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Abstract

Background: Genomic selection (GS) can offer unprecedented gains, in terms of cost efficiency and generation turnover,
to forest tree selective breeding; especially for late expressing and low heritability traits. Here, we used: 1) exome capture
as a genotyping platform for 1372 Douglasir trees representing 37 full-sib families growing on three sites in British
Columbia, Canada and 2) height growth and wood density (EBVs), and deregressed estimated breeding values (DEBVs) as
phenotypes. Representing models with (EBVs) and without (DEBVs) pedigree structure. Ridge regression best linear
unbiased predictor (RR-BLUP) and generalized ridge regression (GRR) were used to assess their predictive accuracies over
space (within site, cross-sites, multi-site, and multi-site to single site) and time (age-age/ trait-trait).

Results: The RR-BLUP and GRR models produced similar predictive accuracies across the studied traits. Within-site GS
prediction accuracies with models trained on EBVs were high (RR-BLUP: 0.79-0.91 and GRR: 0.80-0.91), and were generally
similar to the multi-site (RR-BLUP: 0.83-0.91, GRR: 0.83-0.91) and multi-site to single-site predictive accuracies (RR-BLUP: 0.
79-0.92, GRR: 0.79-0.92). Cross-site predictions were surprisingly high, with predictive accuracies within a similar range
(RR-BLUP: 0.79-0.92, GRR: 0.78-0.91). Height at 12 years was deemed the earliest acceptable age at which accurate
predictions can be made concerning future height (age-age) and wood density (trait-trait). Using DEBVs reduced the
accuracies of all cross-validation procedures dramatically, indicating that the models were tracking pedigree (family
means), rather than marker-QTL LD.

Conclusions: While GS models’ prediction accuracies were high, the main driving force was the pedigree tracking rather
than LD. It is likely that many more markers are needed to increase the chance of capturing the LD between causal
genes and markers.
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Background

Novel advancements in genomics technologies and statis-
tical genetics, have paved the way for an increasingly pros-
perous environment for breeding industries. Notably in the
dairy sector, the traditional phenotype-dependent selection
has been successfully replaced by genotype-dependent se-
lection (aka genomic selection, GS) which reduces the time
required for evaluating genetic traits [1]. Tree selective
breeding (aka tree improvement) challenges are somewhat
similar to those of the livestock industry; namely, long gen-
eration times and low heritability and late expressing traits.
GS, if successful, can offer unprecedented gains in forestry
through reducing trait evaluation time, allowing faster
breeding generations turn-over, and hence, an increased
genetic gain per unit time can be reached. Additionally, the
implementation of GS to forestry would offer a certain re-
silience to spontaneous market or environmental, and/or
extraneous influences (e.g., disease/pest resistance, climate
change); as breeding programmes adapt accordingly in a
shorter time frame [2].

Selective breeding has traditionally focused on phenotypic
selection, and more recently the linkage disequilibrium (LD)
based indirect method of marker-assisted selection (MAS)
[3]. MAS is suited for major-gene traits (such as resistance to
white-pine blister rust (Cronartium ribicola)) and proven to
be less effective for predicting complex quantitative traits that
closely reflect Fisher’s infinitesimal model [4]. MAS models
could not effectively describe a complex trait, since small ef-
fect loci are not readily discovered and considered ‘not sig-
nificant] thus leaving a substantial proportion of genetic
control unaccounted for (i.e., missing heritability). Meuwissen
et al. [5] proposed the method of ‘genomic selection’ to alle-
viate this problem by simultaneously considering all marker
effects, and in doing so, all genetic contributions are captured
regardless of size (significance). GS enables complex quantita-
tive trait selection using genomic marker data alone and the
method does not require a priori knowledge regarding the
specific genetic architecture of the trait in question. Instead,
markers throughout the entire genome (or in this case ex-
ome) are incorporated into the estimate. The resulting gen-
omic estimated breeding values (GEBVs) for each individual
derived from the GS models provide a basis, upon which se-
lection decisions are made. The effect of this is a paradigm
shift, in which the model unit of these breeding analyses
shifts from being the line of decent to the allele. This means
that the phenotypic values of individuals are determined from
genotypic data, enabling early selection of traits, leading to a
significantly shorter breeding cycle and higher selection dif-
ferential, particularly for the “difficult to assess” attributes.

The feasibility of applying GS to forest trees was initially
assessed through deterministic simulations and the results
indicated that GS has the potential to radically improve the
efficiency of tree selective breeding [6]. Grattapaglia and
Resende [6] also recommended further experimentation
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and proof of concept investigations. Since then, several
forest tree species “proof-of-concept investigations” have
been conducted with encouraging results [7—18].

Neves et al. [19] recognized that one of the major barriers
to the application of genomic technologies to tree selective
breeding was the large size of the genome of many forest
species. This is particularly true of conifers, and although co-
nifers have a large genome [20—22], their transcriptomes are
comparable with other plants such as Arabidopsis whose
genome is more than 100 times smaller [23]. Therefore, as
an alternative to the prohibitive costs in both monetary
terms and time, and the complexity of sequencing the whole
genome, Neves et al. [19] focused on the coding region. This
they refer to as “sequence capture”, and proposed that it
would enable more efficient genetic variant identification in
conifers; as it had previously been done in human and maize
genomic studies [24—26]. Although sources of variation may
not be exclusively found in the exome, the reduced cost and
time compared to that of whole genome sequencing, as well
as the ability to still capture a significant proportion of vari-
ants and rare variants, makes this method desirable as it is
harder to find functional variants in non-coding regions [27,
28]. Exome capture has been recognized as an effective
method for capturing rare variants in the field of medicine
[29], and for increasing knowledge of unmapped large
genomes [19, 28]. In addition, Suren et al. [20] have shown it
to be a cost effective method for reducing complexity in
large genomes, such as those of conifers.

The present GS study was based on the exomic informa-
tion collected from 1372, 38-year-old coastal Douglas-fir
(Pseudotsuga menziesii Mirb. (Franco)) trees. The samples
represented 37 full-sib families with replications over three
sites in coastal BC. The study objectives were: 1) to compare
two GS methods; ridge regression best linear unbiased pre-
dictor (RR-BLUP) and generalised ridge regression (GRR),
and 2) to test the GS prediction accuracy for within-, cross-,
pooled multi-site, and time- time (age-age /trait-trait) be-
tween age 12 and 38 years. Two phases to this analysis were
carried out, firstly the two GS models were trained on esti-
mated breeding values (EBVs). This represents an analysis in
which model predictions are based on pedigree (both histor-
ical and contemporary) and marker-QTL LD information.
Secondly the models were trained on deregressed breeding
values (DEBVs). In this analysis the pedigree information
(parental average) is removed, resulting in model predictions
based on marker-QTL LD and co-segregation. Results of
ABLUP cross-validations are provided as a reference for
comparison.

