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Population differentiation in allele
frequencies of obesity-associated SNPs
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Abstract

Background: Obesity is emerging as a global health problem, with more than one-third of the world’s adult
population being overweight or obese. In this study, we investigated worldwide population differentiation in allele
frequencies of obesity-associated SNPs (single nucleotide polymorphisms).

Results: We collected a total of 225 obesity-associated SNPs from a public database. Their population-level allele
frequencies were derived based on the genotype data from 1000 Genomes Project (phase 3). We used
hypergeometric model to assess whether the effect allele at a given SNP is significantly enriched or depleted in
each of the 26 populations surveyed in the 1000 Genomes Project with respect to the overall pooled population.
Our results indicate that 195 out of 225 SNPs (86.7%) possess effect alleles significantly enriched or depleted in at
least one of the 26 populations. Populations within the same continental group exhibit similar allele enrichment/
depletion patterns whereas inter-continental populations show distinct patterns. Among the 225 SNPs, 15 SNPs
cluster in the first intron region of the FTO gene, which is a major gene associated with body-mass index (BMI) and
fat mass. African populations exhibit much smaller blocks of LD (linkage disequilibrium) among these15 SNPs while
European and Asian populations have larger blocks. To estimate the cumulative effect of all variants associated with
obesity, we developed the personal composite genetic risk score for obesity. Our results indicate that the East Asian
populations have the lowest averages of the composite risk scores, whereas three European populations have the
highest averages. In addition, the population-level average of composite genetic risk scores is significantly
correlated (R2 = 0.35, P = 0.0060) with obesity prevalence.

Conclusions: We have detected substantial population differentiation in allele frequencies of obesity-associated
SNPs. The results will help elucidate the genetic basis which may contribute to population disparities in obesity
prevalence.
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Background
Obesity is emerging as a global health problem, with
more than one-third of the world’s adult population
being overweight or obese [1]. Many serious health
conditions are linked to obesity, including diabetes,
hypertension, cardiovascular disease, and certain cancers
[2–5]. It was estimated that overweight and obesity
caused 3.4 million deaths in 2010 [6]. The serious public
health burden of overweight and obesity makes it
imperative to understand their underlying genetic and
environmental causes.

People of certain racial and ethnic groups are more (or
less) likely to become obese. For example, based on the
survey results from the World Health Organization
(WHO), East Asian countries assumed much lower
obesity rate than European countries and USA (Fig. 1).
We hypothesized that the genetic factor may play a role
in population disparities in the obesity prevalence. Re-
cent genome-wide association studies (GWAS) have
identified alleles in common variants that increased the
risk of obesity [7]. However, these effect alleles may have
different frequencies in different geographic regions due
to genetic drift or natural selection [8–16], which may
contribute to differences in the obesity prevalence
between populations. Myles et al. studied 25 SNPs (sin-
gle nucleotide polymorphisms) associated with 6
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complex human diseases, and they proposed that SNPs
with substantial variations in allele frequencies across
populations might contribute to differences in disease
prevalence among those populations [9]. Mattei et al.
studied 101 SNPs in 30 genes involved in major meta-
bolic and disease-relevant pathways in Puerto Ricans
and compared them to similarly aged non-Hispanic
whites (NHW) [8]. They found that, for the majority of
SNPs having significantly different allele distributions
between the two populations, Puerto Ricans carried risk
alleles in higher frequency and protective alleles in lower
frequency than NHW. Corona et al. found that differ-
ences in genetic dispositions to several diseases between
different populations are beyond what is expected by
genetic drift alone [10]. For example, the study demon-
strated that populations from East Asia and the Americas
have lower genetic risk for type 2 diabetes than those from
Africa and Europe based on an analysis of 16 disease-
associated SNPs.
Recent studies have also reported population differen-

tiations in allele frequencies of obesity-associated SNPs.
Adeyemo et al. investigated 29 obesity-associated SNPs
for their allele frequency variations among 11 popula-
tions by using genotype data from the International
HapMap Project [17]. Harnessing genome-wide SNP
results of 938 individuals from the Human Genome
Diversity Panel, Klimentidis et al. examined the world-
wide population differentiation pattern in the genomic
regions surrounding 16 obesity risk alleles [14].
Although Wang et al. tested signals of positive selection
at 115 BMI (body mass index) – associated SNPs among
14 populations of 1000 Genomes Project (phase 1 data),
they did not specifically study relationships between

allele frequencies and obesity prevalence [18]. In this
study, we compiled a comprehensive set of 225 obesity-
associated SNPs and assessed their population differenti-
ations in allele frequencies by utilizing 1000 Genomes
Project phase 3 data [19], which identifies genetic vari-
ants among 26 worldwide populations. We also con-
structed the composite genetic risk score for obesity at
both the individual and population levels, and tested the
correlation between the population-level average of
composite risk scores and obesity prevalence.

