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Abstract

Background: The cyclic nucleotide-gated ion channel (CNGC) family affects the uptake of cations, growth, pathogen
defence, and thermotolerance in plants. However, the systematic identification, origin and function of this gene family
has not been performed in Brassica oleracea, an important vegetable crop and genomic model organism.

Results: In present study, we identified 26 CNGC genes in B. oleracea genome, which are non-randomly localized on
eight chromosomes, and classified into four major (I-IV) and two sub-groups (i.e,, IV-a and IV-b). The BoCNGC family is
asymmetrically fractioned into the following three sub-genomes: least fractionated (14 genes), most fractionated-| (10),
and most fractionated-Il (2). The syntenic map of BoCNGC genes exhibited strong relationships with the model
Arabidopsis thaliana and B. rapa CNGC genes and provided markers for defining the regions of conserved synteny
among the three genomes. Both whole-genome triplication along with segmental and tandem duplications
contributed to the expansion of this gene family. We predicted the characteristics of BoOCNGCs regarding exon-intron
organisations, motif compositions and post-translational modifications, which diversified their structures and functions.
Using orthologous Arabidopsis CNGCs as a reference, we found that most CNGCs were associated with various
protein—protein interaction networks involving CNGCs and other signalling and stress related proteins. We
revealed that five microRNAs (i.e., bol-miR5021, bol-miR838d, bol-miR414b, bol-miR4234, and bol-miR_new?2)
have target sites in nine BoCNGC genes. The BoCNGC genes were differentially expressed in seven B. oleracea
tissues including leaf, stem, callus, silique, bud, root and flower. The transcript abundance levels quantified by
gRT-PCR assays revealed that BoCNGC genes from phylogenetic Groups | and IV were particularly sensitive to
cold stress and infections with bacterial pathogen Xanthomonas campestris pv. campestris, suggesting their
importance in abiotic and biotic stress responses.

Conclusion: Our comprehensive genome-wide analysis represents a rich data resource for studying new plant
gene families. Our data may also be useful for breeding new B. oleracea cultivars with improved productivity,
quality, and stress resistance.
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Background

Calcium is a universal secondary messenger that partici-
pates in multiple eukaryotic signalling pathways [1]. In
plants, Ca®* signal transduction via calcium-conducting
channels is an important mechanism for transducing the
signals derived from diverse environmental and develop-
mental stimuli [2, 3]. Additionally, signal transductions
contribute to growth, plant biotic interactions, and
responses to hormones, light, and salt stress [4]. Cyclic
nucleotide-gated ion channels (CNGCs) are components
of Ca®*-conducting signal transduction pathways [5]. They
are Ca®’-permeable cation-conducting channels that
transport sodium, calcium, and potassium cations across
membranes. Localized in the plasma membrane [6, 7],
vacuole membrane [8], or nuclear envelope [9], CNGCs
are controlled from inside the cell by secondary messen-
gers such as Ca*/calmodulin (CaM) and cyclic nucleotide
monophosphates (c(NMPs; 3',5'-cAMP and 3',5'-cGMP)
[3, 6, 10, 11]. The CNGCs are hypothesized to be involved
in the uptake of both essential and toxic cations, Ca**
signalling, development, pollen fertility and tip growth,
gravitropism, leaf senescence, innate immunity, pathogen
defence, and abiotic stress tolerance [6, 12—15].

The application of bioinformatics tools (for genes/
proteins prediction and phylogenetic analysis), and ex-
perimental approaches (gene expression, mutant ana-
lysis and overexpression in yeast/Escherichia coli) have
led to the identification, characterization, and func-
tional analysis (in exceptional cases) of CNGC family
genes in important plant species, including Arabidopsis
thaliana [5], rice [16], tomato [17], pear [18], and
Physcomitrella patens [19]. Researchers have only re-
cently started to investigate the evolution, function
(and underlying regulatory mechanism) of plant
CNGCs, as well as their phylogenetic relationships with
other channels. Briefly, plant CNGCs are characterised
by conserved structural components, including a short
cytosolic N-terminus, six transmembrane helices (S1-S6)
with a pore-forming region between S5 and S6, and a
cytosolic C-terminus containing a cNMP-binding domain
(CNBD). The CNBD is the most conserved region of
CNGCs carrying a plant CNGC-specific motif spanning
the phosphate-binding cassette (PBC) and hinge region,
which mediates channel gating by cAMP and/or cGMP
[3, 20]. A latest study of the A. thaliana CNGCI2 gene
suggested that plant CNGCs have multiple CaM-binding
domains (CaMBDs) at cytosolic N- and C-termini [3].
Moreover, channel functionality depends on CaM binding
to the conserved isoleucine—glutamine (IQ) motif in the
C-terminus of the channel, indicating CaM positively and
negatively regulates CNGCs [3]. Studies on individual iso-
forms and the A. thaliana CNGC family revealed that
plant CNGC genes may be functionally distinguished in a
group-dependent manner. For example, AtCNGCI9 and
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AtCNGC20, which belong to Group IV-a, are involved in
salt stress responses [8]. Additionally, AtCNGC2 and
AtCNGCH4, which are Group IV-b members, affect disease
resistance against various pathogens and thermotolerance
[21, 22]. Mumtaz et al. [4, 17] recently concluded that
Group IV-b SICNGC genes regulate different types of re-
sistance against diverse pathogens in tomato. It is unclear
whether this also applies to other plant species.

Brassica oleracea (2n = 18) is a member of the family
Brassicaceae (approximately 338 genera and 3709 spe-
cies), which consists of many important vegetable and
oilseed crops, including brussels sprout, kohlrabi, and
kale [23]. Among the cultivated species, B. oleracea
exhibits the largest genetic and morphological diversity,
making it highly adaptable to different environments.
Sexually compatible B. oleracea crops, such as cabbage,
cauliflower, and broccoli, are valued for their economic,
nutritional, and potent anticancer properties [24]. The
whole-genome sequence of this plant species was
recently published [24], which enabled us to study the B.
oleracea CNGC family. We used in silico and experi-
mental approaches to identify, characterise, and func-
tionally verify CNGC gene family members. We applied
multiple tools and programs to complete in-depth ana-
lyses of each CNGC gene family member, including an
analysis of the physiological and biochemical properties
of the encoded proteins. Our objective was to elucidate
the diversification, expansion, and evolution of the
CNGC gene family. Furthermore, we investigated CNGC
expression patterns to clarify the mechanisms underlying
their responses to biotic and abiotic stresses, and to
identify novel genes potentially useful for breeding.