Results

To assess the studied attributes’ variation, boxplots were pro-
duced showing the variance of the estimated (EBVs) and the
deregressed (DEBVs) breeding values (Fig. 1). It is interesting
to note that the deregression process maintained the within



Thistlethwaite et al. BMC Genomics (2017) 18:930

Page 3 of 16

(=]
=
B o
w
o
o |
1
R R R R
248 15 26 29 33 38 47 55 62 75 87 96 98 105 110 118 135 140 248 15 26 29 33 38 47 55 62 75 87 96 98 105 110 118 135 140
Family Family
o
‘O__.
o
@
w
o
=3
=
o
] -
D R
o o
i o
........................................................................
248 15 26 29 33 38 47 55 62 75 87 96 98 105 110 118 135 140 248 15 26 29 33 38 47 55 62 75 87 96 98 105 110 118 135 140
Family Family
3 -
© T o
g
o
ISR o
o o °
o
=
=N °
> @
o w
w o
o
o ©-
‘I'_
H o
& 1 &
......... : R
248 15 26 29 33 38 47 55 62 75 87 96 98 105 110 118 135 140 248 15 26 28 33 38 47 55 62 75 &7 9 98 105 110 118 135 140
Family Family
Fig. 1 Distribution of estimated breeding values (EBVs) and deregressed estimated breeding values (DEBVs) for (a) height at 12 years (cm), (b)
height at 35 years (cm), and (c) wood density (g/cmg) calculated from resistance to drilling

J

family variation for the three studied attributes (HT12,
HT35, and WD,); however, it virtually eliminated among
family variation resulting in similar family means (Fig. 1).

Traits’ heritabilities and EBV accuracy

Pedigree-based relationship matrix (ABLUP) heights herit-
ability estimates varied among sites ranging between 0.13
(Lost Creek) and 0.24 (Adam), and 0.05 (Adam) and 0.23
(Fleet) for age 12 and 35 vyears, respectively (Fig. 2). The

multi-site height heritability estimates were similar to the
average of the single-site estimates at age 12 (0.17 vs. 0.19);
and was slightly higher than the average single site estimate
by age 35 (0.17 vs. 0.14) (Fig. 2). Pedigree-based relationship
wood density heritability estimates generally were higher
than those obtained for height and substantially varied
among sites (range: 0.22 (Lost Creek) and 0.45 (Fleet)), with
higher multi- than single-site average estimates (0.43 vs.
0.37) (Fig. 2). The average theoretical accuracies for the EBVs
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Fig. 2 Heritabilities and GS prediction accuracies for models trained on EBVs and predicting GEBVs for each of the traits. Showing the results of within-site,
cross-site, combined-sites, and multi-site to single-site cross-validation (Top (@), using RR-BLUP, Bottom (b), using GRR). The direction of the arrows depicts
what information (site) is used to train the model (shaft end), and which is being predicted (head). Traits key: HT 35 yrs. = height at 35 years (cm); HT

12 yrs. = height at 12 years (cm); WD,s = wood density. Sites are Adam, Fleet River, Lost Creek, and multi/combined-site (ALL)

were: 0.61, 0.68, and 0.76 for HT12, HT35, and WD,
respectively.

Cross-validation across space and time

Within-site prediction accuracy

Within-site prediction accuracies, determined based on the
correlations between EBVs and GEBVs for the two genomic
selection (RR-BLUP and GRR) models, generally produced

very similar results (correlations and standard errors) across
EBV traits and sites (Table 1). For all EBV traits, Adam pro-
duced the highest prediction accuracies, with Fleet River
second, and Lost Creek always producing the lowest accur-
acies. The two models, RR-BLUP and GRR, produced al-
most identical results in analysed EBV traits. The only
differences occurring in the prediction of GEBV for HT35,
in which the GRR method produced slightly lower
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Table 1 Within single-site prediction accuracies and their standard
errors for ABLUP and genomic selection (ridge regression (RR-BLUP)
and generalized ridge regression (GRR)) models for EBVs and GEBVs
of heights (HT12 and HT35) and wood density (WD)

Trait Model Site
Adam Fleet River Lost Creek
HT12 ABLUP 0.81 + 0.002 0.77 £ 0.002 0.88 £+ 0.001
RR-BLUP 091 £ 0.010 0.89 + 0.012 087 £ 0013
GRR 091 £ 0.010 0.89 £ 0.012 0.87 £0.012
HT35 ABLUP 0.85 + 0.002 0.83 £ 0.002 0.88 + 0.002
RR-BLUP 0.89 + 0.007 0.86 + 0.020 082 £ 0.010
GRR 0.89 + 0.008 0.84 £ 0.020 0.80 £ 0.013
WD;es ABLUP 0.94 + 0.001 0.96 + 0.001 0.94 + 0.001
RR-BLUP 0.87 + 0.007 0.83 + 0.026 0.79 £ 0.015
GRR 0.86 = 0.008 0.83 £ 0.026 0.84 £ 0016

prediction accuracies than RR-BLUP (0.84 vs. 0.86, and
0.80 vs. 0.82) for Fleet River and Lost Creek, respectively.
The same was found in the analysis of WD, for Adam
(GRR = 0.86, RR-BLUP = 0.87). In contrast the WD,
GRR results for Lost Creek (0.84) were slightly more accur-
ate than in the RR-BLUP model (0.79). It is worthy to men-
tion that the overall predictive accuracy of the studied
genomic selection models was generally high across sites
and EBV traits (RR-BLUP: average = 0.86 and range of
0.79-0.91 and GRR: average = 0.86 and range of 0.80-0.91)
(Table 1). Generally, all prediction accuracies’ standard
error estimates were small reflecting good model fit.

Using the deregressed breeding values to train the two
GS models, we obtained predictive accuracy results ap-
proximating 0.0 for WD, for within-site cross-
validation (RR-BLUP: Adam = -0.10 = 0.055, Fleet
River = —0.04 + 0.046, and Lost Creek = -0.06 + 0.049;
GRR: Adam = -0.05 + 0.074, Fleet River = —0.03 + 0.045,
and Lost Creek = -0.04 *+ 0.046). The other models for
HT12 and HT35 failed to converge.

The ABLUP within-site cross-validation, provided results
of a similar nature as the GS models trained on EBVs. The
average prediction accuracy for ABLUP within-site was 0.87
(both RR-BLUP and GRR had averages of 0.86), with a range
of 0.77-0.96. WDres was predicted with the highest accuracy
of all three traits, and surpassed the accuracy of the GS
models: 0.94 + 0.0009, 0.96 + 0.0009, and 0.94 + 0.001, for
Adam, Fleet River, and Lost Creek, respectively (Fig. 3).

