseases. Moreover, with the
proliferation of WGS, human genome databases are get-
ting increasingly large. It provides researchers a great
opportunity to conduct more comprehensive and
profound genetic studies, with which we can better
understand the relationship between genome and some
complex diseases such as cancer and identify the effects
of DNA variations.
In clinics, a rapid WGS analysis is urgent, because

some diseases progress quickly and the sequencing rate
potentially impact patients’ lives, and a timely diagnosis
can help not only avoid futile therapies but find the most
effective therapeutic interventions. Currently it usually
takes 30 to 40 h to finish a 50× or deeper whole-genome
sequencing task, which is far away from the demands of

biotech industry. It is also of great necessity to make
WGS less expensive, since only the price burden getting
lower can more and more ordinary patients and
researchers afford it and can WGS achieve further
development and proliferation.
However, an efficient analysis of WGS data is not a

trivial task, as it requires significant computing power
and storage capacity. Table 1 [8–13] presents a compre-
hensive survey of previous benchmarks of WGS data
analysis according to literature, with details on the time,
cost, software pipeline and the hardware specification.
As we can see, ‘BWA +GATK’ is one of the most popu-
lar pipelines. It’s difficult to compare the efficiency of
those efforts on a completely fair base. Nevertheless, the
average time and cost (42.9 h and $79.1) of all those
works provide a general sense of the necessity to
improve the efficiency of WGS analyses. Beside of dedi-
cated hardware acceleration, such as GPU used in [13],
cloud computing, which is a type of scalable and flexible
computing infrastructure, is a prevailing solution for effi-
cient sequencing data analyses [8, 9, 14, 15]. However, a
few problems need to be addressed before a successful
application. In a typical cloud environment, connectivity
between nodes are usually not optimized for high
performance computing, thus it is difficult to devise an
adequately low-latency and high-bandwidth data transfer
mechanism. Moreover, the potentially high price is also
a huge obstacle hindering the further development and
proliferation of WGS analyses on the cloud. Theoretically
speaking, the running cost is proportional to the running
time and the number of running nodes in cloud computing,

Table 1 Comparison with previous benchmarks of time and cost for WGS data analysis based on different pipeline and hardware

Tool Aligner + Variant Caller Depth Time Cost Deptha Timea Costa Hardware

Genomekey + COSMOS [8] BWA + GATK HaplotypeCaller 37× 4.9 h $48.5 55× 7.3 h $72.1 20× AWS c2.8xlarge

Churchill [8] BWA + GATK UnifiedGenotyper 30× 1.7 h – 55× 3.1 h – 16× AWS r3.8×large

STORMseq [8] BWA + GATK lite 38× 176 h $32.8 55× 255 h $47.5 –

Crossbow [9] Bowtie + SOAPsnp 38× 4.5 h $71.4 55× 6.5 h $103.3 20× AWS c1.xlarge

Crossbow [9] Bowtie + SOAPsnp 38× 2.5 h $83.6 55× 3.6 h $121 40× AWS c1.xlarge

PEMapper / PECaller [10] PEMapper + PECaller 30× 29.3 h – 55× 53.7 h – –

Globus [11] Bowtie2 + GATK 30× 12 h – 55× 22 h – 1× AWS cr1.8xlarge

SevenBridges [12] BWA + GATK 15× 8 h $14.1 55× 29.3 h $51.7 –

BGI-online (BALSA) [13] BALSA 50× 5.5 h – 55× 6 h – 6-core CPU, 64GB RAM, GPU GTX680

Average 42.9 h $79.1

‘a’ means time and cost of different depth data are normalized to 55× with linear relationship. ‘-’ means not reported

Table 2 The configuration information of r3.8xlarge
and m4.4×large

Instance
Type

vCPU Memory
(GB)

Storage
(GB)

Networking
performance

Physical
processor

Clock
speed
(GHz)

r3.8xlarge 32 244 2 × 320
SSD

10 Gigabit Intel Xeon
E5–2670 v2

2.5

m4.4xlarge 16 64 EBS
Only

High Intel Xeon
E5–2676 v3

2.4

Table 3 Time cost and AWS expenditure for 55× WGS

Overall time for
the 55× WGS

Cost per
m4.4×.large
instance

Cost per
r3.8×.large
instance

Overall expenditure
for the 55× WGS

18.4 min $0.1287 $0.4386 $16.50
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which inevitably increases with the size of input datasets.
Therefore, challenges for WGS applications by cloud com-
puting are to fully leverage the infrastructure service, elastic
scalability, and the billing strategy of cloud computing
vendors. The key is to make a balance among storage, IO,
computation and economic cost.