Methods
One thousand Genomes Project surveys genetic varia-
tions among 2504 individuals from 26 worldwide popu-
lations [19]. These 26 populations can be grouped into
Africa (AFR), East Asia (EAS), Europe (EUR), South Asia
(SAS), and the Americas (AMR) based on their geo-
graphical locations and ancestries (Table 1). The number
of individuals surveyed in each of the 26 populations
ranges from 61 to 113 with an average of 96, while
the number of individuals per continental group
ranges from 347 to 661 with an average of 501. The
phase 3 genotype data of these 2504 individuals was
downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/release/20130502/. The variant coordinates were
based on the human genome assembly GRCh37. All
alleles in the 1000 Genomes Project were reported on
the forward strand.
We searched the NHGRI-EBI GWAS Catalog (https://

www.ebi.ac.uk/gwas/home, December 2015) for SNPs
that were associated with at least one of the obesity
related traits (p-value <9 × 10−6). The traits include
BMI, obesity, obesity (early onset extreme), waist
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Fig. 1 Obesity (BMI ≥ 30 kg/m2) prevalence by country. The data is for both sexes with ages greater than or equal to 18. The data was surveyed
by WHO in 2010. Yellow for East Asian countries, black for European countries and USA
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circumference and waist-hip ratio according to [7]. By
examining the sign of beta-coefficient, whether the odds
ratio for the effect allele is greater than one, and text
description in the primary GWAS reports, we deter-
mined obesity risk (obesity-increasing) alleles for the
obesity-associated SNPs. In addition, we checked
whether an obesity effect (risk) allele stored in the
GWAS Catalog is on the forward or reverse strand based
on the content of primary GWAS reports. To retrieve
population-level allele frequencies from the genotype
data of 1000 Genomes Project, we converted nucleotide
(i.e. effect allele) of an SNP to its complement if it was
reported on the reverse strand in the GWAS Catalog.
We used hypergeometric test to assess if the effect

(risk) allele of an obesity-associated SNP is significantly
enriched or depleted (two separate tests) in each of the

26 populations with respect to the global population,
which pulls all 26 populations together. Thus, for each
SNP, 52 hypergeometric tests (2 × 26) were performed.
With a total of 225 obesity SNPs retrieved from the
GWAS Catalogue, we performed 11,700 statistical tests.
To control a family-wise error rate (FWER) of 0.01, we
used a raw p-value of 0.01/11700 = 8.55 × 10−7 as cutoff.
In generating heatmaps to visualize allele enrichment/
depletion patterns in different populations, the hyper-
geometric testing p-values were first log10 transformed.
If the effect allele of an SNP is enriched in a population,
then the negative of log10 of the enrichment p-value (a
positive number) was used to represent the SNP in asso-
ciation with that population in a heatmap. On the other
hand, if the allele of an SNP is depleted in a population,
the value of log10 of the depletion p-value (a negative
number) was used to represent the SNP for that popula-
tion in the heatmap. We used dChip software [20] to
perform hierarchical clustering based on enrichment/de-
pletion p-values (log10 based) of effect alleles in popula-
tions. Centroid option was selected as the linkage
method for clustering. The distance between two nodes
is 1 – correlation. Thus, the minimal distance is zero
when two nodes are perfectly correlated, and maximal dis-
tance is two when two nodes are negatively correlated.
Linkage disequilibrium statistics (r2) between a pair of

SNPs was calculated using LDlink [21], which uses
haplotype data from the 1000 Genomes Project.
We applied the following equation to calculate the

composite genetic risk score for obesity,

riskscore ¼
PI

i¼1Xi

2I
ð1Þ

where I refers to the number of obesity risk SNPs, and
Xi refers to copies of risk alleles (Xi ∈ {0,1,2}) at the ith

SNP. In one extreme case, if a person has two copies of
risk alleles at each obesity SNP, then the person’s risk
score will become 1. On the other hand, if a person has
zero copy of risk alleles at each obesity SNP, then the
person’s risk score will become 0. A person with the
composite score of 1 has maximal possible genetic risk
for obesity while a person with the score of 0 has the
lowest possible genetic risk. If copies of effect alleles (0/
1/2) are randomly assigned to each SNP, the expected
value of the risk score will be 0.5. Although we collected
225 obesity SNPs, we only chose SNPs which have
reached genome-wide significance (P < 5 × 10−8) in
GWA studies to calculate the composite score, which
resulted in 155 obesity risk SNPs. We applied the for-
mula to calculate the composite genetic risk score for
each individual present in the 1000 Genomes Project
and then summarized the risk score at a population level
(e.g. average, median).