Cross-sites prediction accuracy

The average predictive accuracy of the RR-BLUP and GRR
genomic selection models was very similar for cross- and
within-site analyses. However, some trends in the predictive
ability of the sites did occur (Fig. 2a and b). The sites Adam
and Fleet River always produced the same or higher predic-
tion accuracies for Lost Creek than the within site estimate
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for Lost Creek. In addition, Lost Creek cross-site prediction
accuracies for Adam and Fleet River were also always
higher than for itself. Fleet River always produced higher
prediction accuracies for Adam than itself. This was true
for all traits using EBVs. This may be an indication that
whilst there may be some GxE occurring as expected, it
may not be significant enough to employ single-site testing
and breeding. The accuracy of cross-site predictions varied
and ranged from 0.78 (GRR for WD,.s: Adam - Lost Creek)
to 0.92 (RR-BLUP for HT12: Lost Creek - Adam,), and both
selection models provided comparable results (Fig. 2a and
b). Overall, across sites prediction accuracy decreased from
HT12 to HT35 to WD, with averages of 0.90, 0.86, and
0.83, respectively (all from RR-BLUP).

When the studied attributes’ deregressed breeding
values (DEBVs) were used to train the two GS models,
surprising outcomes were obtained and the resulting
predictive accuracies were extremely low approximating
0.0 for WD, while the remaining models for HT12
and HT35 failed to converge.

The results of the ABLUP cross-sites validation provided
evidence of stronger GxE interaction than was predicted by
the GS models (Fig. 3). This particular trend can occur as
site-specific GXE interactions tend to over-estimate within-
site prediction accuracy due to the sharing of a common en-
vironment, whilst seemingly inhibiting the efficacy of cross-
site analyses. The average cross-sites prediction accuracies
for ABLUP were as follows: 0.68, 0.70, and 0.79 for HT12,
HT35, and WD, respectively (Fig. 3). A drop from the ac-
curacies obtained by the GS models trained on EBV data,
and a complete reversal of the order of those accuracies.

Within multi-site (combined) prediction accuracy
The RR-BLUP and GRR models gave almost identical re-
sults, with HT12 having the highest combined-site predic-
tion accuracy, followed by HT35 and lastly WD, (0.91,
0.88, and 0.83, respectively for both RR-BLUP and GRR)
(Fig. 2a and b, Table 2). In general, the combined site predic-
tion accuracies were higher than the average of the within-
site accuracies, except for WD, which produced the same
accuracy for both (RR-BLUP: 0.91 vs. 0.89, 0.88 vs. 0.86, 0.83
vs. 0.83; for HT12, HT35, and WD, respectively) (Fig. 2a).
Finally, it is also interesting to note the exceedingly small
standard error values associated with all within multi-site
prediction accuracies, highlighting the model(s) fit (Table 2).
Again, using the deregressed breeding values (DEBVs) to
train the two GS models, we obtained results approximat-
ing 0.0 for all within multi-site cross-validation analyses for
all traits considered (HT12, HT35, and WD,.) (Table 2).
The multi-site cross-validation accuracies for the ABLUP
model were: 0.88 + 0.002, 0.86 + 0.003, and 0.84 + 0.003,
for HT12, HT35, and WD,s, respectively (Fig. 3). Similar
in magnitude and sequence to the GS models trained with
EBVs.
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Fig. 3 Heritabilities and prediction accuracies of the ABLUP model for each of the traits. Showing the results of within-site, cross-site, combined-sites,
and multi-site to single-site cross-validation. The direction of the arrows depicts what information (site) is used to train the model (shaft end), and
which is being predicted (head). Traits key: HT 35 yrs. = height at 35 years (cm); HT 12 yrs. = height at 12 years (cm); WD, e, = wood density (g/cm?)
calculated from resistance drilling to drilling. Sites are Adam, Fleet River, Lost Creek, and multi/combined-site (ALL)

Multi-site to single-site prediction accuracy

On average the multi- to single-site predictability for
each trait was slightly higher than the within multi-site
average estimates (for RR-BLUP, HT12: 0.91 vs. 0.89,
HT35: 0.87 vs. 0.86, and WD, 0.85 vs. 0.83) (Fig. 2a).
In most cases the multi- to single-site accuracy predic-
tions were the same or higher, than the corresponding
single-site predictions. Except for HT35 at Lost Creek
for both RR-BLUP and GRR which gave slightly lower
prediction accuracies for multi- to single-site than within
site (Lost Creek) analyses (RR-BLUP: 0.79 vs. 0.82; GRR:
0.79 vs. 0.80) (Fig. 2a and b). In most cases Adam was
the most predictable site, and on average, Lost Creek
was the least predictable.

Again, using the deregressed breeding values (DEBVs)
to train the two GS models, we obtained results approxi-
mating 0.0 for all multi- to single-site cross-validation
analyses.

The multi- to single-site predictions for the ABLUP
model closely followed the pattern of predictions from the
GS models trained on EBV data. In each case (for HT12,
HT35, and WD,) Adam was the most predictable site
(joint first with Fleet River for WD,), Fleet River the sec-
ond, and Lost Creek the least predictable site (Fig. 3). The
average multi- to single-site predictability for the traits
were again the same or slightly higher than the within
multi-site predictions for ABLUP (HT12; 0.88 vs. 0.88,
HT35: 0.86 vs. 0.86, and WD, 0.85 vs. 0.84) (Fig. 3).

Table 2 Within multi-site genomic selection prediction accuracies
and their standard errors for ridge regression (RR-BLUP) and
generalized ridge regression (GRR) models), estimating GEBVs and
GEDBVs for heights (HT12 and HT35) and wood density (WDes)
(g/cm3) calculated from resistance drilling to drilling

Two sites predicting one site accuracy

The RR-BLUP and GRR models for this analysis produced
similar results overall (Fig. 4a and b). Generally, the high-
est prediction accuracies were obtained for HT12 (aver-

age = 0.90), followed by HT35 (average = 0.88), and lastly

Trait G5 Model GEBVS GEDBVS WD, (average = 0.83) for both RR-BLUP and GRR.
HT12 RR-BLUP 091 £ 0,004 —009+£0019  There were only minor differences between the two
GRR 091 + 0003 -004+0017  models (Fig. 4a and b). Similar to the multi- to single-site
HT35 RR-BLUP 0.88 + 0.006 002 +0021  (above), the prediction accuracy of two sites to one site in-
GRR 088 + 0006 _001 + 0029 dicated that, in all cases, Adam was the most predictable
WD... AR-BLUP 083 + 0009 000 + 0032 §1te using .th{s two to one analysis, despite the discrepancy
in heritabilities, and on average Lost Creek was the least

GRR 0.83 £ 0.010 -0.01 £ 0.025

predictable in most cases.
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The deregressed breeding values produced similar re-
sults to those obtained from within, cross- and multi-
sites GS models, with two sites to one site cross-
validation analyses prediction accuracy approximating
0.0 for HT12, HT35, and WD,,.