Results

Genome-wide identification of CNGC genes in Brassica
oleracea

For a complete overview of the B. oleracea CNGC gene
family, we used the 20 A. thaliana CNGC genes as queries
in BLAST searches of the Ensembl Plants database. Out of
the 34 non-redundant putative gene sequences retrieved,
eight gene accessions with truncated sequences or lacking
CNGC-specific domains (CNBD and transmembrane)
were eliminated from analyses (Additional file 1). Finally,
26 CNGC genes containing both essential domains
(PF00520/PF07885 and PF00027) and a CNGC-specific
motif were identified in the B. oleracea genome (ie.,
BoCNGCI1-26). Of the 26 BoCNGC genes identified in the
latest genome assembly version in Ensembl Plants, 16 and
24 were detected in earlier versions from Bolbase (v.1.3)
and GenBank (v.2.1) respectively (Table 1).

The physiological and biochemical properties of the 26
BoCNGC proteins were determined by computing dif-
ferent parameters, and are tabulated in Table 1. These
proteins varied in length from 558 to 789 amino acids,
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with an average of 717 amino acids. The ProtParam tool
revealed that there was a considerable range in BOCNGC
residue weight (112.795-116.128 g/mol) and molecular
weight (63.938—89.775 kDa) depending on the number
of atoms present. The computed average pI of majority
of BoOCNGC proteins was relatively high (range 8.23 to
10.18), signifying that these proteins are localized to
membranes, and will supposedly participate in basic
buffers. The BOCNGC19, which had pI than 7.4, indicate
that this protein likely participate in the acidic buffers.
Approximately one third of BOCNGC proteins had a low
net charge (<17), while other are composed of more
charged amino acids. Nearly all BOCNGC were hydro-
philic, with BOCNGC17 and BoCNGC22 being slightly
hydrophobic, which endorses its multifaceted role in cel-
lular membrane transport. According to the instability
index (II), only two proteins were stable in test tubes,
namely BoCNGC2 and BoCNGC3. Aliphatic index
showed that most BOCNGC proteins were thermostable
at a wide temperature ranges, similar to other globular
proteins.

Phylogenetic analysis of BOCNGC genes

Multiple sequence alignments and a maximum likeli-
hood phylogenetic tree constructed between BoCNGCs
and AtCNGCs were used to determine the similarity
and homology between the B. oleracea and A. thaliana
CNGC families. To strengthen the phylogenetic analysis,
we identified and included 29 CNGC homolog genes
from sister specie Brassica rapa (BrCNGCs) in current
analysis. The sequence alignment revealed high similar-
ity between the amino acid sequences of the three
species, especially at the conserved domain regions
(Additional file 2). The topology of the inferred max-
imum likelihood scoring tree revealed that the BoOCNGC
gene family can be divided into four major groups (ie.,
Groups I-1V), which are based on the A. thaliana
groups (Fig. 1) [5]. Groups I-III are monophyletic, while
Group IV is sub-divided into two distinct clades (i.e.,
Groups IV-a and IV-b). Group IV contains 12 BoCNGC
genes, while the other groups contain three to six mem-
bers. Moreover, individual phylogenetic trees that were
constructed based on the aligned B. oleracea and A.
thaliana CNGC proteins produced similar clustering
patterns (Additional files 3 and 4).

Chromosomal distribution and diversification of BoCNGC
genes

The 26 BoCNGC genes were mapped onto B. oleracea
chromosomes, and the position of each locus was deter-
mined. These genes were randomly distributed across
the genome, and were detected on eight of nine chromo-
somes (i.e., C1-5 and C7-C9). The BoCNGC genes were
unevenly distributed, with some chromosomes (ie., C1
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Fig. 1 Phylogenetic tree of Brassica oleracea, Arabidopsis thaliana, and
Brassica rapa CNGC proteins. A maximum likelihood phylogenetic tree
was created with MEGA 6.0, using the Jones-Taylor-Thomton model.
The bootstrap values from 1000 replications are provided at each node.
The BoCNGC proteins identified in this study are indicated with blue
circles, while the AtCNGCs and BrCNGCs are indicated with maroon
diamonds and green rectangles, respectively

and C5) carrying five genes, while the rest had fewer
genes (e.g. C7). Chromosome 6 did not carry any of the
BoCNGC genes (Fig. 2a).

Gene duplication events

Gene family expansion occurs via the following three
mechanisms: tandem duplication, segmental duplication,
and whole-genome duplication [25]. We investigated
gene duplication events to clarify the genome expansion
mechanism of the B. oleracea BOCNGC superfamily. An
evaluation of the physical distance between BoCNGC
gene loci revealed that eight genes (i.e, BoCNGCI18/
BoCNGC19, BoCNGC21/BoCNGC22/BoCNGC24, and
BoCNGC20/BoCNGC25/BoCNGC26) were tandemly du-
plicated. These genes were detected on C3, C1, and C5,
respectively. The data obtained from the Plant Genome
Duplication Database revealed that 13 BoCNGC genes
distributed across the B. oleracea genome were associ-
ated with segmental duplications (Fig. 2b). The BoOCNGC
gene clusters likely formed via tandem and segmental
duplication events may have expanded and enhanced the
functional diversity of the gene family.

Comparative syntenic and evolutionary analyses of
orthologous CNGC gene pairs

The B. oleracea and B. rapa genomes are currently
divided into three sub-genomes, namely LF (least frac-
tionated), MF-I (most fractionated), and MF-II [26]. We
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Fig. 2 Chromosomal localization, synteny, and expansion of the B. oleracea CNGC gene family. a Physical locations and distances of the BoCNGC genes
across the eight Brassica oleracea chromosomes. Red and blue lines correspond to forward and reverse orientations of each locus, respectively. b Circos
plot presenting gene duplication (tandem and segmental) events and synteny of the BoCNGC genes. The BOCNGC genes are presented as numbers

on the B. oleracea chromosomes (red). Tandem and segmental duplications are indicated by white numbers and red lines, respectively. Syntenic
relationships with 10 Brassica rapa (AO1 to A10) and five Arabidopsis thaliana (Chr1 to Chr5) chromosomes are represented as green and blue lines,
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observed that the B. oleracea LF sub-genome contains
the most BoOCNGC genes (14), followed by sub-genomes
MF-I (10) and MF-II (2) (Additional file 5). Because of a
Brassica-lineage specific whole-genome triplication
(WGT) [27], each A. thaliana CNGC gene was expected
to generate three Brassica copies. However, there were
20 A. thaliana CNGC genes, 26 B. oleracea CNGC
genes, and 29 B. rapa CNGC genes. To detect the reten-
tion or loss of CNGC genes after a WGT event, the syn-
tenic map of BoOCNGC genes with the model A. thaliana
and B. rapa CNGC genes provided markers for defining
the regions of conserved synteny among the three
genomes (Fig. 2b). Compared with the ancestral
Brassicaceae blocks (A to X) in A. thaliana, the synteny
of 15 AtCNGC genes was preserved in Brassica species,
based on the number of corresponding genes. Ten of the
20 AtCNGC genes were retained as a single copy in the
equivalent blocks of both Brassica species. Three
AtCNGC genes (ie, AT2G23980, AT2G24610, and
AT5G54250) located on the I and W syntenic blocks,
were preserved as two copies in Brassica genomes,
which were asymmetrically fractionated into three sub-
genomes. Two AtCNGC genes (ie, AT3G17690 and
AT3G17700) in the F syntenic block were retained as
three copies in each species. Two extra gene copies (i.e.,
BoCNGC20 and BoCNGC22) were located on potential