Results and discussion
GT-WGS, the distributed whole-genome computing
system we built, is based on the cloud computing
platform provided by Amazon Web Service. It has a
good extensibility and ability, which can automatically
scale out the cluster size according to the computing
demand, thus minimizing the computation time of
sequencing data. Meanwhile, GT-WGS can apply for
resources based on the dynamic price offered by spot
instances of AWS, consequently minimizing the com-
puting expense. We used the 55× whole genome dataset
(NA12878) provided by GCTA challenge committee and
500 5× whole-genome data provided by the XiangYa
hospital to evaluate the computing efficiency and the
economic efficiency of GT-WGS. According to the
results, it took GT-WGS about 18 min to accomplish
the 55× WGS data analysis at a computing cost of $16.5,
and 2.39 min for each 5× whole-genome sequencing
with $3.62 on average, and the output accuracy is up to
standards required by the GCTA challenge.

Results of 55× WGS data analyses
In this test, we utilized 300 machine instances altogether
in the AWS eastern American computing center, includ-
ing 250 m4.4×.large instances (for computation) and 50
r3.8×.large instances (for distributed file system). Such a
configuration is empirically determined based on our
experience and a number of tests. Firstly, the analysis
efficiency is not proportional to the number of instances,
as an increasing number of nodes would extra overhead

in distributing computation. Hardware details of
m4.4×.large instances and r3.8×.laerge instances are list
in Table 2 (https://aws.amazon.com/ec2/instance-types).
We also made use of the Amazon Simple Storage Ser-
vice (Amazon S3) as the data storage system. The WGS
data used (400GB NA12878) is provided by the GCTA
committee. During the testing process, GT-WGS dy-
namically applied for spot instances, so as to minimize
expenditure to the best extend.
It took GT-WGS 18.4 min to finish the analysis, and

the overall cost was $16.5: (250*$0.1287 + 50*$0.4386)
*(18.4 mins/60mins). To note, costs of different machine
instances vary. Details about the AWS cost and the over-
all time cost are illustrated in Table 3. The WGS analysis
includes four major steps: mapping, BAM merging and
sorting, variants calling and VCF merging, which took
4.7 min, 3.6 min, 8.9 min and 23.2 s respectively in our
test, as described in Table 4.
For the 55× whole-genome sequencing data

(NA12878) provided by GCTA committee, there are
4,073,208 single nucleotide polymorphism (SNP) muta-
tion sites and 824,872 insert-deletion (Indel) mutation
sites detected by GT-WGS in total. According to Table 1,
the Churchill tool based on the Burrow-Wheeler Aligner
(BWA) [16] and the GATK HaplotypeCaller [17] is the
fastest cloud based solution [8]. It took 1.7 h (104 min)
using 16× AWS r3.8xlarge instances (16*32 = 512 cores)
on 30× data. To note, the size of the 55× WGS data on
the same sample can be estimate to be 1.83 times of the
30× data. Thus the analyzing time would be approxi-
mately 191 min (104*1.83) on the 55× data. Comparison
of the time cost between it with GT-WGS is listed in
Table 5. In the Table 5, GT-WGS employed
250 m4.4×.large computation instances (250*16 = 4000
cores). When using the same amount of CPU cores, the
speed up of GT-WGS versus the Churchill solution is:
(191/18.4)/(4000/512) = 1.33.
We also compared that the results of GT-WGS and

BWA +GATK to ensure the reliability of GT-WGS.
The consistency of results was about 99.9%. Compari-
son details are listed in Table 6, where the proportion
represents the ratio of the number of the specific
mutation sites to that of all the mutation sites in
corresponding method. For example, the seventh
column of Table 6 shows us the proportion of num-
ber of common SNP mutation sites to total amount
of SNP mutation sites is 99.8877% in GT-WGS and
99.8751% in BWA +GATK.
We further demonstrate the speedup of GT-WGS

by utilizing different numbers of computation
instances on the 55× whole-genome sequencing
analysis. According to the results, the running time
for the cases of 4, 16, 64 and 250 m4.4xlarge
instances were 888.7, 238, 67.9, and 18.4 min

Table 4 Time cost for each step in 55× WGS

Step Time cost

1 Mapping 4.7 min

2 BAM Merging and Sorting 3.6 min

3 Variants calling 8.9 min

4 VCF Merging 23.2 s

Table 5 Comparison of overall time cost between GT-WGS
and Churchill

Method Overall time (min) Number of CPU Cores

GT-WGS 18.4 250*16 = 4000

Churchill 191 16*32 = 512
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respectively. It shows an almost linear speedup.
Details of time overhead are demonstrated in Table 7,
and Fig. 1 shows the speedup trend line of GT-WGS,
where the performance of the case of 4 computation
instances is regarded as the baseline.