The ABLUP cross-validation for two sites predicting
one site resembled the results of the GS model trained on
EBVs. Prediction accuracies for HT12 and HT35 were
lower than the GS models using EBVs (HT12 aver-
age = 0.81 vs. 0.90, and HT35 average = 0.81 vs. 0.88)
(Fig. 5). However, the average predictability for WD,
remained the same for ABLUP as the GS models using
EBVs (0.83) (Fig. 5). In general Adam was the most pre-
dictable site for all three traits (HT12, HT35 and WD,.),

followed by Fleet River and lastly Lost Creek in this
ABLUP analysis (Fig. 5). This is the same site predictability
trend displayed by the GS models trained on EBV data.

Time- time prediction accuracy (age- age/ trait-trait
correlation)

In order to test the theory that the target time for forward
selection can be reduced, prediction models were assessed
on their accuracy when trained on younger trees (12 years:
Ht,,) followed by validation on the same trees for height at
age 35 (Htss) and wood density at age 38 (WD,es) (ie.,
correlations between GEBVs at age 12 and EBVs at ages 35
(HT5-HT35) and 38 (traityrio-traitypresss). The GEBVs
values for Ht;, have significant positive correlations with
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Fig. 5 Heritabilities and prediction accuracies of the ABLUP model for each of the traits. Showing the results of two sites predicting one site
cross-validation. The direction of the arrows depicts what information (site) is used to train the model (shaft end), and which is being predicted
(head). Traits key: HT 35 yrs. = height at 35 years (cm); HT 12 yrs. = height at 12 years (cm); WDres = wood density (g/cm3) calculated from
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EBVs for HT 35 for both RR-BLUP (0.71 + 0.0004) and GRR
(0.71 + 0.0004) (Table 3). Trait- trait correlation between
HT;, and WD, (recorded at 38 vyears: traityris-
traitwpresss) produced significant negative correlations (RR-
BLUP: -046 *+ 0.0005; GRR: -0.46 + 0.0006) (Table 3).
These are the most useful correlations to make as they re-
flect the direction in which selections will be made.

Using the deregressed breeding values to train the two
GS models, we obtained results approximating 0.0 for all
time-time cross-validation analyses (Table 3).

Time-time and trait-trait cross-validation of ABLUP
resembles closely that of the GS models trained on EBV
data. EBVs for HT, have a medium to strong positive
correlation with EBVs at HT35 (0.74 + 0.001), and a sig-
nificant negative correlation with EBVs of wood density
WD, at age 38 (traityrio-traitywpresss: —0.48 + 0.002).

Discussion

Exome capture

Exome capture is a target enrichment method for sequen-
cing the protein coding regions in a genome. This makes
analysis much more efficient. Through targeting this re-
gion, the focus is immediately resolved to those areas that
are likely to contain sources of variation for the pheno-
type. The reduced cost and time compared to that of
whole genome sequencing, as well as the ability to still
capture a significant proportion of variants makes exome
capture desirable as it is harder to find functional variants
in noncoding regions [20, 27, 28]. Added to which, forest
trees already tend to have large and complex genome sizes
[20-22]. Exome capture has been recognized as an effect-
ive method for increasing knowledge of unmapped large
genomes [19, 28].

Table 3 Genomic selection prediction accuracies for time- time correlations for HT12 for RR-BLUP and GRR models (standard errors)

Gs EBVS DEBVs
Model Whyee HT35 Whyee HT35

RR-BLUP 046 + 00005 071 + 00004 002 + 00038 003 + 00039
GRR —~046 + 00006 071 + 00004 0002 + 00040 0004 + 00047

Prediction accuracies based on correlations between GEBVs at age 12 and EBVs at age 35 (HT) and 38 (WD); and correlations between GEDBVs at age 12 and
DEBVs at age 35 (HT) and 38 (WD). Traits key: HT35 = height at 35 years (cm); WDres = wood density (g/cm3) calculated from resistance drilling to drilling;

HT12 = height at 12 years (cm)
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Whilst exome capture is expected to produce some miss-
ing marker information, the method surpasses whole gen-
ome shotgun sequencing or genotyping methods using
genome complexity reduction, in depth of coverage. Given a
restricted budget (with no option for re- sequencing) the
depth achieved using exome sequencing is expected to be
much greater than genotyping-by-sequencing [30], with the
added benefit of obtaining more reliable calls. After the se-
quencing process, those markers with a large proportion of
missing information can be filtered out, however Rutkoski et
al. [31] admit that this step is unnecessary since it affects the
GS prediction accuracy little. In order to maintain power in
the subsequent analyses, marker imputation should be used
to infer missing data in those records not filtered out, con-
serving the majority of the original SNPs. This was carried
out in the current study, although the ratio of missing data
was very low and therefore the impact of this procedure is
expected to be minimal. Given that currently there is no gen-
etic map available for Douglas-fir, imputation methods in
this case are restricted to those which support unordered
data. There have been various imputation methods proposed
for unordered markers however their efficacy and suitability
is yet to be fully determined in genomic selection [31].
Though some methods do show some promising results
when compared to mean imputation, notably random forest
regression produced greater GS prediction accuracy than its
counterparts in both Rutkoski et al. [31] and Poland et al.
[32] studies.

Although we managed to capture significant family ef-
fects using this type of SNP data, we found little evi-
dence that the GS models were able to capture marker-
QTL LD using this genotypic data set (see below for dis-
cussion). It is highly likely that substantially more SNPs
will be required to capture significant effects for these
traits (i.e, LD). In addition to this, our genotyping ef-
forts were focused on a restricted portion of the genome,
the exome, which is limited to the available 40 K probes
used in the present study. In humans, the exome consti-
tutes a mere 1% of the total genome [33], thus consider-
ing the unique genome size and complexity of conifers
[34] we expect that the population of SNPs used in this
study represents a very small fraction of the Douglas-fir
genome. Additionally, in this case the revealed exome
which represents functional genes that, by default, are
under selection and thus are conserved. By focusing the
present study on this region we were not able to capture
the variation among families, as this was not represented
in the exome. In order to seize this variation in inter-
genic regions, an alternative, whole genome approach
must be used for genotyping, for example genotyping-
by-sequencing as it uncovers unordered SNPs across the
entire genome. These intergenic regions are not under
the same selection pressure as the exome, and may con-
tain important regulatory sequences which correspond
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to the control of the traits we investigated. Another ap-
proach used by Fuentes-Utrilla et al. [16], was to use
restriction-site associated DNA sequencing (RADseq)
technology. They found that in a species with no whole
genome assembly (in this case Sitka spruce (Picea sitch-
ensis (Bong.) Carr)), a SNP panel could be constructed
from randomly located markers generated from RADseq.
However, it must be noted that their GS analysis was
performed strictly within a single family.