overlap/tandem repeat regions of the B. oleracea gen-
ome, thus producing phylogenetic cluster IV-b. Approxi-
mately 25 B. oleracea CNGC genes and 24 B. rapa
CNGC genes exhibited clear syntenic relationships
among the three species. Two gene pairs (i.e., BOCNGC3
and BoCNGC23; Bra034281 and Bra029958) were not
part of an A. thaliana syntenic block (Additional file 6),
suggesting that these genes originated after the diver-
gence from A. thaliana. The remaining four B. rapa
genes were likely generated after the speciation event. In
addition, 11 BoCNGC genes exhibited strong syntenic
relationships with the genes from other plant species,
implying this gene family is important for plant growth,
development, and stress resistance (Additional file 6).

The orthologous CNGC gene pairs between the B.
oleracea and A. thaliana genomes were used to
estimate the Ka, Ks, and Ka/Ks values (Table 2). The
mean Ka/Ks value of all orthologous gene pairs in the
B. oleracea CNGC gene family was 1.98. Most of the
BoCNGC genes had Ka/Ks ratios greater than 1. Add-
itionally, the minimum and maximum Ka/Ks ratios
were 1.05 (BoCNGC26) and 7.7 (BoCNGC6), respect-
ively. These findings indicate that the BoCNGC gene
family is under positive selection pressure, and might
preferentially conserve functions and structures under
this selective pressure.
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Table 2 Comparative analysis of Ka, Ks and Ka/Ks values for CNGC
gene pairs between B. oleracea compared to A. thaliana. Ka/Ks
ratio greater than 1 indicates positive selection, a ratio less than 1
indicates functional constraint, and a Ka/Ks ratio equal to 1
indicates neutral selection

A. thaliana B. oleracea KA KS KA/KS
genes genes
AtCNGC13 BoCNGC1 0.137 0.032 4303387233
AtCNGC3 BoCNGC2 0.147 0.029 5.117236906
AtCNGC6 BoCNGC4 0.136 0.052 2615208996
BoCNGC5 0.167 0.048 3468082016
AtCNGC9 BoCNGC6 0.188 0.024 7.768521972
AtCNGC5 BoCNGC7 0.124 0.040 3.098687155
AtCNGC7 BoCNGC8 0111 0.033 340004813
AtCNGC15 BoCNGC9 0.147 0.060 2456018066
AtCNGC17 BoCNGC10 0.113 0.034 3.357834045
AtCNGC14 BoCNGC11 0.133 0.031 4.245278743
BoCNGC12 0.145 0.040 3651430365
AtCNGC18 BoCNGC13 0.094 0.048 1949453718
AtCNGC16 BoCNGC14 01M 0.066 1676233706
AtCNGC4 BoCNGC15 0.101 0.025 4.039237878
BoCNGC16 0.103 0.034 3056103924
AtCNGC2 BoCNGC17 0.118 0.029 4.091069466
AtCNGC19 BoCNGC18 0.246 0.126 1.950211367
AtCNGC20 BoCNGC19 0.202 0.178 1.133449904
BoCNGC20 0.136 0.049 2.79662626
BoCNGC21 0.099 0.041 244174101
AtCNGC19 BoCNGC22 0.202 0.119931313 1680530313
BoCNGC24 0.146 0.081 1.792823624
BoCNGC25 0.146 0.081 1.792823624
AtCNGC20 BoCNGC26 0.131 0.125 1.054276842

Domain architecture and alignment of BOCNGC proteins

Domain composition analyses revealed that BoCNGC
proteins contain two primary domains, namely CNBD
and TM (Additional file 7). The sequence alignment of 26
BoCNGC:s indicated that the two most conserved regions
within the CNBD domain are a PBC, and an adjacent
hinge region (Fig. 3; Additional file 8). The following
highly conserved consensus motif was identified: [LI]-
X(2)-[GSE]-X-[VEIY]-X-G-X(0,1)-[DE]-L-L-X-W-X-[LQ]-
X(10,20)-S-X-[SAR]-X(7)-[VTI]-E-[AG]-E-X-L. This se-
quence can be used to classify newly annotated or un-an-
notated candidate sequences as Brassica CNGCs.
Additionally, there was a relatively conserved IQ domain
and a less conserved CaMBD adjacent to a CNBD present
in 24 of the 26 BoCNGC proteins. Two proteins (ie.,
BoCNGC18 and BoCNGC19) were observed to lack the
CaMBD and IQ domains because their sequences are
truncated at the C-terminal end of the CNBD. A high
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sequence divergence was noted among different groups,
particularly between members of Sub-groups IV-a and
IV-b. For example, the CaMBD [FLY[-X(10,12)-[AFI]-R-
[FY](0,1), was not particularly conserved between Group
IV-b and the other groups. However, the IQ motif [IV]-Q-
X-X-W-R-X-X-X-[RKQ] was relatively conserved among
the BoCNGC proteins (Fig. 3). Alignments between
BoCNGCs, AtCNGCs, and BrCNGCs revealed a high se-
quence divergence at the C-terminal of the CNBD, in
which several Group IV-b members lack the CaMBD and
IQ motif (Additional files 9 and 10). Overall, our in silico
analyses suggest that ion transport and CNBDs along with
the PBC and hinge region are conserved in all three spe-
cies, and are characteristic of plant CNGCs.

Gene structure and motif composition analysis

To characterise the structural diversity of the BoOCNGC
family members, we analysed the exon-intron
organization of individual BOCNGC genes. The majority
of the BoOCNGC genes from phylogenetic Groups I-III
contained six or seven exons, while the Group IV
members had 8-11 exons (Fig. 4). Closely clustered
BoCNGC genes in the same clades were similar regard-
ing the number of exons and intron lengths. Most of the
introns in BoCNGC genes were phase 0 introns, which
occur in between complete codons. Fifty-four phase 2
introns (i.e., located between the second and third nucle-
otides of a codon) were observed in the BoOCNGC family,
in which the genes carried two phase 2 introns. The
exceptions were BoCNGCI and BoCNGC2, which con-
tained three phase 2 introns. Only the members of
phylogenetic Group IV-b had single phase 1 introns at
the terminal end of their sequences. A comparison
between the exon—intron organizations of BoCNGC
genes and the AtCNGC genes clustered in the same
phylogenetic  groups revealed several differences
(Additional file 11). Most of the phase 1 introns were
present in AZCNGC genes, implying that intron loss dur-
ing evolution resulted in a decrease in the number of
introns in BoOCNGC genes, particularly those in Groups
[-1II and IV-a.

