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Abstract

Background: Next generation sequencing is a key technique in small RNA biology research that has led to
the discovery of functionally different classes of small non-coding RNAs in the past years. However, reliable
annotation of the extensive amounts of small non-coding RNA data produced by high-throughput
sequencing is time-consuming and requires robust bioinformatics expertise. Moreover, existing tools have a
number of shortcomings including a lack of sensitivity under certain conditions, limited number of supported
species or detectable sub-classes of small RNAs.

Results: Here we introduce unitas, an out-of-the-box ready software for complete annotation of small RNA
sequence datasets, supporting the wide range of species for which non-coding RNA reference sequences are
available in the Ensembl databases (currently more than 800). unitas combines high quality annotation and
numerous analysis features in a user-friendly manner. A complete annotation can be started with one simple
shell command, making unitas particularly useful for researchers not having access to a bioinformatics facility.
Noteworthy, the algorithms implemented in unitas are on par or even outperform comparable existing tools
for small RNA annotation that map to publicly available ncRNA databases.

Conclusions: unitas brings together annotation and analysis features that hitherto required the installation of
numerous different bioinformatics tools which can pose a challenge for the non-expert user. With this, unitas

overcomes the problem of read normalization. Moreover, the high quality of sequence annotation and
analysis, paired with the ease of use, make unitas a valuable tool for researchers in all fields connected to

small RNA biology.

Keywords: RNA-seq data analysis, Small non-coding RNAs, miRNA, piRNA, tRNA-derived fragments (tRFs),

phasiRNA

Background

Small non-coding (snc-) RNAs are important players
in diverse cellular processes, often acting as guide
molecules in transcriptional and post-transcriptional
gene regulation [1-3]. Micro (mi-) RNAs, short inter-
fering (si-) RNAs and Piwi-interacting (pi-) RNAs
constitute their most prominent representatives but
the number of described sncRNA classes continuously
increases. Moreover, degradation products of larger
RNA molecules such as rRNA or tRNA fragments
further contribute to sequence heterogeneity of
sncRNA transcriptomes [4, 5]. As diverse as their
source molecules are the places where sncRNAs can
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be found within an organism, ranging from nuclear
and cytoplasmic localization inside a cell, to extra-
cellular exosomes being released into diverse body
fluids [6, 7]. Studying the role of sncRNAs in diverse
biological contexts typically involves high-throughput
sequencing of sncRNAs derived from total RNA
extracts. Subsequent disentangling of the complex
composition of such sncRNA transcriptomes is one of
the initial steps in sequence data processing and crit-
ical for all kinds of downstream analysis. As the use
of high throughput sequencing technologies becomes
more and more common, while this does not neces-
sarily apply to bioinformatics knowhow, a robust and
easy to use solution for reliable annotation of
sncRNA sequence datasets is highly desirable.
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So far, annotation of sncRNA sequence datasets is
demanding for various reasons. On the technical side,
existing tools cover particular aspects of sequence an-
notation (e.g. miRNA annotation) which means that
complete annotation including all types of sncRNAs
requires installation of a set of programs with differ-
ent dependencies, some of which are restricted to
specific operating systems. Illustrating the complexity
of the task, a typical annotation process could include
the following steps: i) 3’ adapter recognition with
Minion [8] or DNApi [9], ii) adapter trimming with
e.g. reaper [8] or cutadapt [10], iii) filtering of low
complexity sequences with dustmasker [11] or Repeat-
Soaker [12], iv) miRNA annotation with Chimira [13],
v) annotation of tRNA-derived fragments with
tDRmapper [14] or MINTmap [15], vi) annotation of
other ncRNA or mRNA fragments with NCBI BLAST
and, if applicable, vii) annotation of phased RNAs
with PhaseTank [16] or viii) annotation of putative
piRNAs by mapping sncRNA sequences to known
piRNA producing loci [17].

However, when having established a local annotation
pipeline it is almost impossible to correctly normalize
the obtained results in case that a given sequence maps
to different types of non-coding RNA. Even with a pro-
found bioinformatics expertise, custom annotation is
challenging due to the fact, that reference non-coding
RNA sequences are stored at different online databases
such as Ensembl database, miRBase, GtRNAdb and
SILVA rRNA database. Further, mapping sncRNA se-
quences to reference sequences, once having gathered a
complete collection, and subsequent parsing of the
obtained results is bedeviled by, e.g., the presence of
isomiRs or post-transcriptionally adenylated or uridy-
lated miRNAs.