Heritability

The use of ABLUP instead of GBLUP is likely falsely in-
flating the heritability estimate. Though the impact of
heritability on the predictive accuracy seems to be low
in this study. Our results show that even with modest
heritability, predictive accuracies can be high. As shown
by the combined site analyses, the heritability for HT12,
HT35, and wood density were modest (0.17, 0.17, and
0.43, respectively), yet the prediction accuracies were
0.91 (+ 0.004), 0.88 (+ 0.006), and 0.83 (+ 0.009), re-
spectively (RR-BLUP) (Table 2). The large sample size
and low effective population size of the present study
(N, = 21) likely helped in negating the effect of low trait
heritability [5]. M rtens et al. [35] provided evidence
that increased relatedness between training and valid-
ation populations leads to higher prediction accuracy in
their study on yeast. Furthermore, the use of correlation
between pedigree-based and marker-based breeding
values, approximates correlation between unknown true
breeding value and genomic breeding value. The accur-
acy can go above heritability in this case because both
values are representing only genetic effects, this is in line
with results obtained by Gamal El-Dien et al. [12].

Genomic selection

The desired outcome of genomic selection is to produce
unbiased marker effect estimates [5], and to avoid the
Beavis effect [36] which hinders MAS causing marker ef-
fects to be overestimated [37]. Instead of selecting
markers based on a significance threshold, GS estimates
all marker effects simultaneously causing a different
problem; there are more predictor effects (p, markers in
this case) to be estimated than there are observations (1,
samples) [3]. Least squares cannot be used to estimate
all the effects at once since there are not enough degrees
of freedom. In addition, multi-collinearity of markers
would cause any model to be over fitted [3].

To address this issue (large p, small #), various statistical
models have been proposed. They generally fall into the fol-
lowing categories: shrinkage models, variable selection
models, and kernel methods. Shrinkage models (e.g., ridge
regression BLUP [RR-BLUP], Whittaker et al. [38]) fit all
marker effects which are all shrunk to the same degree.
With RR-BLUP, it is assumed that the trait in question
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more closely resembles Fisher’s infinitesimal model (many
loci with small effects), and marker effects are samples from
a normal distribution (with equal variance). Variable selec-
tion (e.g, generalized ridge-regression [GRR], Shen et al.
[39]) however, reduces the number of markers used, and in
doing so assumes that the trait is controlled by fewer,
strong effect loci [3]. Kernel methods convert the predictor
variables to distances in effect creating a matrix similar to
an additive genetic relationship matrix. The kernel matrix
quantifies the distance between individuals but also
smoothing parameters are added [3]. This method is flex-
ible and can incorporate complex relationships between
markers, for this reason it is useful in cases where non-
additive effects are suspected to occur [40]. Indeed,
Douglas-fir height and wood density have proven to have
non-additive genetic variance component [41]; however, its
unpredictability has driven the species’ advanced generation
breeding and selection methods to be additive genetic gain-
dependent [41-43]. Since different traits have differing gen-
etic architecture, there does not exist one model that is ne-
cessarily the best for all traits or populations [3].

In the present study, we assessed the prediction accur-
acies of two GS models (RR-BLUP and GRR) in two phases;
first when trained on EBVs, and second when trained on
DEBVs. In the first instance, using EBVs and by virtue of
retaining family means, our data contained both contem-
porary and historical pedigree information as well as
marker-QTL LD information. Without further adjustment,
all this information was parsed into the GS models and re-
sulted in high prediction accuracies (for both model types).
Subsequent to this, in phase two, we deregressed the EBVs,
removing the parent average effect in order to disassociate
the pedigree information from the marker-QTL LD. This
resulting in DEBVs that contained the marker-QTL LD in-
formation only without the between family genetic vari-
ance. Using these DEBVs to train the GS models, we
obtained prediction accuracies which for all practical pur-
poses were 0.0. The success of the first phase can be attrib-
uted to the large within and among family genetic
variances. This pedigree-driven approach dominated the
analysis and produced the observed high prediction accur-
acies, which were comparable to the ABLUP accuracies.
When this influence of pedigree was removed, the gener-
ated models were no longer able to provide useful predic-
tions. A similar effect was seen in interior spruce (Picea
glauca x Picea engelmannii) where cross-validation using
family folding resulted in decreased prediction accuracy,
because between family variance was dominating the ana-
lysis (Gamal El-Dien et al. 2017, unpublished). In addition
to this Fuentes-Utrilla et al. [16], when studying GS in Sitka
spruce, found that within family predictions cannot be ex-
trapolated to between families. Furthermore, when examin-
ing marker transferability between families in white spruce,
Beaulieu et al. [44] also found within family predictions to
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be more precise than between family predictions. Similarly,
to Gamal El-Dien et al. (2017, unpublished) they also found
that when a family had no representation in the training
group, the accuracies obtained for that family were very
small, occasionally negative, and often not statistically sig-
nificant from zero. Much like using the DEBVs here, which
try to predict between family variance, but have family
means stripped away. Fuentes-Utrilla et al. [16] concluded
that species with large effective population sizes (notably
conifers), have a reduced ability to make predictions across
families. With this in mind, GS may best be employed to
produce GEBVs for within large full-sib families in conifers
as it captures the Mendelian sampling term.

This discrepancy in the results from the two GS phases,
is indicative that we simply were not able to capture the
marker-QTL LD with the available SNPs. Whilst other
studies have had some success in this area, it is important
to note that these particular investigations have focused
on tree species with much smaller genomes, for example
Resende et al. [7]. Resende et al. [17] make this point in
their 2017 study of Eucalyptus, that although other studies
may have failed to produce significant predictions between
unrelated populations, this may be due to low marker
density. This is likely inhibiting the ability to capture
short-range LD, the result being that prediction models
rely almost entirely on relatedness.