The BoCNGC protein sequences were used for domain
or motif structure analyses with the Multiple Expectation
Maximization for Motif Elicitation suite [28]. Ten con-
served motifs were identified. According to Pfam codes
[29] and WebLogo, only seven motifs (i.e., 1-5, 7, and 10)
encode domains with known functions (Fig. 4; Additional
files 12 and 13). Motif 2 was the biggest motif encoding a
conserved domain, which is probably associated with
peptidase_C50, putative aminopeptidase, or DNA poly-
merase III subunit tau_4. Motifs 1 and 5, which encode a
CNBD and an ion transport domain, respectively, were
conserved among all BOCNGC family members. The ion
transport domain had the most motifs, including motifs 4,
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5, 7, and 10. The IQ CaM-binding motif (PF00612) was
conserved among BoCNGC family members, with the ex-
ception of BOCNGC18, 19, and 22. Group IV proteins
contained the fewest functionally annotated motifs, sug-
gesting that the closely related proteins in each group have
similar motifs and are also probably functionally similar.
The functions of the remaining motifs (i.e., 6, 8, and 9)
remain to be determined.

Post-translational modification and phosphorylation of
BoCNGC proteins

When BoCNGC protein sequences were analysed using
ScanProsite [30], multiple putative phosphorylation sites
were revealed. These sites may act as substrates for several
kinases, including casein kinase II, protein kinase C, tyro-
sine kinase, and cAMP/cGMP kinases. Protein kinase C, a
family of ten isoenzymes that play a vital role in cellular
signal transduction [31], were the most abundant, with 16
sites in BoCNGC4, BoCNGC5, BoCNGCS8, and
BoCNGCI12. Casein kinase II sites, which were the most
abundant in Group IV members, are reported to influence
different developmental and stress responsive pathways in
Arabidopsis [32]. All BoOCNGC proteins had multiple

N-myristoylation/N-glycosylation motif sites, which are
highly conserved compared with the other PTMs. The
lipid modification by N-myristoylation might controls the
redox disproportions originating from different stresses in
plants [33], while glycosylation is crucial for correct
growth [34]. The BoCNGC5 and BoCNGCI8 proteins
contained the most N-myristoylation (11) and N-glycosyl-
ation (10) sites, respectively. Other PTM sites, such as
those for amidations, tyrosine kinase, serine- and glutamic
acid- rich regions, cell attachment sequences, and leucine
zipper patterns, were less conserved and randomly distrib-
uted (Table 3). Such phosphorylations deliver effective
means to regulate most physiological activities, including
metabolism, transcription, DNA replication and repair,
cell proliferation [35].

Prediction of functional association network of BoOCNGC
proteins

To explore the relationships among different BoOCNGC
proteins, a hypothetical protein—protein interaction net-
work was in silico predicted with the STRING program
(accessed in April 2016) [36] and AtPID (Arabidopsis
thaliana Protein Interactome Database), using using
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orthologous AtCNGCs as query. The STRING inter-
action network for the first shell of interactors of
AtCNGC proteins, supported by confidence score, is
presented in Fig. 5a. Fourteen AtCNGCs, having 24
orthologs in B. oleracea, interact with flagellin-sensitive
2 (i.e., FLS2 or MPL12.8), represented by association in
curated databases (confidence score: 0.8). This associ-
ation was traced to manually curated plant—pathogen
interaction pathway imported from the Kyoto
Encyclopedia of Genes and Genomes database
(Additional file 14). Supported by principal component
analysis, a positive interaction (confidence score: 0.154)
was observed between BoCNGC10 and BoCNGCI13,

which are the orthologues of AtCNGC17 and
AtCNGC18, respectively. In another interaction
network, BoCNGC1 interacts with BoCNGC2 and

BoCNGC18-26, which are orthologues of AtCNGC13,
2, 19 and 20 respectively. This interaction is based on
protein homology, association in curated human path-
ways (http://www.reactome.org/), or genes encoding
these proteins have correlated expression levels. We also
observed that the Group IV proteins are associated with
constitutive photomorphogenic 1 and CaM proteins (i.e.,
CaM4, CaM6, and CaM7) (Fig. 5a).

Using orthologous Arabidopsis CNGCs as query in the
AtPID uncover more potential interactions between
CNGCs, and to other proteins, which are validated by
experimental data from different assays (Fig. 5b;
Additional file 15). The results exhibited strong

interactions of co-expression and gene fusion between
CNGC functional partners belonging to similar clades.
For example, AtCNGC10 interacted with AtCNGC]1, 3
and 13, while AtCNGC17 interacted with AtCNGC18 as
mentioned earlier. AtCNGC10 interacted with more
CNGC s than other proteins. In addition, some CNGCs
(AtCNGC1, 5, 6, 9, 10, 13, 17, 18 and 19) interacted with
many important signaling and stress related regulatory
proteins, including calmodulins. These interactions are
supported by data from yeast two-hybrid, and Affinity
Capture-MS assays. Five CNGC genes (AtCNGC 1-4,
and 11) were found to have available phenotypes of mu-
tant data from seedlings, leaves and embryos, showing
that these genes play important roles in hyper-
sensitivity, pathogen and abiotic stress resistance
(Additional file 15).

Additional evidence from experimental/biochemical
data detected by protein kinase (MI:0424) and anti tag
coimmunoprecipitation (MI:0007) assays in human
putative homologs (i.e., Potassium voltage-gated channel
2 and Leucine rich repeat containing 47/Per-Arnt-Sim
domain kinase) suggest a functional link between
CNGCs and FLS2 [37, 38]. The experimental details and
LC-MS/MS, vyeast two-hybrid and phosphorylation of
peptide arrays of human interacting KCNH2 and
LRRC47/PASK proteins can be found in supplementary
material of Behrends et al. [38]. Using Mating-Based
Split Ubiquitin Assays in A. thaliana, Chen et al. [39]
reported strong, positive (in both 500 uM methionine
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Table 3 The number of predicted post-translational modification sites in BoOCNGC protein sequences