In order to facilitate and speed-up sncRNA annotation
while making the obtained results comparable across dif-
ferent studies, we have developed unitas, a tool for
sncRNA sequence annotation that requires not more
than a computer with internet connection. Our aim is to
provide a maximally convenient tool that runs with an
absolute minimum of prerequisites on any popular oper-
ating system, making high-quality sequence annotation
available for everyone. By providing complete annotation
with one tool we intend to tackle the problem of
normalization of multiple mapping sequences. In
addition, we designed all annotation and analysis algo-
rithms with the aim to overcome a number of limita-
tions of existing tools, in order to make unitas the
means of choice compared to a notional pipeline with
state-of-the-art tools connected in series. The unitas
source code and precompiled executable files are freely
available at https://sourceforge.net/projects/unitas/ and
http://www.smallrnagroup.uni-mainz.de/software.html.
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Implementation

General requirements

We provide precompiled standalone executable files of
unitas for Linux, Mac and Windows systems. Unitas itself
is written in Perl and designed to run with an absolute
minimum of prerequisites, relying on Perl core modules,
or modules which are part of widely used free Perl distri-
butions such as Archive::Extract and LWP::Simple. Perl is
commonly preinstalled on Linux and MacOS systems,
where users can run the unitas Perl script without any fur-
ther requirements. Windows users that prefer to run the
Perl script rather than the executable file may have to
install a free Perl distribution such as ActivePerl or
Strawberry Perl. More detailed information and help is
available in the unitas documentation. Since unitas uses
publicly available online databases for sncRNA annotation,
the program needs an internet connection when run for the
first time. Later runs can use previously downloaded data.
Input files can be sequence files in FASTA or FASTQ for-
mat (with or without 3" adapter sequence), or alternatively
map files in SAM or ELAND3 format. Some data analysis
features are only available when using map files as input.

Reference sequence data management
Sequence annotation with unitas relies on publicly

available reference sequences from Ensembl [18],
miRBase [19], GtRNAdb [20], SILVA rRNA database
[21] and piRNA cluster database [17] (Fig. 1).

Currently, unitas supports 835 different species or
strains for which information on ncRNAs is available
at least in one of the Ensembl databases. Prior to an-
notation, unitas downloads a collection of latest refer-
ence sequences which are stored in a separate folder
on the local machine for subsequent mapping. As
availability of reference sequences is crucial, unitas is
designed to address possible challenges that can occur
during acquisition of that data. Since database URLs
often change with new releases or updates of reference
sequences, relying on URLs stored inside the programs
source code would require frequent updates of the unitas
software itself. Therefore, unitas connects to the Mainz
University Server (MUS) and loads the latest list of URLs
for downloading the required reference sequence data.
However, in the event of these URL not being up to date
(URLs are updated monthly), unitas ultimately downloads
the required sequence data directly from MUS where the
datasets are available via stable URLs and are synchro-
nized regularly (Fig. 1).

By default, downloaded sequence datasets are used for
subsequent unitas runs without anew downloading by
default. Users can also download reference sequence
data collections for any supported species at any time
and use the downloaded data for later offline runs. The
downloaded sequence data can be updated anytime.


https://sourceforge.net/projects/unitas/
http://www.smallrnagroup.uni-mainz.de/software.html
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Automated 3’ adapter recognition and trimming
Standard cloning protocols for small RNA library
preparation prior to high throughput sequencing
involve ligation of adapter molecules to both ends of
a RNA molecule. During sequencing, the sequencing
primer typically hybridizes to the 3’ end of the 5’
adapter, which means that the resulting sequence read
starts with the original small RNA sequence and,
given a sufficient read length, ends with the 3’
adapter sequence. However, there exist manifold com-
mercially available 3" adapters that can be used for li-
brary construction. In addition, these adapters can
contain different index/barcode sequences. Finally,
working groups may even use custom made adapter
molecules. Since information on 3’ adapter sequences
that were used to generate a small RNA dataset is
not always available or at least difficult to find out,
we integrated an adapter recognition and trimming
module that can be applied using the option ‘-trim’.
Initially, unitas identifies the most frequently occur-
ring sequence ignoring sequence read positions 1 to
22 (typical length for miRNAs). unitas adjusts the
length of the motif, m, to be identified automatically
according to the formula m = n - 22 (as long as:

6 < m < 12) where n refers to the sequence read
length. A first round of adapter trimming is then
performed based on the identified motif allowing 2
mismatches for 12 nt motifs, 1 mismatch for motifs
<11 nt and 0 mismatch for motifs <8 nt. If the
original motif is not found within a given sequence
read, unitas truncates the motif sequentially by one
3" nt and checks for its occurrence at the very 3’
end of the sequence read until the motif is found or
the motif length falls below 6 nt. Following this first
round of adapter trimming, unitas checks the
positional nucleotide composition of the trimmed
sequence reads and will remove further 3’ nucleotide
positions in case they exceed a specified nucleotide
bias (default = 0.8). It is noteworthy that there may
exist scenarios in which unitas will not detect the
correct 3’ adapter sequences when using the default
settings, particularly in cases with short library read length
(<35 nt) combined with a high amount of reads that share
3" similarity such as, e.g., tRNA-derived fragments. In
these special cases, adapter recognition can be im-
proved by increasing the amount of 5’ positions to be
ignored when searching for frequent sequence motifs
(option: -trim_ignore_5p [n]).
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Filtering low complexity reads