Results of 500 5× WGS data samples
We also did experiments on a SNP dataset from the
XiangYa hospital, which is 12.6 TB in total and it
consists of 500 5× whole-genome data samples. In
this test, we used 250 r4.4xlarge instances, each of
which cost $0.24 per hour, and 50 r3.8xlarge
instances, each of which cost $0.61 per hour. (details
shown in Table 8). The instance types used in differ-
ent cases are determined by our system automatically,
GT-WGS here chose r4.4xlarge instances because it
was cheaper than m4.4xlarge while performing the
evaluation and it has almost the same computing
capability with that of m4.4xlarge. The specific
configuration information of r4.4xlarge instances and
r3.8xlarge instances can be seen in the Table 9. Load
balancing and dynamic scheduling were exploited in
this experiment to optimize resource utilization. For
each 5× sample, it took 1.80, 0.40, 5.06 and 0.56 min
respectively to finish mapping, BAM merging and
sorting, variants calling and VCF calling. The average
time cost for each 5× WGS analysis was 2.39 min
and the average expenditure was $3.62. Table 10
describes time cost details in this case.
GT-WGS is the champion solution of the WGS

time optimization problem on the Wind and Cloud
challenge held by the GCTA committee (see https://
tianchi.aliyun.com/mini/challenge.htm for the news re-
port). This success can be attributed to:

(1)GT-WGS always tries to get the lowest price via
spot instances;

(2)GT-WGS makes full use of the computing resources
with cleverly designed parallel processing
techniques;

(3)GT-WGS minimizes time waste through its load
balancing and dynamic scheduling strategy.

GT-WGS can finish a typical analysis of one 5× WGS
data sample within 3 min for less than $4. In our opinion,
this could be a milestone in the biotech industry. GT-WGS
is also effective for WGS data with higher depths. GT-
WGS was able to process the 55× WGS dataset offered by
the GCTA committee at a cost of $16.5 within 18.4 min (in
the best case among all our tests). To note, a fluctuation of
cost and computation time is inevitable due to the follow-
ing two reasons: (1) we utilized the dynamic pricing of
AWS to pursuit cheapest instances; (2) computing in-
stances are virtual machines and several instances can be
running on a same actual server, so if the AWS infrastruc-
ture is busy, then performance of instances could be af-
fected. The worst case happened on Friday, which is usually
the busiest working day of AWS (with the highest unit
computing price), the expenditure of one 55× WGS ana-
lysis using GT-WGS is no more than $29 within 22 min.
The main reason why GT-WGS can reduce computing

cost is that it makes good use of the dynamic pricing
provided by AWS. However, it is not a trivial task to
utilize these resources, since once the real-time bidding
price is higher than the users’ payment, all the instances
will be taken back. This rule calls for a carefully
designed mechanism for fault tolerance. GT-WGS
addresses the problem by storing each data block in 4
nodes (1 host node +3 backup nodes), which can avoid
single-node failures of storage. Moreover, GT-WGS
strictly restricts the data input size of each worker task
so that it can be finished within a short time and any
failure of a single worker won’t damage the whole
computing process. In addition, GT-WGS also addresses
the problem of a reasonable partition of input data to im-
prove data transmission efficiency in a distributed environ-
ment and breaks down the two IO walls by novel strategies.

Conclusions
In this paper, we developed a distributed WGS computing
system based on Amazon Web Services (AWS) named GT-
WGS. GT-WGS won the first prize on the Wind and Cloud

Table 6 Results comparison between GT-WGS and BWA + GATK

Mutation
type

Unique mutation sites
of GT-WGS

Unique mutation sites
of BWA + GATK best practice

Common
mutation sites

Mutation sites with consistent position
but different genotype

Number Proportion Number Proportion Number Proportion Number Proportion

SNP 3928 0.10% 4443 0.11% 4,067,370 (99.89%, 99.88%) 643 (0.016%, 0.016%)

INDEL 646 0.08% 675 0.08% 823,871 (99.90%, 99.89%) 197 (0.024%, 0.024%)