Table 1 26 populations surveyed in the 1000 Genomes Project

population population
abbreviation

Continental
group

n

African Caribbean in Barbados ACB African (AFR) 96

African Ancestry in Southwest US ASW African (AFR) 61

Bengali in Bangladesh BEB South Asian (SAS) 86

Chinese Dai in Xishuangbanna,
China

CDX East Asian (EAS) 93

Utah residents with Northern and
Western European ancestry

CEU European (EUR) 99

Han Chinese in Beijing, China CHB East Asian (EAS) 103

Southern Han Chinese, China CHS East Asian (EAS) 105

Colombian in Medellin, Colombia CLM American (AMR) 94

Esan in Nigeria ESN African (AFR) 99

Finnish in Finland FIN European (EUR) 99

British in England and Scotland GBR European (EUR) 91

Gujarati Indian in Houston,TX GIH South Asian (SAS) 103

Gambian in Western Division,
The Gambia

GWD African (AFR) 113

Iberian populations in Spain IBS European (EUR) 107

Indian Telugu in the UK ITU South Asian (SAS) 102

Japanese in Tokyo, Japan JPT East Asian (EAS) 104

Kinh in Ho Chi Minh City,
Vietnam

KHV East Asian (EAS) 99

Luhya in Webuye, Kenya LWK African (AFR) 99

Mende in Sierra Leone MSL African (AFR) 85

Mexican Ancestry in Los
Angeles, California

MXL American (AMR) 64

Peruvian in Lima, Peru PEL American (AMR) 85

Punjabi in Lahore, Pakistan PJL South Asian (SAS) 96

Puerto Rican in Puerto Rico PUR American (AMR) 104

Sri Lankan Tamil in the UK STU South Asian (SAS) 102

Toscani in Italy TSI European (EUR) 107

Yoruba in Ibadan, Nigeria YRI African (AFR) 108
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Our formula does not carry weights for alleles, and it
is possible that not all 155 obesity-associated SNPs used
to calculate the composite genetic risk score are inde-
pendent to each other. To address this concern, we
performed the following analysis. From the 155 obesity-
associated SNPs, we specifically targeted 32 of these
SNPs to examine the per allele change in BMI (kg/m2)
which were derived from an analysis of 249,796 individ-
uals of European ancestry [22]. These 32 SNPs have
known effect sizes and are considered to be independent
since the pair-wise linkage disequilibrium (LD, r2) was
less than 0.1 and since they were separated by at least
1 Mb [22]. Let S be one of the 32 independent SNPs.
We counted how many nearby SNPs, among the 155
SNPs, that are within 1 Mb from S (including S itself ).
We then computed the Pearson correlation coefficient
between the effect size (kg/m2) of S and number of
nearby SNPs.
The country-wise obesity (BMI ≥ 30 kg/m2) prevalence

data was surveyed by WHO (World Health Organization)
in 2010 (http://apps.who.int/gho/data/node.main.A900A?-
lang=en). We used the average of composite genetic risk
scores for the population(s) residing in (or emigrating
from) a country (Table 1) to correlate with the country’s
obesity rate. Specifically, for countries with multiple popu-
lations profiled in 1000 Genomes Project, we pooled ESN
(Esan in Nigeria) and YRI (Yoruba in Ibadan, Nigeria)
populations to obtain the average of composite scores for
Nigeria; we pooled CHB (Han Chinese in Beijing) and
CHS (Southern Han Chinese) for China; and we pooled
GIH (Gujarati Indian in Houston,TX) and ITU (Indian
Telugu in the UK) for India. In addition, we used CEU
(Utah residents with Northern and Western European
ancestry) average of composite scores as an approximation
for the USA. The WHO data did not include Puerto Rican
obesity rate.

Results
Obesity alleles
We collected a total of 225 obesity-associated SNPs from
the NHGRI-EBI GWAS Catalog [23] (Additional file 1:
Table S1). The 225 obesity-associated SNPs originated
from 29 GWA studies (Additional file 2: Table S2). Among
them, 19 were performed in European populations, 3 in
East Asians, 2 in South Asians, and 3 in Africans. The two
remaining GWA studies were performed in mixed ethnic
populations [24, 25]. Clearly, populations except Europeans
were understudied.
Following collecting the obesity-associated SNPs, we

obtained their effect allele frequencies in each of the 26
populations (Additional file 1: Table S1) based on geno-
type information from the 1000 Genomes Project. We
then tested, for each SNP, if the effect allele is enriched
or depleted in each of the 26 populations in comparison