To filter out low complexity reads, unitas employs an
advanced version of the duster algorithm from the NGS
TOOLBOX [22]. By default, sequence reads with a
length fraction f > 0.75 being composed of one repetitive
sequence motif (default motif length = 1-5 nt) are
rejected. Further, sequences with a length fraction

>+ 1))

being composed of only two specific nucleotides are also
rejected.

miRNA annotation

unitas performs miRNA annotation in several con-
secutive steps. Mature miRNA sequences and miRNA
hairpin sequences are downloaded from miRBase and
miRNAs are annotated in the following order: i)
Canonical miRNAs of the species in question, ii)
post-transcriptionally 3’-tailed canonical miRNAs of
the species in question, iii) offset miRNAs of the
species in question, iv) post-transcriptionally 3’-tailed
offset miRNAs of the species in question.
Subsequently, this procedure is repeated using miRNA
sequence data from all other species included in miR-
Base, which is particularly useful for those species
with bad miRNA annotation status considering the
fact that many miRNA sequences are widely con-
served. Since the according output file comprises in-
formation on the source species of each matched
miRNA gene, unitas users are able to assess the rele-
vance of each match in a case-dependent manner.
However, it is important to be aware that this
approach will not identify new, unannotated lineage-
specific miRNA genes, which can only be identified
using de novo prediction tools. Nevertheless, accurate fil-
tering of known miRNA sequences will be helpful for
downstream de novo miRNA prediction. By default, the
maximum number of allowed non-template 3" nucleo-
tides is 2 and the maximum number of allowed internal
modifications is 1. In order to map sncRNA sequences to
miRNA precursors (or to other ncRNA sequences in later
annotation steps), unitas employs the mapping tool
SeqMap [23] which not requires prior indexing of refer-
ence sequences and allows subsequent analysis of non-
template 3" -nucleotides.

ncRNA/mRNA annotation

Following miRNA annotation, sequences that do not
correspond to miRNAs are mapped to a species-specific
collection of non-coding RNA and cDNA sequences
downloaded from Ensembl database [18], Genomic
tRNA database [20] and SILVA rRNA database [21].
Read counts of sequences that match different classes of
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reference sequences equally well are apportioned accord-
ing to the simple equation:

n rl

hi

Cclass =
i=1

where ¢, refers to the read counts for ncRNA/cDNA
class, while # is the total number of non-identical input
sequences that map to this class and r; and /4; refer to
read counts and hits to different ncRNA/cDNA classes
of input sequence i, respectively. During this process,
special attention is payed to sequence reads matching
tRNAs since different classes of functional tRNA derived
fragments, so-called tRFs, have been described in the re-
cent past [24-30]. unitas classifies these sequences into
5" tRFs (5" to D-loop), 5 tR-halves (5° to Anticodon-
loop), 3" tRFs (TyC-loop to 3'), 3' CCA-tRFs (TyC-loop
to 3’CCA), 3' tR-halves (Anticodon-loop to 3'), tRF-1
(3" end of mature tRNA to oligo-T signal), tRNA-leader
(sequence upstream of 5’ ends of mature tRNAs) and
misc.-tRFs (miscellaneous tRFs). Worth mentioning,
unitas relies on available ncRNA annotation and will not
perform de novo prediction of ncRNA genes that e.g.
encode tRNAs or rRNAs.

piRNA annotation

Considering the fact that piRNAs are highly diverse and
virtually not conserved across different species, piRNA
annotation based on sequence is challenging. However,
many piRNAs originate from few genomic loci, many of
which are annotated in the piRNA cluster database [17].
Providing that information on piRNA clusters is avail-
able for the species in question, sequences that were not
annotated as (fragment of) any other class of non-
coding RNA are mapped to known piRNA producing
loci of the respective species. Since almost every nucleo-
tide position within a piRNA precursor transcript can
give rise to the 5" end of a mature piRNA, though there
is certainly a bias for 5'-U, this procedure more reliably
identifies putative piRNAs compared to the approach of
directly mapping sequence reads to annotated piRNAs.
Further evidence for the presence of genuine piRNAs
can be obtained from sequence read length distribution
and positional nucleotide composition which unitas out-
puts for each class of small RNAs separately. Providing
that the input file provided by the user represents a map
file, unitas can further screen the map file for the so-
called ping-pong signature (using the option -pp), which
refers to a bias for 10 nt 5" overlaps of mapped sequence
reads which arises from secondary piRNA biogenesis
(ping-pong cycle) and indicates the presence of primary
and secondary piRNAs. Screening for a ping-pong
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signature also includes calculation of a Z-score
according to the method described by Zhang and co-
workers [31].