Table 7 Results comparison among cased of different number
of computation instances

Number of computation instances (m4.4xlarge) Time cost

1 4 888.7 min

2 16 238.0 min

3 64 67.9 min

4 250 18.4 min
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challenge held by the Genomics and Cloud Technology
Alliance conference (GCTA) committee. It took only
18.4 min for GT-WGS to finish the 55× whole WGS data
analysis designated by GCTA committee in the best case, at
a cost of $16.5. In addition, GT-WGS is also featured by its
scalability on the cloud via load balancing and dynamic
scheduling. We conducted a large-scale analysis of
500 5× WGS data samples by load balancing and dynamic
scheduling in GT-WGS, and the average time cost for each
sample was 2.39 min and the average price was $3.62.
GT-WGS can possibly open novel chances for biotech

industry, where individuals can have their WGS data
analyzed at a low price in a short time. The GT-WGS
service will be publicly available in the form of RESTful
APIs in the near future.

Methods
The main purpose of our work is to perform WGS data
analyses efficiently and economically. By reasonably
breaking down WGS into smaller tasks and executing
them in parallel, we can reduce the wall time of WGS
analyses effectively. To avoid an increase in the comput-
ing expenditure brought about by extra overhead for
parallel processing, we developed a smart strategy that
can fully take advantage of the flexible pricing provided
by Amazon Web Service (AWS) and its unique
computing-resources usage pattern. The pricing infor-
mation of AWS can be found at https://aws.amazon.-
com/ec2/pricing (accessed on April 5, 2017).

Pay a lower price through spot instances
There are four types of Amazon Elastic Compute
Cloud (Amazon EC2) instances: On-Demand,
Reserved Instances, Spot Instances and Dedicated
Hosts. Users can increase or decrease their compute
capacity according to the real-time demand of their
applications with On-Demand instances, and pay at
the specified hourly rate. Dedicated Hosts provide
users with physical EC2 servers dedicated for their
uses, while Reserved Instances offer a capacity
reservation by assigning reserved instances to a
specific zone. In fact, numerous users who choose
Reserved Instances need not to occupy the resources
at all time, thus AWS provides spot instances, which
allows users to bid on spare Amazon EC2 computing
capacity, at a varying discount up to 90%. This
dynamic pricing mechanism offers users a rather
cheap price, but it has a very high demand for
application stability, since there exists a risk for the
instances being revoked at the end of any timing
cycle. To make use of these cheap resources steadily,
we take advantage of a high-tolerant system strategy,
and make an elaborate design and limitation on the
data volume and computing time of each unit task,
which makes sure that there is no long-term task
throughout the whole computing process, thus

Fig. 1 Speedup of GT-WGS

Table 8 AWS expenditure for 5× WGS

Cost per
r4.4×.large
instance

Cost per
r3.8×.large
instance

Overall
expenditure for
500 5× WGS

Average
expenditure for 5× WGS

$0.24 $0.61 $1810.0 $3.62

Table 9 The configuration information of r3.8xlarge instance
and r4.4xlarge instance

Instance
type

vCPU Memory
(GiB)

Storage
(GB)

Networking
performance

Physical
processor

Clock
speed
(GHz)

r3.8xlarge 32 244 2 × 320
SSD

10 Gigabit Intel Xeon
E5–2670 v2

2.5

r4.4xlarge 16 122 EBS
Only

Up to 10
Gigabit

Intel Xeon
E5–2686 v4

2.3
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avoiding a huge loss when the system has to release
resources.

Strategies to improve computing efficiency
In this paper, we aim to improve the computing effi-
ciency of WGS analyses via proper parallel processing
techniques. WGS data analyses usually include four
major steps, but here we only discuss the first three
steps since the time cost of the last step is much lower
than others: mapping, BAM merging and sorting, and
variants calling. WGS datasets are usually huge,
especially in the mapping step and haplotype calling. We
mainly focus on making a reasonable data partitioning
and improving data transmission efficiency in a distrib-
uted computing environment. As seen in Fig. 2, we

divide each FASTQ file into several parts, and assign
them to corresponding BWA machines; then we gather
all the SAM sequence alignment files into a sorted BAM
file; next we assign the BAM file to different machines,
pick up proper reads and perform HC variant calling
and finally comes VCF merging. However, there exist
two huge IO walls in such a computing process. The
first IO wall exists in the data partition and transmission
of the original FASTQ file, size of which is up to 400GB.
Given the original file is distributed by one machine to
many other machines, the assignment time is unaccept-
able even though the data transmission speed can be as
fast as 1GB per second. The situation remains awful
even if we alter the data distribution mode from one-to-
many to many-to-many, since it costs a large amount of
time to build up a distributed storage system required by
many-to-many data assignment. The second IO wall
appears when BWA mapping is done, all the SAM files
produced by BWA computing nodes must be combined
into one file, and then to be sorted, partitioned and
distributed again to different nodes. To break down the
two IO walls, we have designed and implemented
StageDB, a hierarchical distributed database, also we
built up an access interface based on it, which is consist-
ent with POSIX file interface. These make up a data