with the overall population average. A heatmap (Fig. 2)
shows how significantly the effect alleles were enriched
or depleted across the 26 populations among 225 obesity
risk SNPs. At the FWER-adjusted p-value of 0.01, among
the 225 SNPs, the effect alleles of 145 SNPs were both
significantly enriched in at least one population and sig-
nificantly depleted in at least another population, 18
SNPs were significantly enriched in at least one popula-
tion but not significantly depleted in any other popula-
tion, and 32 SNPs were only significantly depleted in
some population(s). Thus, 195 out of 225 SNPs (86.7%)
were significantly enriched or depleted in at least one of
the 26 populations. A hierarchical clustering of the 26
populations clusters the populations into their corre-
sponding continental groups (Fig. 2) except the Puerto
Rican population (PUR). The Puerto Rican population is
sister to the European continental group but not clus-
tered with the American group. However, this observa-
tion is consistent with the finding that the ancestral
composition of the Puerto Rican population includes
57.2% European [26]. Studies also show that the Americas
(AMR) is an admixture among European, East Asian and
African ancestries [19]. We also observed that intra-
continental populations were in general tightly clustered
together whereas inter-continental populations show dis-
tinct allele enrichment/depletion patterns. The African
continental group especially shows a negative correlation
with the remaining populations in the hierarchical cluster-
ing tree. One possible explanation for these results is that
continent-specific environmental factors may shape the
allele abundance of obesity-associated SNPs in the ances-
tries of continental populations.
Because populations belonging to the same continental

group exhibit similar patterns in allele enrichment/de-
pletions, we decided to merge them to examine patterns
at the continental level with benefits of larger sample
sizes and simplification of pattern recognition. A heat-
map (Fig. 3) visualizes how significantly the effect alleles
were enriched or depleted in each continental group in
comparison with the global average for a selected set of
39 obesity risk SNPs, which have enrichment or deple-
tion p-values of at least 10−100 and have reached
genome-wide significance (5 × 10−8) in GWA studies.
The heatmap clearly shows that African and East Asian
populations have the largest number of SNPs that
exhibit the most significant allele frequency changes. In
many cases, African and East Asian populations exhibit
opposite directions in allele frequency changes – effect
alleles were enriched in one population but depleted in
the other. For example, SNP rs2030323, located in the
intron of BDNF (brain derived neurotrophic factor)
which encodes a member of the nerve growth factor
family of proteins, has C/A alleles in which the C allele
was tested in European [27] and East Asian [28]
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populations to increases obesity risks. The C allele has
77%, 51% and 95% frequencies in European, East Asian
and African populations, respectively (Table 2). The
allele frequency in Africans is almost twice of East
Asians. In the Esan population in Nigeria (ESN), the C al-
lele frequency has reached 99.5% (n = 99, Additional file 1:
Table S1). In another contrasting example, rs7708584,
approximately 27 kb upstream of GALNT10 (polypeptide
N-acetylgalactosaminyltransferase 10) whose protein
product functions in the synthesis of mucin-type oligosac-
charides [29], has A/G alleles in which the A allele was
shown to increase BMI in African populations [30]. The A
allele has 96% and 26% frequencies in East Asian and
African populations, respectively. The allele frequency in

East Asians is more than three times of Africans. In par-
ticular, in the Japanese population (JPT), the A allele fre-
quency has reached 99.0% (n = 104). rs671, an SNP
located in the coding region of ALDH2 (aldehyde de-
hydrogenase 2) which encodes an enzyme of the major
oxidative pathway of alcohol metabolism, is associated
with BMI in East Asian population [31]. The BMI-
increasing allele, G, has a frequency of 83% in East Asians
while it is fixed (100%) in Europeans (n = 503). Thus, this
SNP cannot be identified as an obesity-associated locus in
the European population. rs29941 and rs7359397, two
SNPs close to KCTD15 (potassium channel tetrameriza-
tion domain containing 15) and SH2B1 (SH2B adaptor
protein 1), respectively, were among the 39 SNPs (Table 2).

Fig. 2 Heatmap showing how significantly the effect alleles are enriched or depleted in each population for the 225 obesity risk SNPs. Each row
represents an SNP, and each column represents a population. The color bar above the heatmap shows continental group each population
belongs to. Keys for populations can be found in Table 1. A cell in the heatmap is color coded according to the log10 of P-value, which tests the
enrichment/depletion of an effect allele in a population in comparing with the overall average. If an effect allele is enriched, the cell is colored
red based on the negative value of log10P, whereas if an effect allele is depleted, the cell is colored green based on the value of log10P
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KCTD15 inhibits neural crest formation during embry-
onic development [32], and SH2B1 encodes the Src hom-
ology 2B adaptor protein 1, a protein mediates activation
of various kinases and may function in cytokine and
growth factor receptor signaling [33, 34]. These two genes
were also found to be related to obesity with risk allele fre-
quencies differing substantially between populations [14].
For rs7359397, its risk allele frequency in American group
(47%) is 34 times of African group (1.4%). These results
demonstrate extreme cases of population differentiation
in obesity risk allele frequencies.