phasiRNA annotation

The commonly applied method for identification of
phased RNAs bases on calculation of a so-called phase
score, P. After consolidation of mapped reads from both
strands with an offset of 2 nt for minus strand mapped
reads, P results from the following formula:

(o5

in which # refers to the number of phase cycle positions
occupied by at least one small RNA read within an
eight-cycle window, and k refers to the total number
of reads for all small RNAs with consolidated start
coordinates in a given phase within an eight-cycle
window [32].

Although the given formula yields higher P values with
increasing k or n, the weighting between both factors,
and finally the decision of which threshold to choose for
P is rather arbitrary. We therefore decided to use a dif-
ferent method, which utilizes the binomial distribution
to calculate the probability p to observe a defined num-
ber (or more) of phased reads within a given sliding win-
dow (default = 1 kb) according to the formula:

p=1- (; (: ) qk(l—q)”'k>

in which j refers to the observed number of reads with
length i in a specified phase, # refers to the total number
of reads with length i and g is given by 1/i and refers to
the probability of a read to be located in a given phase,
assuming that a sequence read can map to any position
within the sliding window with equal probability. As is
the case for calculation of P, reads mapped to different
strands are consolidated prior to calculation of p. If the
p value of a locus under examination is below the critical
value (default = 0.05, with strict Bonferroni correction
based on the number of analyzed sliding windows), uni-
tas applies further thresholds to reduce the rate of false
positive predictions. By default, the fraction of phased
RNAs has to be >50% of all mapped reads within a slid-
ing window. Further, the phased reads must map to =5
different loci while not more than 90% of the phased
reads must derive from one strand. Critical values for
each of the mentioned parameters, including p and slid-
ing window size can be adjusted by the user. Prediction
of phasiRNAs requires map files (SAM or ELAND3) as

P=In
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input and can be performed with the option ‘-phasi [n]’
where n refers to the length of the phased RNAs.

Results

We have tested unitas using a number of artificial
datasets, real RNA-seq data and combinations of both.
A detailed description of the datasets and the methods
that were applied to generate them can be found in
Additional file 1 (Supplementary Methods).

3’ adapter identification and trimming

The first steps in the analysis of small RNA data usually
involve the removal of sequencing adapters from 3’
ends, for which numerous tools exist. However, this task
becomes problematic if the adapter sequence is not
known, e.g. if a dataset is deposited without the appro-
priate information. The number of programs for adapter
prediction, in contrast to removal, is rather limited. The
only published tools for this purpose are DNApi [9] and
Minion from the Kraken package [8], which also con-
tains Reaper for adapter trimming.

To test the efficiency of the 3" adapter identification
and trimming function of unitas, we processed ten ran-
domly chosen datasets from the NCBI Sequence Read
Archive and put the performance into comparison to
the existing software. Both, unitas and DNApi, reliably
predicted the correct adapter sequences in all cases,
whereas Minion predicted a false adapter with a slightly
deviated sequence for one of the ten libraries (SRA ac-
cession: SRR5130142), leading to a considerably reduced
efficacy in subsequent read trimming by Reaper (Fig. 2a).
Altogether, in eight instances unitas removed more
adapter sequences than Reaper, hence resulting in higher
quantities of trimmed reads that could be mapped per-
fectly to the corresponding genome (+ 9.7% on average,
Additional file 2: Table S1).

Removal of low complexity sequences

The presence of low complexity reads can weaken
biological signals within RNA-seq datasets and it has
been demonstrated, that the correlation between
RNA-seq and microarray gene expression data can be
improved with strict filtering of sequences that map
to genomic regions with low sequence complexity
[12]. Since this method relies on the availability of a
RepeatMasker annotation for the genome in question,
we implemented a low complexity filter upstream of
sequence annotation. We compared our filter with
dustmasker, a popular tool for masking low complex-
ity regions in DNA sequences, which is part of the
NCBI blast + package [11]. We ran dustmasker on
ten adapter-trimmed NGS sequence datasets (see
above) with default settings and discarded sequence
reads with more than 75% of bases being masked to
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produce results that are comparable to the results
generated by unitas, which by default filters sequences
being composed of more than 75% of repetitive se-
quence motifs.