Protein ID CAMP CK2 AMD PKC ASN TYR MYR RGD LEU SER GLU ATP
BoCNGC1 7 2 8 7 1 4

BoCNGC2 2 6 7 4 1 7

BoCNGC3 2 7 10 4 1 3

BoCNGC4 4 3 16 5 1 8

BoCNGC5 3 4 16 4 1 10

BoCNGC6 2 8 14 6 1 11

BoCNGC7 1 5 1 9 5 2 7 1

BoCNGC8 3 6 16 3 1 7 1
BoCNGC9 1 4 12 4 2 8

BoCNGC10 1 6 12 4 2 7

BoCNGC11 1 7 15 2 1 5 3

BoCNGC12 2 9 16 2 1 5

BoCNGC13 2 8 1 1 7 9 3

BoCNGC14 1 8 13 5 1 8

BoCNGC15 1 12 1 8 4 9 1 1
BoCNGC16 2 13 10 5 8 1
BoCNGC17 2 9 6 3 1 6

BoCNGC18 2 11 1 9 10 1 5 1

BoCNGC19 1 10 9 7 1 3 1 1

BoCNGC20 13 1 9 2 1 5

BoCNGC21 12 1 8 2 7 1

BoCNGC22 11 6 4 5 1
BoCNGC23 2 1 1 14 3 7

BoCNGC24 14 15 6 8

BoCNGC25 13 13 5 6

BoCNGC26 1 14 6 7 4

cAMP/cGMP cAMP/cGMP-binding motif profile, SER serine-rich region profile, GLU glutamic acid-rich region profile, CAMP cAMP- and cGMP-dependent protein
kinase phosphorylation site; CK2 casein kinase Il phosphorylation site, AMD amidation site, PKC protein kinase C phosphorylation site, ASN N-glycosylation site, TYR
tyrosine kinase phosphorylation site, MYR N-myristoylation site, RGD cell attachment sequence, LEU leucine zipper pattern, ATP ATP/GTP-binding site motif A
(P-loop). Numbers given in each cell refer the total count of PTM sites found in each protein

and at least one 150 uM methionine conditions), and
statistically significant interaction between these protein
pairs, which are required for polarized tip growth of
pollen tube [40]. In another interaction network,
BoCNGC1 interacts with BOCNGC2 and BoCNGC18-
26, which are orthologues of AtCNGC13, 2, 19 and 20
respectively. Additionally, we observed a weak inter-
action (confidence score: 0.151) between AtCNGCI13
(i.e., orthologues of BOCNGC1) and BRI-associated re-
ceptor kinase 1 (BAK1), which was previously observed
between AtCNGC17 and BAK1 [41]. Though, it is re-
ported that evidence transfer from one model organism
to the other seems feasible approach to study interaction
conservation, and it has been implemented in several
frameworks already [42]. However, these experimental
proofs are essential to support this analysis in B.
oleracea.

Identification of microRNA target sites

Identifying the targets of the predicted microRNAs
(miRNAs) may provide insights into the biological func-
tions of miRNAs influencing plant development, signal
transduction, and stress adaptations [43]. We searched
for potential miRNA targets in a set of identified BOCNGC
transcripts using the plant small-RNA target analysis ser-
ver (psRNATarget) [44]. Using a cut-off threshold of 5 for
the search parameters, we identified 14 miRNAs with tar-
get sites in 17 BoCNGC transcripts, with expectation
scores of 1.5—-5 (Additional file 16). To decrease the num-
ber of false positive predictions, small-RNA/target site
pairs with an expectation score and cut-off threshold of 3
were considered. Consequently, five miRNAs with target
sites in nine BoCNGC genes were identified (Table 4).
These miRNAs were localized to the 3" arm of the stem-
loop hairpin structure. Unlike bol-miR838d, which has
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five target genes, the remaining miRNAs have only one
target gene. Moreover, only bol-miR838d has multiple tar-
get sites (i.e., complementary regions) on BoCNGCIS5 and
BoCNGC1I6 transcripts. The accessibility of the target site
varied from 2.883 (bol-miR838d) to 16.4 (bol-miR5021),
where lower values correspond to a greater possibility of
contact between the miRNA and target site. Four miRNAs
were determined to be involved in cleaving the target
transcript, while two miRNAs were predicted to inhibit
the translation of target genes.

Gene ontology enrichment analysis

Using Blast2GO (v.3.3.5), we assigned 31 gene ontology
(GO) classes to 26 BoOCNGC genes with BLAST matches
to known proteins in the InterPro database. The major-
ity of the genes were assigned to biological process (22),
followed by molecular function (7) and cellular compo-
nents (3). All genes encoded integral membrane compo-
nents associated with ion channel activity for
transmembrane transport. Notably, BOCNGCI was asso-
ciated with salicylic acid biosynthesis, negative regulation
of defence responses, regulation of plant-type hypersen-
sitive responses, and responses to chitin. Additionally,
BoCNGC6 was associated with DNA-mediated trans-
formation (Additional file 17).

The level 2 GO enrichment analysis revealed that all 26
BoCNGC proteins are integral cell membrane compo-
nents, with four proteins (i.e., BoCNGC1, BoCNGC4,
BoCNGCS5, and BoCNGC17) forming cell parts, and two
proteins (ie, BoCNGC4 and BoCNGC5) forming

macromolecular complexes (Additional files 18-a and 19).
These proteins are involved in cellular processes associ-
ated with transport, binding, and transduction (Additional
files 18-b and 19). The biological process category at GO
level 2 indicated that BOCNGC1 and BoCNGC17 are as-
sociated with cell death and immune responses to stimuli,
while another eight CNGCs, including BoCNGC19, are
associated with localization (Additional files 18-c and 19).
Moreover, we mapped the 26 annotated sequences to ref-
erence pathways in the Kyoto Encyclopedia of Genes and
Genomes database [45]. Twenty-four of these genes were
defined as “cyclic nucleotide gated channels”, and assigned
to the “plant-pathogen interaction” pathway (Additional
files 14 and 20).

Expression patterns in different plant parts

We investigated the steady-state B. oleracea BoCNGC
expression patterns in seven tissues (i.e., leaf, stem,
callus, root, silique, flower, and bud) using Illumina
RNA-sequencing data from the Gene Expression
Omnibus database. Of the 26 BoCNGCs, 19 were
expressed at relatively high levels (fragments per kilobase
of exon model per million mapped reads value >1) in at
least one tissue, including 15 in the roots and si-
liques, 16 in leaves, and 17 in stems, buds, and
flowers. The 19 genes were also expressed in calli
(Fig. 6a). Some of the syntenic duplicates have di-
verged in expression patterns indicating sunfunctiona-
lization. For example, BoCNGC26 and BoCNGC19
have very similar expression patterns. But their
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Table 4 Putative microRNA targets predicted in 26 BoCNGC transcripts

miRNA Acc. Target Acc.  Expectation  Target Accessibility — Alignment Inhibition Multiplicity

bol-miRs021a/j BoCNGC4 25 16412 MIRNA 20 AGAAGAAGAAGAAGAAGAAU 1 Cleavage 1
Target 60 CUUUCCUCUUCUUCUUCUUA 79