FTO SNPs
Although the investigation of the molecular function of
FTO (fat mass and obesity associated) has not led to
conclusive results [35, 36], the gene plays a role in con-
trolling feeding behavior and energy expenditure [37].
An analysis of 249,796 individuals of European ancestry
identified 32 SNPs that were significantly associated with
BMI (P < 5 × 10−8) [22]. Among them, the FTO SNP,
rs1558902, accounted for the largest proportion of the
variance. European adults who carried two copies of the
risk allele in the FTO SNP, rs9939609, weighed about

3 kg more and had 1.67-fold increased odds of obesity in
comparison with those with no copies of this allele [38].
Among the 225 obesity-associated SNPs collected in this
study, 15 are positioned in the FTO locus (Fig. 4a), and
all of them are within the first intron of FTO and increase
obesity risk. In the hierarchical clustering tree of all obes-
ity risk SNPs (Fig. 2), these 15 SNPs were exclusively
grouped into two monophyletic clades (one clade consist-
ing of 5 SNPs and the other clade consisting of 10 SNPs).
These two clades exhibit distinct allele enrichment/deple-
tion patterns mainly due to the African populations
(Fig. 4b). In the 5-member clade, the effect alleles of 5
FTO SNPs were depleted in the African populations in
comparison with the overall population average; whereas
in the 10-member clade, the effect alleles of 10 FTO SNPs
were enriched in the African populations. Surprisingly, the
set of 5 FTO SNPs depleted in the African populations is
not physically separated from the other 10 SNPs on the
chromosome (Fig. 4a), instead, they are intertwined. In
contrast to the African populations, the 15 FTO risk
alleles were unanimously enriched in the European popu-
lations, but they were depleted in the East Asian popula-
tions as well as the Peru population (PEL).

Fig. 3 Heatmap showing how significantly the effect alleles are enriched or depleted in each continental group for the 39 obesity risk SNPs. SNP
ID is shown for each row in the heatmap and followed by its obesity-increasing allele and neighboring (or containing) gene. See Table 2
for details
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We further analyzed LD (linkage disequilibrium) pat-
terns between the FTO SNPs in five continental groups,
respectively (Fig. 4e). rs6499640 shows no or weak LD sig-
nal with the other 14 SNPs in all five continental groups,
which is in accordance with its chromosomal position sep-
arated from the other 14 SNPs (Fig. 4a). In the hierarchical
clustering tree of FTO SNPs across 26 populations
(Fig. 4b), rs6499640 formed a branch by itself with distinct
allele enrichment/depletion pattern. The hierarchical clus-
tering of SNPs within African (Fig. 4c) and European
(Fig. 4d) continental group further demonstrates the
unique allele pattern of rs6499640. Except rs6499640, the
other 14 SNPs fall in a region of very strong LD in the
European continental group and moderately strong LD in
American, East Asian, and South Asian groups (Fig. 4e).
However, these 14 SNPs were apparently split into two
major LD blocks in the African group, as they were di-
vided into two clades in the SNP hierarchical tree (Fig. 4b)
with opposite allele enrichment/depletion patterns in the
African populations. The five SNPs in the first major LD
block of the African group are strongly linked to each
other, whereas the second major LD block containing nine
SNPs is more fragmented. These nine SNPs were also par-
titioned into multiple branches in the hierarchical cluster-
ing tree of the SNPs within African populations (Fig. 4c).
For example, the four SNPs (rs11075990, rs9939609,
rs7202116 and rs7185735) comprising a branch with a
small branch height corresponded to a relatively strong
sub-block within the second major LD block of African
group. In contrast, all 14 SNPs formed a low-height
branch in the hierarchical clustering tree of the European
populations (Fig. 4d) and fell in a region of strong LD.
Thus, the African populations have much smaller blocks
of LD than the other populations in the FTO locus, indi-
cating that the African populations are more genetically
diverse in this genomic region.
Although those 15 obesity-associated SNPs are located

within the first intron of FTO, it should be noted that
some of the variants can form long-range functional
connections with the homeobox gene IRX3 [39], which
is a half-megabase downstream of the variants.

Composite genetic risk score
We developed a mathematical formula (equation 1) to
calculate the composite genetic risk score based on

copies of effect alleles at obesity-associated SNPs.
Although the majority of obesity-associated SNPs were
detected from genome-wide association studies of
European populations (Additional file 2: Table S2), we
assumed that these variants would also be associated
with the condition in non-European populations. This
assumption is somewhat validated by a study which
found that allelic associations from a significant majority
of GWAS-identified variants can be replicated in non-
European populations and the associations are in the
same direction as in European populations [40]. In the
equation, we also assumed that each variant contributed
equally to the genetic risk score. Different variants
should carry different weights in a more rational repre-
sentation of the genetic risk. However, not all variants
have known effect sizes, and these effect sizes were
mainly estimated from European populations. It would
not be appropriate to extrapolate the European-derived
effect sizes to other populations because of their incon-
sistency across different populations [40]. Nevertheless,
we found a significantly positive correlation (R2 = 0.67,
P = 9.98 × 10−9, Fig. 5) between the number of SNPs
clustered within a narrow genomic region and effect size
of an independent SNP representing that genomic
region (see Methods). Thus, the inclusion of clustered
SNPs, some of which may be co-inherited in certain popu-
lations, in our calculation of the composite score could
compensate SNP-specific effect size to some degree.
We used all 155 SNPs, which have reached genome-