In their study, Resende et al. [7] used 7680 DArT
markers on Eucalyptus which is estimated to have a gen-
ome size of 609 Mbp [7], equivalent to 12.61 markers/
Mbp. In contrast, here we used 69,951 SNP markers on
the Douglas-fir genome which is estimated at 18,700 Mbp,
giving 3.74 markers/Mbp. To obtain a similar coverage as
Resende et al. [7] would require approximately 235,800
markers, many more than we currently have. With such a
large genome, it is likely that many more SNPs will be re-
quired (=235,800+), with greater genomic coverage in
order to capture this, so far elusive, LD. In a more recent
study, also using Eucalyptus, Miiller et al. [18] managed to
capture some short-range historical LD using 5000—
10,000 SNPs. Yet they too concluded that the genomic
prediction in this case was largely driven by relatedness.

The similar predictions given by the RR-BLUP and
GRR methods, and the similarly high ABLUP accuracies,
was again the result on heavy reliance on between family
variance, and thus we have gained no new information
as to the genetic control or architecture of the traits in
question. Although similar findings have been noted in
more successful GS studies. For example, Resende et al.
[8] when comparing GS methods, found there to be little
difference between the predictive abilities of shrinkage
and variable selection methods (4 in total) even consid-
ering they have different a priori assumptions. They used
a Pinus taeda training population with 951 individuals
and 4853 SNPs in the analyses. Prediction accuracies for



Thistlethwaite et al. BMC Genomics (2017) 18:930

17 traits (including growth, disease resistance and devel-
opment) ranged from 0.17 to 0.51. Only one trait (fusi-
form rust resistance) showed any significant difference
between the models. Higher prediction accuracies were
obtained using variable selection methods for this trait.
This reflects the genetic architecture of the trait which is
controlled by few, large effect loci [8].

Single and multi-site cross-validation

The combined site GS analysis produced higher predic-
tion accuracies than the single site analyses on average
(Fig. 2a and b). The combined site training population
having more individuals than the single site populations.
This is in agreement with what the literature states
should happen; Grattapaglia [2] noted that increasing
the training population size increases accuracy up to a
point (around 1000 individuals). In addition to increased
sample size for predictive accuracy improvement, the
multi-site approach incorporated the present GxE in the
model, resulting in further improvement.

The prediction accuracies are high for HT12, HT35,
and WD,,s GEBVs (0.87-0.92, 0.79-0.92, and 0.78-0.88,
respectively) (Fig. 2a and b). They are moderately higher
than those in previous studies including other forest tree
species [7, 8, 10, 11, 15]. Largely due to the inclusion of
the pedigree structure. In this case the GS methods are
not giving much advantage over ABLUP (ABLUP multi-
site cross-validation accuracies: 0.88 + 0.002, 0.86 + 0.003,
and 0.84 + 0.003, for HT12, HT35, and WD, respect-
ively), thus both are predicting only family means. The
prediction accuracies for both the GS models and the
ABLUP model are much higher than theoretical accuracy
of the EBVs (0.61, 0.68, and 0.76; for HT12, HT35, and
WD,.s, respectively), which indicates that both the EBVs
and GEBVs are converging on the family means, and are
far from the true breeding values.

The high prediction accuracies for the GEBVs may also
partially be the result of using a relatively large training
population, known to correlate with accuracy. In addition,
there is an interacting effect of the relatively low effective
population size (N, = 21), and both these data characteris-
tics increase the accuracy of predictions [3]. Although in
this case the low effective population/family size also
meant that the Mendelian sampling term could not be de-
fined. Indeed, Gamal El-Dien et al. [12] using an interior
spruce population with N, = 93.8 (estimated assuming the
OP families are unrelated and contributed equally to the
experiment) had lower prediction accuracies than ob-
tained here. But these in turn were vastly higher than re-
sults from a study with 214 open-pollinated white spruce
(Picea glauca) families in Quebec with N, = 622.5 [9]. An-
other component responsible for the increased accuracy
of predictions, was the training of the models on EBVs ra-
ther than raw phenotypes [12].
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Prediction accuracies fell dramatically for models
trained on DEBVs, as marker-QTL LD could not be re-
covered using the available SNP data set, indicating that
the SNP markers effectively tracked the pedigree.

Cross-site validation

Similar prediction accuracies were observed in the cross-
site compared to the single-site and combined-site GS
analyses (with models trained on EBVs). Genotype x En-
vironment interaction is an important consideration of
forest tree selective breeding, more so than in animal
breeding where individuals are considered to share a com-
mon environment [45-48]. Prediction accuracy for HT12
across sites was relatively high. An unexpected result
given the fact that the heritability was only 0.17 (combined
sites), and there is expected to be a competition effect at
early stand development (ie., strong environmental com-
ponent). This is possibly an indication of the partially con-
trolled experimental environment (not natural stands) in
which the trees were growing. Given these experimental
conditions, it is also conceivable that GxE effects are min-
imal. Which is reflected in the cross-site predictions
(Fig. 2a and b), which are of a similar magnitude to the
within-site prediction accuracies for all attributes.

Time- time and trait- trait correlations

It is thought that forward selection in Douglas-fir should
be carried out at a minimum of 17 years [49], when accur-
ate predictions of phenotype at time of harvest can be
measured. We tested the correlation of height at 12 years
and height at 35 years (HT;,-HT35), and wood density
(38 years) (traityrio-traitywpresss) and positive (0.71 for
height) and negative (-0.46 for wood density) correlations
were detected by the GS models trained on EBV data. Al-
though they did not offer accuracy above that of ABLUP,
indicative of a strong reliance on pedigree information ra-
ther than marker-QTL LD. The results give an indication
of how useful early selection could be. Correlations for
height are moderately strong and low-moderate for wood
density. Marker-trait associations are known to vary ac-
cording to the tree age, limiting any correlation. This
would certainly hamper efforts to create a highly corre-
lated age-age model in trees [9, 50]. At the moment pro-
viding such predictions at an age any younger than
12 years would not be recommended (note that height at
age 12 was the earliest measurement available in the
present study). Since larger age differences have been
shown to produce less accurate models [51]. The discrep-
ancy in prediction accuracy between the time-time corre-
lations and the cross-validations suggest that there is
some inconsistency between EBVs and marker effects at
these two ages (12 and 35 years). Although the discrep-
ancy is relatively small, and so meaningful results may still
be obtained through age-age and trait-trait correlations.
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This is, in addition to the varied environmental conditions
the trees endure over their long lifespans, lessening time-
time correlations. To this effect and as White et al. [52]
suggested, training models will need to be updated with
mid-rotation phenotypes in order to accurately predict
mature trait values.