First, we found that unitas generally filters more se-
quences (Fig. 2b top), which taken by itself is certainly
not indicative to favor one tool over the other since both
algorithms can easily be adjusted to filter more or less
sequences by changing the corresponding thresholds.
Therefore, we in-depth analyzed the complexity of se-
quences filtered by both tools as well as those sequences
that were filtered either by unitas or by dustmasker. We
quantified the complexity of filtered sequences based on
sequence entropy [33], Wootton-Federhen-complexity
[34] and gzip (developed by Jean-loup Gailly and Mark
Adler) compression ratio using the program SeqCom-
plex, which was written by Juan Caballero. As expected,
sequences filtered by both tools usually exhibit the low-
est degree of entropy. Further, sequences filtered only by
unitas exhibit a lower degree of entropy compared to se-
quences filtered only by dustmasker, in spite of the fact
that unitas filters more sequences (Fig. 2b middle).
According to Wootton-Federhen-complexity and gzip
compression ratio, sequences filtered only by unitas also
exhibit lower complexity compared to sequences filtered
only by dustmasker and even compared to those se-
quences filtered by both tools (Additional file 3: Table S2).

We further wanted to check whether these rather theoret-
ical assessments can be translated into a biological dimen-
sion. To this end we mapped the filtered sequences to the
respective genomes and counted the number of genomic
hits per sequence, assuming that the amount of informa-
tion obtained by mapping a specific sequence decreases
with a growing number of genomic hits. In line with the
previous results, sequences filtered by both tools show the
highest number of genomic hits, thus providing the lowest
amount of information (Fig. 2b bottom). With one excep-
tion, sequences filtered exclusively by unitas map more
frequently to the genome compared to sequences filtered
exclusively by dustmasker (Fig. 2b bottom). Together,
these results demonstrate that unitas filters sequences
with low complexity in a more sensitive and more specific
manner.

Annotation of miRNAs

Numerous programs for miRNA annotation in small
RNA-seq data have been published in the past with vary-
ing focuses [35-37]. To compare the performance of
unitas on this task we chose Chimira, which is a recent
tool with a similar range of functions, primarily aiming
at miRNA expression and modification analysis [13].
Chimira is a web-based system, accepting multiple input
files in FASTA or FASTQ format at once and supporting
209 genomes so far. Input reads are mapped against
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miRBase [19] hairpin sequences using BLASTn with two
tolerated mismatches, identifying modifications at 3’
and 5" ends, as well as internal substitutions (single nu-
cleotide polymorphisms, SNPs) and ADAR-dependent
editing events in the process. However, in order for an
internal modification to be classified as a SNP, an
arbitrary value of 70% is applied as a threshold for the
ratio of modification counts to overall counts.

For a controlled comparison, we produced an artificial
miRNA dataset based on human hairpin sequences from
miRBase (release 21), incorporating internal modifica-
tions and 3’ tailings. Of overall 466,810 generated reads,
unitas identified 99.9% as miRNAs, while Chimira
detected only 85.8% of the original set. Moreover, unitas
showed higher precision in assigning read counts to re-
spective miRNA genes of origin than Chimira did, indi-
cated by Pearson correlation coefficients of 0.9514 and
0.9146, respectively (Fig. 3a, Additional file 4: Table S3).
Furthermore, unitas detected 3’ tailings and internal
modifications more reliably, whereas Chimira barely
showed the latter type, probably due to the consider-
ably high (70%) threshold for internal modifications
(Fig. 3b). It is noteworthy that the test dataset was
designed to include all possible combinations of off-
set-, tailing-, and mismatch-scenarios without any
weighting between canonical and non-canonical se-
quences. Consequently, the differences between unitas
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and Chimira annotations are typically less marked for
real biological datasets (these observations are princi-
pally true for annotation of tRNA fragments as well,
see below).

Subsequently, both tools were tested on published
RNA-seq data obtained from HeLa cells (SRA accession:
SRR029124) [38]. The resulting miRNA expression pro-
files are highly similar, with a Pearson correlation coeffi-
cient of 0.9752 (Fig. 3c). While unitas found 961,840
miRNA reads, Chimira called 960,880, which increased
to 961,563 if the option ‘“-split counts from paralogs’ was
selected. The amount of identified uridylation and ade-
nylation events of 3’ ends were largely similar with a
slight advantage on the side of unitas, but other tailing
patterns were detected to a much lesser degree by
Chimira (Fig. 3d). Analogous to the artificial test data,
Chimira did not identify internal modifications to a
comparable extent as unitas, apart from some amount of
ADAR-dependent edits (A-to-G), which was also the
most frequent modification detected by unitas.