bol-miR838d  BOCNGC5 25 15037 mMIRNA 20 CUUGUUCUUCUUCUUCUUCU 1 Cleavage 1
Target 2884 GAAGAGGAAGAAGAGGAGGA 2903

bol-miR838d  BOCNGC6 20 15121 mMIRNA 20 CUUGUUCUUCUUCUUCUUCU 1 Cleavage 1
Target 2593 GAAGAAGAGGAGGAAGAAGA 2612

bol-miR414b  BOCNGCE 30 16071 MIRNA 21 ACUUCUACUUCUACUUCUACU 1 Translation 1
Target 2589 UGAAGAUGAGUAUGAUGAUGA 2609

bol-miRg3ed  BOCNGC10 20 816 mMIRNA 22 CACUUGUUCUUCUUCUUCUUCU 1 Cleavage 1

arget 3520 GUGAUGAAGAAGAAGAAGAAGA 3541

bol-miR4234  BoCNGC12 30 15182 MIRNA 22 UGACGGUUGAUCAAAAUUCAAC 1 Cleavage 1
Target 2630 AUUUUCAAUUGGUUUUGAGUUG 2651

bol-miR838d  BOCNGC1S 15 6.045 mMIRNA 20 CUUGUUCUUCUUCUUCUUCU 1 Cleavage 2
Target 103 GAAGAAGAGGAAGAAGAAGA 122

bol-miR838d  BOCNGCIS 25 8952 mMIRNA 21 ACUUGUUCUUCUUCUUCUUCU 1 Cleavage 2
Target 135 UGAGAAAGAUGAAGAAGAAGA 155

bol-miR838d  BOCNGC16 30 6.192 mMIRNA 20 CUUGUUCUUCUUCUUCUUCU 1 Translation 2
Target 94 GAAGAGGAGGACGAAGAAGA 113

bol-miR838d  BOCNGC16 15 2883 mMIRNA 20 CUUGUUCUUCUUCUUCUUCU 1 Cleavage 2
Target 124 GAACAAGAGGAAGAGGAGGA 143

bol-miR_new2  BoCNGC26 30 11462 MIRNA 20 UGGGAUUUAGUAUUUAGGAU 1 Cleavage 1

Target 639 ACCUGGAAUCAUAAAUCCUC 658

duplicates BOCNGC21 and BoCNGC20 now have dif-
ferent expression patterns. An additional investigation
revealed that BoCNGCI7 and BoCNGC16 were the
most highly expressed genes, especially in flowers, im-
plying they may be important for Brassica species de-
velopment. Among the other genes, BoCNGC3 was
highly expressed in roots, while BOCNGC2 was highly
expressed in siliques and calli, suggesting that the ex-
pression of this genes is induced by wounding. Most
of the Group IIl and IV genes were expressed at low
levels in the leaves, stems, calli, roots, and siliques,
while BOCNGC26 was not expressed in any tissue.

A review of the reported expression profiles of ortho-
logus Arabidopsis CNGCs in the tissues of wild and
mutant plants suggest that a) the mRNAs of this gene
family are expressed in all plant tissues, b) expression
in leaves is greater than in roots, stem and flower, c)
group-I, II and IV CNGCs are highly expressed in
flowers and apex of Arabidopsis mutants (Additional
file 21) [46]. Some of these observations have been con-
firmed during earlier investigation of CNGC mutants in

Arabidopsis plants, for example AtCNGCI [47]. More-
over, the expression patterns of BoCNGCI and
BoCNGC7 were consistent with their orthologs
(ATCNGC10 and ATCNGCS), which are highly
expressed in roots than leaves [7]. Our results are also
corroborated by the findings of Borsics et al. [6], show-
ing that A#tCNGCI0 mutant plants exhibited reduced
mRNA levels in flower than its closest related member
AtCNGC13 and WT plants.

Expression patterns in response to abiotic and biotic
stresses

Based on the BoOCNGC expression patterns in different tis-
sues, we attempted to determine whether these genes were
associated with plant defence responses, especially against
race- and species-specific Brassica pathogens. Therefore,
we analysed the BoOCNGC expression profiles in the shoots
of 25-day-old Brassica plants infiltrated with Xanthomonas
campestris pv. campestris (Xcc). The BOCNGC expression
levels at 24 h post-inoculation are presented in Fig. 6b. The
pathogen induced considerable changes to BoCNGC
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expression levels, including the up-regulation of the ex-
pression of 10 BOCNGC genes in infiltrated seedlings, with
the highest levels observed for BoCNGC21. This was
followed by BoCNGC2 and BoCNGCI from Group I,
BoCNGCS5 and BoCNGC?7 from Group II, and BoOCNGC26
and BoCNGC20 from Group IV-b. Interestingly, none of
the Group III and IV-a genes were affected.

We also examined the BOCNGC expression levels under
cold conditions. The expression of 13 of the 26 BoCNGC
genes was up-regulated in cold-stressed plants, although the
expression levels were lower than the levels induced by Xcc
(ie., biotic stress) (Fig. 6¢c). The expression levels of genes
from Groups [, II, and IV were significantly induced by cold
stress, with the highest levels observed for BOCNGC17 and
BoCNGC23. In contrast, the Group III BoCNGCs were
expressed at low levels or not at all under cold conditions.
Moreover, most of the duplicated gene pairs and genes en-
coding interacting proteins produced similar expression pat-
terns (especially in response to Xcc). The exception was
BoCNGC24 whose expression was not significantly up-
regulated like its duplicates (ie, BoCNGC21 and
BoCNGC(C22).

The expression patterns of many BoCNGCs under
pathogen stress were consistent with the expression pat-
terns of their Arabidopsis orthologs obtained from the
AtGenExpress project (Additional file 22) [46]. The in-
volvement of group-IV CNGCs in disease resistance and
hyper-sensitivity has been documented earlier [21, 22].
However, the cumulative profiles of group-I and IV
CNGCs in Arabidopsis seedlings showed apposite trend
of down-regulation by cold stress at 4 °C for 24 h, show-
ing specie-specific divergence of expression pattern.

Discussion

The CNGC gene family has been reported for many agri-
culturally important plants [17, 18, 20]. However, a
genome-wide identification and annotation of CNGC
genes has not been reported for B. oleracea. In this
study, we identified 26 B. oleracea CNGC genes, and de-
termined that the BoCNGC gene family is larger than
the CNGC families of most of the reported crops [4].
The isoelectric point (pl) and charge of a protein is im-
portant for solubility, subcellular localization, and inter-
action, depending on both insertion and deletions
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between orthologs, and the ecology of the organism
[48]. It is reported that proteins in cytoplasm possess an
acidic pI (pI < 7.4), nuclear proteins have more neutral
pl (74 < pI < 8.1), while those in membrane have more
basic pI [48], where basic residues located on either side
of membrane spanning region play a role in the
stabilization of the protein in membrane [49]. The net
charge of a protein is a fundamental physical property,
and its value directly influences the solubility, aggrega-
tion, and crystallization of the protein [50]. The 26
BoCNGCs were localized to membranes, greatly varied
in physicochemical properties, and will theoretically par-
ticipate in basic buffers. These variations reflects the
changes in protein composition, and their effects on as-
sociation of receptors with charged ligands, folding and
stability, solubilization and precipitation, and selective
transport of ions in protein channels [50].