wide significance (P < 5 × 10−8) in GWA studies
(Methods), to calculate the composite genetic risk score
for each person present in the 1000 Genomes Project
(N = 2504). Their composite scores range from 0.33 to
0.65 with an average of 0.47 (STD = 0.049), which is
close to the expected value (0.5) if copies of effect alleles
are randomly assigned to each SNP. Distributions of
composite scores for the 26 populations are shown in
Fig. 6. Clearly, the five East Asian populations have the
lowest average and median of the composite scores
among the five continental groups.
We next explored the correlation between compos-

ite genetic risk scores and obesity prevalence surveyed
by WHO (Fig. 7). Four European countries and USA
have very high obesity rates (≥19%), whereas Vietnam
(2.6%) and Japan (2.9%) have the lowest obesity rate.

(See figure on previous page.)
Fig. 4 FTO SNPs. (a) Physical positions of 15 FTO SNPs on chromosome 16. (b) Heatmap showing how significantly the effect alleles of FTO SNPs
are enriched or depleted in each of the 26 populations in comparison with the overall average. SNP ID is shown for each row of the heatmap
and followed by its obesity-increasing allele. The 15 FTO SNPs were divided into two clades. The first clade has 5 members, which are indicated
by arrows in a. (c) Heatmap for populations of African ancestry. 5 SNPs with depleted alleles (green color) formed the first major LD block,
whereas the 9 SNPs with enriched alleles (red) except rs6499640 formed the second major LD block in African group (e). Also refer to the main
text. (d) Heatmap for populations of European ancestry. (e) Five heatmap matrixes of pairwise linkage disequilibrium statistics (r2) for five
continental groups, respectively. Each cell in the heatmap represents correlation (r2) between a pair of SNPs
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China has an obesity prevalence of 5.3% which is still
much lower than the European countries and USA.
The high obesity rates in European populations and
low rates in East Asian populations coincide with
high genetic risk scores in Europeans and low scores
in East Asians (Fig. 6), respectively. Over all five con-
tinental groups, the population-level average of com-
posite genetic risk scores is significantly positively
correlated (R2 = 0.35, P = 0.0060) with the obesity

prevalence (Fig. 7). The significance of the correlation
may suggest the validity of our formula (equation 1).
However, we recognize that our formula will require
further validation.

Bias analysis
Among the 155 SNPs with GWAS p-values less than
5 × 10−8 that were used to calculate the composite gen-
etic risk score, 121 (78%) were only detected from GWA

Fig. 5 Correlation between effect sizes of independent SNPs and number of neighboring SNPs. The neighboring SNP refers to an SNP which is
within 1 Mb from an independent SNP and which is included to compute the composite genetic risk score

Fig. 6 Distribution of composite genetic risk scores for obesity. For each population, plus symbol indicates average, center line in the box plot
shows the median, box boundaries indicate the 25th and 75th percentiles, whiskers extend 1.5 times the interquartile range from the 25th and
75th percentiles, and outliers are represented by circles. The order of populations depicted in the figure is sorted according to their averages of
composite scores. Plotted using BoxPlotR [48]
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studies targeting European populations (Fig. 8a). Natur-
ally, one may raise the concern that the composite score
may be biased towards European populations. Indeed,
three European populations (CEU, FIN, GBR) ranked
top 3 in terms of the average of composite scores (Fig. 6).
However, the average score of TSI (Toscani in Italy) is
slightly smaller than ITU (Indian Telugu in the UK),
while the average score of IBS (Iberian populations in
Spain) is below three South Asian populations (STU,
PJL, ITU), two African populations (YRI, ACB) and one
American population (PUR). Thus, non-European popu-
lations could also attain relatively high composite scores.
Among the four continental groups except European,
East Asian has the most number (24) of obesity-
associated SNPs detected from GWA studies (Fig. 8a). If
more obesity-associated SNPs being detected from a
particular population would make the composite score
of that population higher, then the composite scores of
East Asian populations would be higher than other three
continental group (AFR, SAS, AMR) populations.
However, all five East Asian populations ranked lowest
in terms of composite score averages and medians
(Fig. 6), indicating that the inclusion of more SNPs from
a particular population would not necessarily boost that
population to a higher genetic risk in comparing with
others. It is the allele frequencies, not the number of
obesity-associated SNPs, that determine the outcome of
composite scores (Additional file 3: Document 1).
Figure 6 clearly shows that East Asian populations

have lower obesity risks than Europeans. To further val-
idate this result, we compiled two additional SNP sets.
The first set consists of 24 SNPs that were detected from
East Asian populations (Fig. 8a). Of these 24 SNPs, three
were also detected in European populations. The second