Since both, unitas and similar computational approaches
for miRNA annotation, rely on miRBase, it should be noted
that the quality of database annotations in general vary
among species, particularly those which are less well
studied. Therefore, we point to existing tools designed
specifically for the de novo prediction of miRNAs, such as
CAP-miRSeq [35] and Oasis [36].
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Annotation of tRNA-derived small RNAs

Currently, there are three major tools specific to the
identification of tRNA-derived sncRNAs [39]. The
tRFfinder of the tRF2Cancer web server package [40]
is restricted to the analysis of human samples and
considers sequences with lengths between 14 and
32 nt only. This, however, poses a limitation for the
detection of longer tRNA-derived sncRNAs like
tRNA-halves. For instance, 56% of tRNA-derived
reads are larger than 32 nt in a sncRNA dataset of
seminal exosomes (SRA accession: SRR1200712) [41].

The second tool, tDRmapper [14], is a command
line based set of Perl scripts, which identifies tRNA-
derived RNAs (tDRs) from 14 to 40 nt in human and
murine samples. Other species can be added manually
according to a provided guide and with the help of
Perl scripts that depend on bedtools. Notably, there
are some features to the algorithm of tDRmapper that
may hamper direct comparison with unitas. First,
sequences with 100 reads or less are discarded.
Subsequently, so-called primary tDRs are determined
by the location, at which more than 50% of all reads
mapping to a source tRNA are aligned. For example,
the 5'-tRF type is assigned if more than 50% map at
the 5'-end of the source tRNA. Moreover, tRFs are
defined by length as being smaller than 28 nt and
tRNA-halves as 28 nt or larger, regardless of
alignment position. Further, a primary tDR is only
specified if more than 66% of all reads mapping to
the source tRNA map to any position of the consid-
ered tDR. Lastly, tDRs are quantified by ‘relative
abundance, which is calculated by multiplying the
percentage of tDR reads that map to its source tRNA
and the proportion of reads on the area with the
highest read coverage across the source-tRNA.
Importantly, the resulting counts are not normalized,
meaning there is no fractional assignment for multi-
mapping reads. As the authors themselves point out,
this approach may overestimate the relative abun-
dance of a primary tDR.

Finally, another command line based tool called MIN-
Tmap was recently developed for the profiling of tRNA
fragments from human small RNA-seq data, emphasiz-
ing the profiling of both nuclear and mitochondrial
tRNA fragments [15]. However, tRFs generated from
trailer sequences (tRF-1) and 5’ leader-tRFs are excluded
from analysis.

To test the efficiency and accuracy of unitas in the
detection of tRNA-derived small RNAs, we produced an
artificial dataset based on human tRNAs from the gen-
omic tRNA database, incorporating one mismatch in
50% of sequences. Running with default settings, unitas
assigned 92% of reads to tRNAs, which increased to 97%
if miRNA detection was skipped (option ‘-no_miR’). For
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running tDRmapper on the test data, we disabled the
rejection of sequences with less than 101 reads, since
this would eliminate the entire input. Both, tDRmapper
and MINTmap, deviated considerably from the original
dataset in read shares assigned to different tRNA-
derived sRNA classes, in contrast to unitas (Fig. 4a). A
direct comparison of read counts, however, was not
possible due to the previously described quantification
method of tDRmapper, which calculates so-called rela-
tive abundance. Further, read shares were most precisely
assigned to source tRNAs by unitas, indicated by the
highest Pearson correlation coefficient (0.9896) among
the tested tools (Fig. 4b).

Additionally, unitas, tDRmapper and MINTmap
were tested on RNA-seq data of exosomes from sem-
inal fluid (SRR1200712) [41], using default settings.
The differences in results between unitas (Fig. 4c)
and tDRmapper (Fig. 4d) are largely due to the lack
of fractional assignment for multi-mapping reads in
the quantification approach of tDRmapper. Analysis
by MINTmap yielded results that are largely similar
to the output of unitas, but with overall slightly lower
read counts and changed order of the source tRNAs
with descending read coverage (Fig. 4e). Details on
the test dataset and the annotation of tRFs from
artificial and biological data with different tools are
available in Additional file 5: Table S4 (A-G).