Genomic selection and forest tree breeding

Several genomic selection “proof-of-concept” studies have
been conducted on few coniferous tree species (e.g., lob-
lolly pine, maritime pine, Sitka spruce, white spruce, and
white-Engelmann spruce hybrid), all concluded that GS
has the potential to increase the genetic gain through
speeding breeding generation turn-over and increasing
the selection differential. It should be stated that, with the
exception of the maritime pine study [14], none of the de-
rived GS predictive models have been validated on inde-
pendent “validation” populations. The success of GS is
dependent on the linkage disequilibrium between the
markers used (i.e., SNP panels) and causal genes under-
pinning the traits of interest, and the degree of relatedness
between the training and validation populations. There-
fore, caution is required during GS implementation as LD
changes after every round of breeding (ie., recombin-
ation); the fact that it does rapidly decay called for using
dense marker coverage to overcome this caveat. Still we
have found that by only using sequence capture data, we
were unable to successfully resolve this marker-QTL LD.
We only had success in capturing among family effects
(i.e., pedigree). Even with a SNP panel designed appropri-
ately based on an informative SNP library, and large
enough to handle a conifer genome, there are additional
hurdles. LD only survives over relatively short distances in
conifers compared to livestock species due to their rela-
tively large N, [53]. This led Fuentes-Utrilla et al. [16] to
conclude that GS may only be useful in tree populations
with reduced N, for example seed orchards, or lines/ sub-
groups which have been produced through selective
breeding. Though as they demonstrate with their analysis,
it is possible to generate very large full-sib families in
trees, by controlled crossing. In this type of population,
LD extends over longer distances than in open-pollinated
populations. As a result, they suggest that GS could be
employed to make selections within families.

Based on comparable studies: 1) a greater number of
markers, and 2) wider coverage throughout the whole
genome or dense unordered SNP genotyping platform
(e.g., GBS), would be needed to capture this LD and add-
itional intergenic variation [17]. Or indeed a shift in the
level at which GS is applied, i.e. to within families rather
than across families [16]. Whilst GS still has the potential
to deliver unprecedented gains, it does not seem likely
that was achieved in the present study as the prediction
driving force was the pedigree rather than LD. Despite the
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low N, the small family size prevented the accurate
assessment of the Mendelian sampling term in this popu-
lation. Therefore, the EBVs were heavily shrunk toward
the family mean and all within family deviations were not
estimated precisely.

Finally, it should be emphasized that any gains captured
through GS require unique tree improvement delivery
methods as the traditional seed orchards’ production
mode requires time for reaching sexual maturity, even
under intensive management such as top grafting or hor-
monal applications, and its sexual-production effectively
breaks the LD between selected traits and markers.

Conclusions

The results suggest that the population of SNP markers
used, along with their low coverage across the Douglas-fir
genome was not successful for capturing the LD with the
causal genes underpinning the studied attributes. In this case
the impressive results of the investigated genomic selection
models relied heavily on relatedness rather than the LD.
Alternative marker generation methods such as whole gen-
ome sequencing or other dense unordered SNP genotyping
methods such as GBS are needed, as is a larger SNP array.
Exome capture provide enough markers to successfully cap-
ture/track the pedigree (contemporary and historical) and
thus it is useful for genetic variance decomposition of
conifer traits, thus providing better genetic parameter esti-
mates. Since we were only able to resolve the between family
effects, we gained no new information regarding the genetic
architecture of the traits. Whilst low N, may help boost
prediction accuracy in similar studies, there may be a lower
limit to this. Beyond which Mendelian sampling is not
captured. However, using a single, large full-sib family causes
LD to extend over further distances compared to open-
pollinated trees, therefore it is possible to make within
family selections using this type of population as Fuentes-
Utrilla et al. [16] have demonstrated.

Methods

Experimental population

Predictive models were trained on a replicated 38-year-old
pedigreed coastal Douglas-fir (Pseudotsuga menziesii
Mirb. (Franco)) progeny testing population. The trial was
established by the Ministry of Forests, Lands and Natural
Resource Operations of British Columbia, Canada in 1975
and consists of 165 full-sib families (54 parents), of which
37 families were selected for sampling from three test sites
(Adams (Lat. 50 24'42” N, Long. 126 09" 37"W, Elev.
576 mas), Fleet River (Lat. 48 39'25" N, Long. 128 05’
05" W, Elev. 561 mas), and Lost Creek (Lat. 49 22°15"
N, Long. 122 14°07" W, Elev. 424 mas)) with a total of
1372 trees (N =~ 500 per site) and effective population size
(N,) of 21.
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Tissue sampling, DNA extraction and genotyping

Cambial tissue was collected using a hammer and hollow
punch tool (approx. 2 cm diameter) to remove two small
circular pieces of bark/ cambium and developing tissue
from each tree. The cambium disks were separated from
the bark layer and immediately placed in a 2 ml collection
tube with 1 ml storage buffer (10 mM EDTA pH 8.0,
10 mM Na,SO3) and kept at 4 °C until DNA extraction.
DNA extraction followed the modified procedure devel-
oped by Ivanova et al. [54] (R. Whetten, unpublished,
North Carolina State University, personal communica-
tions). Genotyping was done using the exome capture
method in a commercial facility (RAPiD Genomics®©, Flor-
ida, US). A total of 40 K probes were designed using the
available Douglas-fir transcriptome assembly [55]. From
the Douglas-fir reference transcriptome, a total of 325,372
non-overlapping 120-bp probes were initially designed.
After filtering out redundant and organelle matching
probes, this number was reduced to 117,135 probes. Of
the remaining probes, we selected 7464 that contained
17,096 SNPs previously reported [55]. A further 32,536
probes were selected bringing the total to 40 K. Selection
was performed by randomly sampling the remaining
probes restricting the selection to a maximum of two
probes per transcript. These 40 K (7464 + 32,536) probes
cover a total of 21,187 transcripts. The raw sequenced
reads were demultiplexed in each individual barcodes.
Low quality bases with less than 20 quality score in the 3’
end were trimmed out followed by a low quality filter that
removed reads with more than 10% of the read with less
than 20 quality score. The filtered reads were aligned
against the reference transcriptome using Mosaik v2.2.3
[56] with the following parameters -mmp 0.05 -m all -a all
-hs 15. SNP markers were identified at a population level
using Freebayes [57] without considering indels, multi-
nucleotide polymorphisms and complex events. This ana-
lysis resulted in approximately 550,000 SNPs. These SNPs
were filtered to identify the highest quality sites. These in-
cluded only biallelic SNPs with less than 40% missing data.
Further filtering was applied so that data was located on
contigs with a mean read depth less than or equal to 60.
Additional filters included minor allele frequency (MAF)
>5%, Hardy-Weinberg disequilibrium cut-off <-0.05, and
maximum site depth < 60. This process resulted in a total
of 1372 samples with 69,551 SNPs for use in the study,
and mean imputation was used for the missing data. (for
more details on exome capture see, Neves et al. [19]).