Homologous genes within the same taxonomic group
are assumed to exhibit similar structural, functional, and
evolutionary properties, which may help clarify the
role(s) of B. oleracea CNGC genes. Because of the close
relationship between B. oleracea and A. thaliana, the
BoCNGC genes were highly similar (>90%) to the corre-
sponding AtCNGC genes regarding plant CNGC-specific
domains, amino acid compositions, gene structures, and
phylogenetic classifications. Interestingly, we revealed
the absence of the CaMBD and IQ domain in
BoCNGC18 and BoCNGC19, which raised the possibil-
ity that these were abnormal CNGC proteins. However,
we found that many of their homologs in A. thaliana,
pear and B. rapa reportedly lack the CaMBD [18]. Simi-
lar to other CNGCs, these proteins have regular 3D
structural and membrane topologies, with conserved
binding sites for cGMP/cAMP. Furthermore, the pres-
ence of conserved nickel- and zinc-binding sites suggests
that BOCNGC18 and BoCNGC19 may have lost their
secondary domains during evolution, but gained func-
tional diversity. Additional research is required to clarify
this point.

Proteins undergo post-translational modifications
(PTMs), which increase the range of their functions
through different mechanisms [51]. The associated
PTMs likely affected protein function, localization, and
stability, as well as the dynamic interactions with other
molecules [52]. Following gene annotations and phylo-
genetic analyses, we predicted the presence of multiple
PTM sites in BoCNGCs. Apart from evolutionarily
conserved PTMs, other types of modification sites were
detected in BoCNGCs, which diversified the functions
and underlying mechanisms of CNGC-specific PTMs.
Protein—protein interaction networks provide a base for
systematic understanding of cellular processes that can
be used to filter and assess the functional genomics data
and provide an instinctive platform to annotate the
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structures, functions and evolutionary properties of pro-
teins [53]. Using two different approaches, and ortholo-
gous Arabidopsis CNGCs as a reference, we found that
most CNGCs were associated with various protein—pro-
tein interaction networks involving CNGCs and other
proteins related to light signalling [54], regulation of en-
zyme activities [55] and cellular processes [56], brassi-
nosteroid signal transduction [57], and resistance against
pathogens [58]. These aanalyses can offer new informa-
tion for future experimental research and provide cross-
species predictions for efficient interaction mapping
[53]. Additionally, of the 26 BoCNGC genes, nine in-
cluded target sites for diverse groups of novel and con-
served miRNAs. These miRNA families are highly
conserved in Brassicaceae species, where they are
expressed in leaves, siliques, and flowers. These miRNAs
are reported to function in regulation of genes related to
growth (miR157/171/824) [59], Brassica-specific stoma-
tal organization (miR824), pollen development (miR824)
[60], abiotic stress tolerance, and plant—pathogen inter-
actions (miR398) [61].

Gene duplications during evolution increase the gen-
omic content and expand gene functions to optimise the
adaptability of plants [25]. Brassica oleracea is an an-
cient polyploid, whose genome underwent a WGT event
approximately 16 million years ago, after diverging from
A. thaliana, followed by large-scale chromosomal re-
arrangements (i.e., re-diploidisation). As a member of
the classical triangle of U [62], the assembled genome of
B. oleracea (540 Mb) is larger than that of its sister spe-
cies, B. rapa (312 Mb) [63] that diverged from a com-
mon ancestor nearly 4 million years ago [64]. The less
number of CNGC genes in Brassica genomes suggest
that most of the duplicated gene copies were lost post-
polyploidization. Reversion of the few duplicated CNGC
genes to single copy might be due to neutral loss of un-
necessary duplicates over time. Another possible explan-
ation could be that CNGC proteins participate in dosage
sensitive interactions that is affected by the copy number
of each protein subunit (gene balance hypothesis) [24].
Synteny analysis revealed that more than 80% of the
BoCNGC genes are located in conserved syntenic blocks,
which lost and gained some genes. These results are
consistent with the findings of Liang et al. [65]. We pre-
sume that functionally redundant gene copies are report-
edly lost after genome duplication events, while some
copies of functionally important genes are kept [51].
Our findings suggest that the WGT and segmental du-
plication events were important for the expansion of the
B. oleracea CNGC family, where tandem duplications
only affected the expansion of Group IV-b. Altogether,
the conservation of CNGC genes after substantial gen-
ome reshuffling suggests that these genes are crucial for
plant development [66]. Finally, the detailed analyses of
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gene expression in different tissues and under stress
conditions further supported the importance of various
CNGC genes for B. oleracea growth, development, and
survival. To the best of our knowledge, this manuscript
is the first to describe a comprehensive and systematic
analysis of the B. oleracea CNGC gene family. The gen-
erated data may be useful for constructing protein—pro-
tein interaction networks and experimentally validating
the miRNA targets, which regulate the development of
B. oleracea. Besides, our results might help in under-
standing the functions of BOCNGCs related to the regu-
lation of signal transduction pathways, and elucidate the
expression profiles of the corresponding genes during
plant development and stress responses. The results of
the bioinformatics and comparative genomic analyses
are also valuable for studying CNGC protein functions,
with potential implications for the economic, agronomic,
and ecological enhancement of B. oleracea and other
Brassica species.

Conclusions

In conclusion, this work is the first comprehensive and
systematic analyses of CNGC gene family in B. oleracea.
There are 26 CNGC genes in B. oleracea, which are classi-
fied into 4 groups (I-IV) and fractionated into three sub-
genomes; this gene family appears to have expanded
through WGT, segmental and tandem duplication events;
the BOCNGC gene family is under positive selection pres-
sure. All the BOCNGC protein sequences contain a CNGC
specific domain CNBD that comprises a PBC and a
“hinge” region, featured by a stringent motif: LI]-X(2)-
[GSE]-X-[VEIY]-X-G-X(0,1)-[DE]-L-L-X-W-X-[LQ]-X(10,

20)-S-X-[SAR]-X(7)-[VTI]-E-[AG]-F-X-L. This study pro-
vided comprehensive information about domain structure,
exon-intron structure, and the phylogenetic tree and ex-
pression analysis of CNGC genes in Chinese cabbage.
These data are useful to construct protein-protein inter-
action network and experimentally validate the miRNA
targets, which regulates and induces multiple responses in
B. oleracea. The bioinformatics analysis and comparative
genomic analysis also provides valuable information in the
study of CNGC protein functions for the improvement of
the economic, agronomic, and ecological benefits of Chin-
ese cabbage. Furthermore, this study assists to elucidate
the functions of differentially expressed candidate genes in
the regulation of signal transduction pathway, plant devel-
opment and stress resistance in B. oleracea.