Annotation of phasiRNAs

We tested and compared phasiRNA annotation perform-
ance of unitas and PhaseTank, which is currently the only
published tool for prediction of phased RNAs [16]. We
used artificial datasets with known amounts of phased
RNAs (Additional file 6: Table S5) as well as biological
small RNA data from panicles of the two rice strains
93-11 and Nipponbare [42] to predict phased RNAs with
unitas and PhaseTank using default parameters. All test
datasets were collapsed to non-identical sequences, retain-
ing information on read counts for each sequence in the
FASTA header. Subsequently, the datasets were formatted
to satisfy PhaseTank requirements (special format of
FASTA headers) and used as input for PhaseTank (v.1.0)
using default settings to search for 21 nt phased RNAs.
Subsequently we searched for 24 nt phased RNAs with
PhaseTank using the option ‘-size 24'. To generate input
files for unitas, we mapped the test datasets to the human
genome (GRCh38) with bowtiel, bowtie2 and STAR using
settings that correspond to recommended and widely used
settings for mapping of small RNAs with these tools and
considering only perfect matches to be in line with
PhaseTank default settings. The resulting SAM alignment
files were used as input for unitas which was started twice
with the option ‘-phasi 21’ or ‘-phasi 24, respectively, to
search for 21 nt and 24 nt phased RNAs.
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Fig. 4 Detection of tRNA-derived small RNAs by unitas, tDRmapper and MINTmap. a Read shares assigned to different tRNA-derived RNA classes
of artificial test data by unitas and other tools compared to test set profile. Misc-tRFs (miscellaneous tRFs) are equivalent to internal tRFs. On test
data, the elimination of sequences with less than 101 reads by tDRmapper was disabled. b Correlation of read proportions allocated to source
tRNAs by unitas and other tools with original test data read shares per tRNA. ¢ Analysis of RNA-seq data from seminal exosomes by unitas, d
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Using artificial datasets, we found that both tools
perform equally well with those datasets that comprise
exclusively phased RNAs or have rather low amounts of
non-phased RNAs (Fig. 5a). However, PhaseTank drastic-
ally loses its sensitivity with an increasing amount of
non-phased sequences within a dataset, while the sensi-
tivity of unitas remains unaffected (Fig. 5a). When we
assigned a read count value of 10 to each artificial
phased RNA sequence, PhaseTank performs approxi-
mately as well as unitas, illustrating that sensitivity of
PhaseTank not only depends on the number of phased
sequences, but also on the number of reads per phased
sequence. Consequently, PhaseTank will particularly
miss those phasiRNA-producing loci that have a low se-
quence read coverage (Fig. 5a and b). For neither tool
we observed a namable issue with false positive pre-
dicted phasiRNAs when running both programs with
datasets comprising no phased RNAs (Additional file 7:
Table S6).

When searching for 21 nt phased RNAs in biological
datasets we noted that unitas identifies slightly more pha-
siRNAs compared to PhaseTank, while the number of
identified clusters was identical (Fig. 5c and d). Overall,
the congruency between unitas and PhaseTank results is
very high (Fig. 5d). However, when searching for 24 nt
phased RNAs in the same datasets we observed remark-
able differences with unitas identifying both more pha-
siRNA sequences and more phasiRNA clusters (Fig. 5e
and f). Considering that PhaseTank is less sensitive when
the fraction of phased RNAs within a given dataset is low,

these results are in line with the fact that the abundance
of 24 nt phasiRNAs in rice panicles is several times lower
compared to 21 nt phasiRNAs [42]. Accordingly, pha-
siRNA clusters identified only by unitas have relatively
low read coverage, while phasiRNA clusters identified only
by PhaseTank were rejected by unitas because of a high
strand bias (>95%) of mapped sequence reads.

Complete annotation of NGS datasets

To emphasize the broad range of possible applications of
unitas on diverse sncRNA-seq datasets, we analyzed three
exemplary libraries, which differ in origin and structure
(Fig. 6). The sncRNA annotation output of unitas provides
a general overview of the small RNA composition, as
shown for a dataset produced from HeLa cancer line cells
(SRA accession: SRR029124, Fig. 6a) [38]. In this library,
the largest fraction of sncRNAs is constituted by miRNAs,
which are of growing interest for cancer studies and clin-
ical trials using miRNA profiling for patient diagnosis
[43]. Apart from expression profiles and 3" tailings, unitas
offers a convenient description of miRNA modifications
per position (Fig. 6b). For target recognition, complemen-
tarity of the seed region of a miRNA (positions 2-7) to its
target is critical for downstream silencing efficacy. Beyond
the seed region, a strong sequence conservation can also
be observed at position 8 [44], and finally, miRNA
sequences frequently start with a uridine which was found
to promote miRNA loading on Argonaute proteins [45].
According to these functional aspects, the unitas output
shows that in HeLa cells the first eight positions from the
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5" end are rarely modified. Internal modifications occur
predominantly at distinct positions downstream of the
seed region, with A-to-G (A-to-I), known as ADAR edits
[46], and G-to-T being the most common, followed by
modifications leading to uridine or guanine incorporation
(Fig. 6b).