Phenotyping

Early- (1988) and mid- (2011) rotation growth trait mea-
surements of the studied trees had been assessed for
height (HT: in meters) and mid-rotation (age 38 vyears,
2014) wood density (WD,.s) was assessed indirectly using
the average resistance measurements recorded with a
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Resistograph® (Instrumenta Mechanik Labor, Germany).
Resistograph readings were subsequently converted to
wood density indices (g/cm®) by scaling them by the DBH
measurements, as performed by El-Kassaby et al. [58].

Estimated breeding values (EBVs) and deregressed
breeding values (DEBVs)

EBVs were fitted in ASReml 3.0 [59], using the following
mixed linear model for a single site:

y=XB +Za+e (1)

where y is the phenotypic trait measurement, f is a fixed
effect vector (overall mean), a is a random effects vector
(additive genetic) which are normally distributed
(~N(0,A02)) where A is average numerator relationship
matrix and 03 is additive genetic variance, e is the ran-
dom residual effects which are normally distributed
(~N(0,Ic2)) where I is identity matrix and o is residual
variance. X and Z are incidence matrices relating the
fixed and random effects to the observations. Since GxE
plays an important role in forestry [60] the combined
site EBVs were estimated with terms accounting for site,
replication, and family structure. Thus minimising biases
in BV calculation caused by environmental variations be-
tween and within sites, and full-sib genetic effects.

Narrow-sense heritability was calculated as 4> = o3 /
(62 + 62), where o2 and o? are the variances of additive
genetic and residual effects, respectively. Combined site
heritability estimates included the GXE model term in
the denominator. The breeding values (d4) are fitted
using BLUP as follows:

a=AZ 62 V' (-X ) (2)

where V is the variance- covariance matrix of y obtained
by:

V =7AZ ¢ +10 (3)

Breeding values were deregressed using the deregres-
sion procedure of Garrick et al. [61]. This adjusts the BV
data to account for family means, resulting in DEBVs
that contain information regarding individuals only,
without parental BV influence.

The theoretical accuracy of the EBVs (r) was calcu-
lated following the procedure of Dutkowski et al. [62].

SE?

A+, .

r=,4/1-

where SE; is the standard error of breeding value, and F;
is the inbreeding coefficient of the /™ individual.
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Cross-validation across time and space

The two GS models (RR-BLUP and GRR) were com-
pared to assess their application to various traits, and in
addition they were cross-validated in order to assess
their prediction accuracy across environments/ spatial
divisions and time. The intention was to give an indica-
tion to which extent (if any) GS increases gain per unit
time over traditional methods.

The validation processes used was a replicated randomly
assigned 10-fold cross validation. Models were trained on
9/10 of these folds, with the remaining 1/10 fold used as a
validation set. Prediction accuracy was determined as the
mean of the replications of the Pearson product-moment
correlation between EBVs of the validation set and their
predicted GEBVs. Or in the case where DEBVs were used
to train the models, the correlation between DEBVs and
predicted GEDBVs (genomic estimated deregressed breed-
ing values). The following combinations were used: 1)
within-site, using information from a single site to esti-
mate the GEBVs within that same site, 2) Cross-site/ be-
tween sites in all combinations, with information from
single sites used to predict other sites, 3) Combined sites,
pooled information from all the sites, 4) Multi-site to sin-
gle site, the pooled information from all three sites used in
the estimation of single sites only, 5) Two sites to predict
one site, pooled information from two sites used in the es-
timation of the remaining site only, and 6) Time-time
(age-age)/ trait-trait, using information from individual
trees to obtain correlations between GEBVs at age 12 and
EBVs at ages 35 for height and 38 for wood density. In
addition, the same 10-fold cross-validation process was
used to assess the predictive accuracy of the ABLUP
model for all the spatial cross-validation analyses for all
the attributes (HT12, HT35, and WD,,) in the study. In
this case predictions made were based on relatedness as
given by the pedigree.

Genomic selection analysis

Two GS methods were compared: ridge regression (RR-
BLUP) and generalized ridge regression (GRR) [3]. The
performance of each of the methods was assessed accord-
ing to their predictive accuracy determined by the correl-
ation between GEBVs and EBVs, or DEBVs and GEDBVs.

Genomic estimated breeding values (GEBVs) and genomic
estimated deregressed breeding values (GEDBVs)
RR-BLUP

Ridge regression (RR-BLUP: Whittaker et al. [38]) was
proposed for use as a selection tool based on marker in-
formation. The model was fitted using the R package
‘RRBLUP’ [63], the GEBV (or GEDBV if using dereg-
ressed BVs) is obtained by the sum of p marker effects:
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glx) =D 1 xup (5)

where x; is the score (genotype) of SNP & in individual ,
Bx is the marker effect of k. This method assumes that
the marker effects are normally distributed (mean = 0)
and so the BLUP solutions for marker effects are derived
from solving mixed linear model equations of Henderson
[64] so that £ is optimised in the following Eq:

B=(ZZ+£)" Zy (6)

where Z is an incidence matrix relating markers to indi-
viduals, I is an identity matrix, and y is the vector of
EBVs fitted in ASReml. The shrinkage parameter (£) can
be written as £ = 0%/0[23 (residual variance / common
marker effect variance). Since marker effects are as-
sumed to be identically distributed, all effects are shrunk
equally towards zero. This method is equivalent to using
lines (as opposed to markers) as random effects in a
mixed model analysis, where the covariance is modelled
by a kinship matrix calculated from the marker data (a
genomic relationship matrix [G matrix]) (this is some-
times referred to as GBLUP).

GRR

Generalized ridge regression (GRR) is a two-step variable
selection method, the first step obtains estimates in the
same way that RR-BLUP does using linear mixed model
analysis to solve for optimum £, and in the second step the
BLUP for /3 is subjected to an alternative shrinkage param-
eter which is marker specific, using GRR to solve a hetero-
geneous error model which replaces IX in (5) with diag(k):

B=(Z'Z + diag(K)) ' Z'y (7)

In this case £ is a vector of p shrinkage parameters.

For the K element: &, = 02 /o3, is the parameter, where

ng is the variance of marker effect k (ng = ﬁ /(1=hw)). B

is from step 1 (the BLUP marker effect) and 7y is the in-
fluence of the dependant variable on the fitted value for
observation k. In other words, /1 represents the diagonal
element (# + k) of the influence matrix H = T(T’T)™ T?
and:

= (% dié(&)) ®
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