Methods

Identification of Brassica oleracea CNGC genes

To identify the B. oleracea CNGC genes, 20 Arabidopsis
CNGC protein sequences obtained from TAIR10 (https://
www.arabidopsis.org/) [67] were used as queries to per-
form a homology-based search of the Ensembl Plants
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database (genome version v.2.1) [68]. This search was con-
ducted with the default parameters of the BLASTP pro-
gram. All non-redundant protein sequences were
retrieved, and their domains were analysed with online
servers: Simple Modular Architecture Research Tool
(SMART) (http://smart.embl-heidelberg.de/) [69] and the
Conserved Domains Database (CDD) (http://www.ncbi.
nlm.nih.gov/Structure/cdd/wrpsb.cgi) [70]. The analyses
were completed with the default cut-off parameters.
Sequences containing the cNMP/CNBD (IPR000595) and
transmembrane/ion transport protein (PF00520) domains
as well as a plant CNGC-specific motif in the PBC and
hinge region within the CNBD were recognized as CNGC
proteins. The identified BOCNGC genes were named ac-
cording to their positions in the phylogenetic tree.

Protein characterisation and amino acid properties
Details regarding gene and protein lengths as well as
chromosomal locations were obtained from the Ensembl
Plants database. Amino acid properties, including
charge, molecular weight (kDa), aliphatic and instability
indices, isoelectric points (pI), and grand average of hy-
dropathy (GRAVY), were determined using the online
available ProtParam tool (http://web.expasy.org/prot
param/) [71]. The PTM sites were predicted with the
ScanProsite web server (http://prosite.expasy.org/scan
prosite/) [30].

Multiple sequence alignment and phylogenetic analysis
The identified CNGC proteins were aligned using the
default settings of the ClustalX 2.0 program [72]. The
conserved CNGC-specific domains were manually
checked and shaded with the DNAMAN program (ver-
sion 6.0.3.40; Lynnon Corporation, Quebec, Canada).
The BoCNGC protein sequences were also aligned with
CNGC sequences from A. thaliana and B. rapa (down-
loaded from the Brassica database; http://brassicadb.org/
brad/) [73] using the default settings of the ClustalX 2.0
program. The alignments were viewed with the Gene-
Doc program [74]. A phylogenetic tree was constructed
using the maximum likelihood method of MEGA 6.0
(1000 bootstrap replications) [75].

Chromosomal locations and gene duplication events
Details regarding the chromosomal locations of the
BoCNGC genes were obtained from the Ensembl Plants
database. The Plant Genome Duplication Database [76]
was searched to identify segmentally duplicated genes.
BoCNGC genes were defined as tandemly duplicated if
the distance between the homologous loci was <50 kb
[65]. The syntenic relationships among BoCNGCs,
AtCNGCs, and BrCNGCs were evaluated using the
Search Syntenic Genes tool in Bolbase [77].
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Gene structure, motif composition, and prediction of
three-dimensional models

Gene exon/intron structures were predicted with the
Gene Structure Display Server (version 2.0) [78], with
genomic and coding sequences as the input data. The
conserved motifs in the CNGC sequences were identi-
fied using the Multiple Expectation Maximization for
Motif Elicitation suite and the Motif Alignment and
Search Tool [28] with the following parameters: optimal
motif width: 6-200; maximum number of different mo-
tifs: 10. The detected motifs were annotated with Pfam
[29]. Gene ontology enrichment analysis was performed
using Blast2GO (v.3.3.5) [79].

Analysis of microRNA target sites and protein—protein
interactions

The B. oleracea miRNA sequences obtained from the
miRBase database at http://mirbase.org/ [80]. To de-
tect potential miRNA target sites within the BoCNGC
genes, the obtained miRNAs were analysed with the
psRNATarget server (http://plantgrn.noble.org/psRNA-
Target/) [44] The information about protein-protein
interaction, and available mutant information for
Arabidopsis CNGC-encoded proteins was obtained
from STRING (v10) [36] and AtPID (http://www.me
gabionet.org/atpid/webfile/query.php).

Analysis of BoCNGC transcriptome data

To investigate the BOCNGC expression profiles, we used
the Illumina RNA-sequencing data available in the Gene
Expression Omnibus database (accession number
GSE42891) [24]. Transcript abundance was calculated as
fragments per kilobase of exon model per million
mapped reads, and the resulting values were log, trans-
formed. A hierarchical cluster was created and a heat
map was generated with R language program [81].

Experimental conditions and quantitative real-time
polymerase chain reaction assay

We used a quantitative real-time polymerase chain reac-
tion (qQRT-PCR) to quantify the BOCNGC expression levels
in response to biotic (bacterial pathogen) and abiotic
(cold) stresses. Cabbage (B. oleracea var. capitata L.) seed-
lings were grown for 25 days in a greenhouse at 23 + 2 °C
under natural light. For the cold stress treatment, seed-
lings were incubated at 4 °C for 24 h. For the bacterial in-
fection, Xcc was first cultured in medium B [82] at 28 °C.
Cells were collected by centrifugation, re-suspended in
sterilized distilled water, and adjusted to an optical density
at 600 nm of 0.1. The midvein of the first fully opened leaf
(just above the petiole) was inoculated with the Xcc sus-
pension using a 1-ml syringe. Sterilized ddH,O was used
as the control solution. The treated plants were returned
to the greenhouse and sampled 24 h later. The extraction
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of RNA and synthesis of cDNA were completed as previ-
ously described [20]. Gene-specific primers were designed
with Primer 5.0 (Additional file 23). The qRT-PCR was
conducted using a StepOne Real-Time PCR System
(Applied Biosystems, USA) and SYBR Premix Ex Taq re-
agents (TAKARA, Japan) as described by Kabouw et al.
[83]. Finally, the 27AACt method [84] was used to calculate
the relative gene expression values, which were subse-
quently transformed to log,- expression ratios and plotted
in figures. Each experiment was performed with three
technical replicates. The Actin gene (AF044573) was used
as an endogenous control.

Statistical analysis

The RT-qPCR expression data was subjected to analysis
of variance (ANOVA) using computer statistical package
(SAS software SAS Institute, Cary, NC). Least significant
difference (LSD) test at p < 0.01 was used to check the
significant differences between the expression levels of
different BOCNGC genes compared to control.
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