Table 10 Time cost portfolio for 5× WGS time cost on average
and in total

Step Time cost Total time Time per 5× WGS

1 Mapping 1.80 min 1199.74mins 2.39mins

2 BAM Merging and
Sorting

0.40 min

3 Variants calling 5.06 min

4 VCF Merging 33.6 s

Fig. 2 Two IO walls in the process of distributed WGS
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distribution system, which is capable of supporting
random data block fetches simultaneously by hundreds
of machines. This system partitions FASTQ files down-
loaded from S3 into many blocks, and stores them in
one host node and three back-up nodes, which guaran-
tees fast read speed even if several readers are reading
the same data block simultaneously. For the second IO

wall, we employ a multistage multi-node assigning and
sorting method, and adjust the order of partition and
assignment. Firstly, we partition the output of BWA
mapping into several regions, and send them to the
corresponding nodes. Next, sorting is done inside nodes,
after that the sorting result is divided into hundreds of
small-region files, which are then uploaded to AWS S3
system and transferred by S3 to the subsequent comput-
ing nodes. By hierarchical sorting and partitioning, plus
adequate bandwidth and small-file parallel storage
capacity provided by S3, we can break down the second
IO wall perfectly.

System architecture
As illustrated in Fig. 3, the system architecture is de-
signed in a micro-service mode. Clients connect the
backend of cloud computing system through restful
interface to obtain computing states and data dynamic-
ally. In GT-WGS, we need to consider the following
aspects: the ability to adjust computing capacity based
on real-time users’ requirements; the ability to maximize
computing efficiency with a low price; high tolerance of
services drop-out and re-allocation and high robustness.
As Fig. 4 shows, each micro-service is encapsulated by a
basic service monitoring agent. The system manages and
schedules micro-services by manipulating unified
interfaces, regardless of the runtime details inside micro-

Fig. 3 GT-WGS architecture

Fig. 4 Structure of MicroService
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services. In order to meet the demand of high depend-
ability, each micro-service in GT-WGS must be able to
tolerant arbitrary drop-outs of its dependent services,
and regain stability via sophisticated state-transferring
protocols. Apart from the distributed file system, all
other software facilities are developed in-house, such as
StageDB and StageMsgQueue. StageDB is a hierarchical
distributed storage database, which offers services on the
basis of hierarchy and whose services are far better than
that of SQL database. StageMsgQueue is a persistent
message-queueing service, which is capable of providing
steady message persistence and queue notices.
Figure 5 demonstrates the whole computing process of

GT-WGS. We download FASTQ files from AWS S3,
and store them into the data storage and distribution
system based on StageDB. StageDB is deployed on 50
r3.8xlarge instances with high bandwidth, and the total
output bandwidth is up to 50 GB per second. Next,
BWA workers directly fetch data blocks from the

distributed data-dispatching system and execute com-
puting tasks. There are 250 BWA workers in total in-
volved in our practice. The results from BWA workers
are sorted by a region splitter, and then classified into
hundreds of small region files. This kind of storage and
merging mode fits the AWS S3 storage system well.
Next, working nodes download computing data from
corresponding regions, do sorting and remove unneces-
sary duplication. After that comes HC variant calling.
Once all the HC computation is done, GT-WGS collects
all results and uploads them to S3, where clients can
download their final WGS result.

Load balancing and dynamic scheduling
There are lots of small tasks in each step of WGS
analysis, and at the end of every step there exists a
synchronization point among nodes, which means
only when all the small tasks in the same step of
different nodes finished, could the analysis process

Fig. 5 WGS analyzing process of GT-WGS
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move into the next step. Time of different small
tasks varies; thus, it is vital to introduce effective
dynamic task scheduling in one node. A proof-of-
concept illustration can be seen in the Fig. 6. In
addition, we need to ensure the load balancing
among different nodes, to reduce the waiting time
among nodes in each synchronization.
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