set includes these 24 SNPs and additional 21 SNPs that
were randomly chosen among the 121 SNPs only
detected from European populations (Fig. 8a). Thus, the
second set of 45 SNPs would not be obviously biased
toward either Europeans or East Asians. We then re-
calculated the composite genetic risk scores by using
these two SNP sets, respectively, for JPT (Japanese) and
CEU populations. Both JPT and CEU ranked first among
the East Asian and European populations, respectively
(Fig. 6), and both are developed countries. The average
of composite scores for CEU is 0.562 for the 24-SNP set,
0.521 for the 45-SNP set and 0.499 for the original 155-
SNP set (Fig. 8b). Thus, CEU risk scores actually
decreased from the East Asian SNP set to the SNP set
dominated by Europeans. On the other hand, the aver-
age of composite scores for JPT also slightly decreased.
It is 0.474 for the 24-SNP set, 0.461 for the 45-SNP set
and 0.450 for the 155-SNP set. Consequently, the ratio
of average between CEU and JPT decreased from the
East Asian SNP set (1.186) to the original 155-SNP set
(1.108). (Figure 8b). The p-vale comparing CEU with
JPT averages for the 155-SNP set (6.4 × 10−11) became
less significant when compared with the p-value for the
East Asian SNP set (1.1 × 10−12) (Fig. 8b). Therefore, the
gap between CEU and JPT actually narrows when all 155
SNPs were used. However, the difference is still very
significant.

Discussion
In this study, we explored the worldwide population dif-
ferentiation in allele frequencies of obesity-associated
SNPs. We used hypergeometric model to test whether
the effect allele of an obesity-associated SNP was signifi-
cantly enriched or depleted in each of the 26 populations

Fig. 7 Correlation between WHO-surveyed obesity prevalence and population-level average of composite genetic risk scores
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relative to the global population surveyed in the 1000
Genomes Project [19]. The resulting p-values were used
to generate an enrichment/depletion heatmap (Fig. 2),
which would facilitate the visualization of worldwide
allele frequency distributions and help identify patterns.
For example, the African populations clearly show a dis-
tinct allele enrichment/depletion pattern (Fig. 2). In a
conventional approach of using Fst (fixation index) to cap-
ture the difference in allele frequency between two popula-
tions, it would need 325 (26 × 25/2) pairwise comparisons
for a single SNP [41]. The Fst -based heatmap for more
than two hundred obesity SNPs would probably be much
more complicated than the one shown in Fig. 2. In
addition, an Fst score does not correspond to a p-value, and
it usually requires the construction of empirical Fst distribu-
tion (genome-wide or from a random set of SNPs) and then
choosing a certain percentile as a significance cutoff. Our
hypergeometric approach would need 52 (26 × 2) testings
and generate p-values directly. The resulting p-value based
heatmap depicts enrichment/depletion patterns of obesity-
associated alleles across populations, which may be helpful
in providing guidance in implementing population-based
interventions. For example, in adults, the allele (A) of the
FTO variant, rs9939609, increased the risk of obesity in a

meta-analysis of pooled populations, but physical activity
attenuated this effect [42]. This allele is significantly
enriched in the populations with African ancestry but
depleted in East Asian populations (Fig. 4b). Thus, the
effectiveness of exercise interventions on the obesity man-
agement may vary between different populations. In
addition, the p-value based heatmap could connect to link-
age disequilibrium patterns (Fig. 4).
Among the 225 obesity-associated SNPs collected in

this study, 195 (86.7%) possess effect alleles significantly
enriched or depleted in at least one of the 26 popula-
tions. In extreme cases (Table 2), some SNPs (e.g.
rs2890652, rs10150332) have effect alleles that are a-
lmost completely wiped out in a continental group,
whereas other SNPs (e.g. rs12229654, rs671) have effect
alleles that are fixed in multiple continental groups.
Thus, it would be important to conduct GWA studies in
different ancestry populations. In addition, because there
are much fewer GWA studies of obesity in populations
of non-European ancestry (Additional file 2: Table S2), it
is possible that additional obesity-associated SNPs could
be detected in populations such as Africans or East
Asians which show the most distinct enrichment/deple-
tion patterns in known obesity alleles (Fig. 3).

a

b

Fig. 8 Obesity-associated SNPs detected in different populations and their effects on composite genetic risk scores. (a) Overlap of SNPs detected
in different populations. In this Venn diagram, each oval represents a population specific set of SNPs, which were detected in GWA studies
targeting that population (see Additional file 2: Table S2). For example, the oval for Europe contains 125 SNPs, which indicates that these SNPs
were detected in European population-based GWA studies. Multi-population refers to GWA studies performed on mixed ethnic populations
(Additional file 2: Table S2). South Asian population-based GWA studies compiled in this report did not result in obesity-associated SNPs reaching
genome-wide significance (5 × 10−8). (b) Comparing distributions of composite genetic risk scores between CEU and JPT populations on different
SNP set. Refer to the main text for specifications of three SNP sets (24, 45 and 155 SNPs). In the boxplot, plus symbol indicates average, and center
line in the box plot shows the median. Ratio refers to, for each SNP set, the ratio of population-level average between CEU and JPT. P-value is
based on the Student’s t test
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In this study, we calculated the composite genetic risk
score for obesity at both the individual and population
levels. We used all SNPs reaching genome-wide signifi-
cance to compute the composite scores. Although most
of these SNPs were detected from European populations
(Fig. 8a), we assumed that these variants would also
affect obesity in non-European populations according to
[40]. A recent study also supports the generalization of
established SNP associations with BMI in diverse ances-
tral populations [43]. Genome-wide association studies
of type 2 diabetes, a metabolic disease closely associated
with obesity, in a range of ancestry groups also revealed
that most common-variant susceptibility loci are shared
across ethnic groups [44, 45]. Additionally, the biological
mechanism linking an SNP to complex trait like obesity
should, in general, be functioning across populations
since we all belong to the same species. We observed
that obesity prevalences in American countries (Mexico,
Peru, Colombia) are relatively high (Fig. 7), however,
there is no SNPs with genome-wide significance origin-
ating from GWAS of American populations (Fig. 8a).
There is no SNPs with genome-wide significance origin-
ating from GWAS of South Asian populations, either.
For practical purpose, in order to assess their genetic
risk scores, obesity-associated SNPs detected in popula-
tions of other continental groups need to be used. It
would be reasonable to use all reported genome-wide
significant SNPs [40, 43], instead of arbitrarily choosing
a subset of theses SNPs, to calculate the composite gen-
etic risk scores for American and South Asian popula-
tions and compare their scores with other world
populations. Furthermore, through the bias analysis, we
demonstrated that the inclusion of more SNPs from a
particular population would not necessarily push that
population to a higher genetic risk score in comparing
with others (Fig. 8). It is the effect allele frequencies of
obesity-associated SNPs that determine the outcome of
genetic risk scores (Additional file 3: Document 1).
The results of population-level composite scores show

that East Asians seem to be genetically less likely to
become obese than the other populations (Fig. 6). The
obesity prevalence in East Asian countries is indeed very
low (Fig. 1). Do these results imply that East Asian
people do not need to exercise as frequently as other
populations or eat as healthy as possible to control their
body weights? The answer is definitely ‘no’. One import-
ant reason is that the proportion of Asian people (in-
cluding Chinese and Japanese) with a high risk of type 2
diabetes and cardiovascular disease is substantial at
BMIs lower than the cut-off point of 25 kg/m2 that
defines overweight in the current WHO classification
(obesity ≥30 kg/m2) [46]. In other words, the BMI
threshold to trigger other diseases for Asian people may
be lower than the threshold for other populations.

Complex traits such as obesity result from the com-
bined effects of multiple genetic variants and their inter-
action with environment. While this study focuses on
the genetic risk factors for obesity, it is important to
note that environmental factors such as diet, climate,
local pathogens and lifestyle also contribute to obesity.
The strength of the linear correlation between the
population-level average of composite genetic risk scores
and obesity prevalence (Fig. 7) indicates that 35% of the
variance in the obesity prevalence is predictable from
the genetic risk score. Interestingly, Hemani et al.
reported heritability (h2) estimates of 42% for BMI on a
sample of 20,240 quasi-independent sibling pairs [47]. In
future studies, a more comprehensive formula to predict
the obesity risk would incorporate both genetic and
environmental factors. Our composite genetic risk score
(equation 1) may be used for the genetic part in such a
formula.

Conclusions
Our study shows substantial population differentiation
in allele frequencies of obesity-associated SNPs. Our
simple formula (equation 1) to calculate the composite
genetic risk score can be applied to individuals from dif-
ferent populations by overcoming the effect size weight
issue of obesity–associated SNPs, so that genetic risks of
different populations can be compared with each other.
Our risk score assessment equation for obesity may also
be useful in clinical implications. For example, one can
assess a person’s obesity risk based on his genotypes over
those obesity-associated SNPs. The approach developed
in this study should be applicable to other diseases such
as hypertension and type 2 diabetes.

Additional files

Additional file 1: Table S1. Effect allele frequencies in 26 populations
for obesity SNPs. The table lists 225 obesity-associated SNPs and their
effect allele frequencies in 26 populations surveyed in the 1000 Genomes
Project. (XLSX 229 kb)

Additional file 2: Table S2. GWA studies of obesity. The table lists 29
GWA studies of obesity, the major ethnic group in each GWA study, and
their references. (DOCX 70 kb)

Additional file 3: Document 1. Population-level average of composite
genetic risk scores and allele frequencies. The document illustrates that
the population-level average of composite genetic risk scores is identical
to the average of effect allele frequencies of obesity-associated SNPs.
(DOCX 13 kb)
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