Next, we analyzed a library generated from exosomes of
human seminal fluid (SRA accession: SRR1200712) [41].
Notably, this dataset is particularly abundant in tRNA-
derived reads, while containing less miRNAs and other
annotated reads (Fig. 6¢). For the analysis of such se-
quences, unitas provides a summary of read counts for

each tRNA gene, apportioned to classes of tRNA-derived
sncRNAs. The majority of tRNA-derived reads in this li-
brary is represented by 5" halves, originating mainly from
the tRNAs Glu-CTC and Gly-GCC (Fig. 6d). It has been
shown that fragments specifically derived from 5" ends of
tRNA-Gly-GCC in mouse epididymosomes repress genes
by regulating the endogenous retroelement MERVL,
whereas an RNA interference against the middle or 3" end
of tRNA-Gly-GCC and other tRNAs had no effect on
these MERVL-dependent genes [27]. Generally, we found
5" halves and 5’ tRFs to be the dominant classes, being
especially associated with tRNAs exhibiting high read
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coverage (Fig. 6d). With decreasing coverage, however,
tRNAs tend to give rise primarily to internal fragments
and to a lesser extent to 3" halves and 3" tRFs. This sug-
gests that internal fragments, which we describe as miscel-
laneous tRFs (misc-tRFs), might be rather characterized as
random debris of degraded tRNAs than a class of tRNA-
derived small RNAs in its own right.

Lastly, we chose a sRNA dataset from macaque
testis for analysis (SRA accession: SRR553581) [47].
As expected, the vast majority of testis-expressed
sRNAs did not match any class of known non-coding
RNA (Fig. 6e). In contrast to the former libraries,
unitas found that the bulk of non-annotated reads
(67.6%) maps to known piRNA producing loci.
Besides the typical length profile (Fig. 6f), these
piRNA candidate sequences show a strong bias for
uridine at 5 ends (84.5%) which is typical for pri-
mary piRNAs being processed by the endonuclease
Zucchini (PLD-6) [48, 49]. Moreover, unitas attests a
significant ping-pong signature (Z-score = 6.96),
namely a high rate of 10 nt 5’ overlaps of sense and

antisense reads, which is a hallmark of secondary
piRNA biogenesis via the ping-pong cycle [50-52].

Discussion

Small RNA biology has become a major field in molecular
biology research. In 2016, sequence data from 7271
[lumina sequencing runs with miRNA sequencing strat-
egy, comprising more than 82 billion sequence reads, was
uploaded to NCBI’s Sequence Read Archive. Assuming
total costs of 15 USD per 1 Million clean sequence reads,
the total miRNA sequencing value for 2016 amounts to
1.2 million USD. Noteworthy, these numbers only refer to
published sequence data and certainly only mirror the tip
of the iceberg. Nevertheless, in light of these numbers,
even a seemingly trivial improvement of adapter recogni-
tion and trimming by unitas yields a surplus value of more
than 100,000 USD per year, considering the amount of
additionally mapped sequence reads. However, although
this is a benefit of unitas that can be descriptively quanti-
fied, it clearly reflects only a minor aspect of the overall
value of unitas.
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Within the field of small RNA biology, miRNAs receive
widespread attention owing to their pervasive contribution
to gene regulatory processes [53]. However, it is not only
mere miRNA expression, but also their post-transcriptional
modification that vitally affects miRNA activity. Uridylation
of miRNAs is thought to play a role in miRNA stability and
possibly marks small RNAs for degradation [54, 55].
Adenylation has recently been linked to clearance of mater-
nal miRNAs in Drosophila eggs [56]. Further, internal
modification events of miRNAs (or their precursors) can
have wide implications for miRNA biogenesis and function
[57-60]. It is therefore of immense importance, to accur-
ately identify post-transcriptional editing events to gain a
deeper understanding of miRNA-dependent regulatory
processes (Additional file 8). As we have shown, unitas is
more sensitive in detecting 3" tailing events and much more
sensitive in detecting internal modifications compared to
existing tools. Importantly, unitas not only focuses on well-
known adenylation, uridylation and ADAR-dependent A-to-
I editing, but also allows to detect all other types of modifi-
cation events which can greatly facilitate the detection of yet
unknown enzymatic editing activity in the future.

tRNA-derived small RNAs have been regarded as sim-
ple and non-functional degradation products for a long
time. However, strong evidence for diverse functional
roles in gene regulation, cancer biology, apoptosis and
protein synthesis is mounting [24—30]. Since tRNAs and
their precursor transcripts can be processed into func-
tionally distinct types of tRFs, accurate attribution of
tRNA-derived small RNAs to the different types of tRFs
is important to make functional interpretations. In this
regard, unitas shows higher precision than existing tools,
while being also more sensitive in overall tRF detection.
Notably, the recently published tool for tRF annotation
MINTmap [15], which is more sensitive and accurate
than the older tDRmapper [14] cannot identify some of
the yet rather enigmatic tRFs which have their origin be-
yond the mature tRNA molecule, namely tRF-1 and 5’
leader-tRFs. Here, unitas can enable researches to eluci-
date possible functions of these cryptic RNAs by first of
all spotting them in sncRNA transcriptomes.

Initially described as trans-acting siRNAs [61], plant
specific phasiRNAs are well-characterized actors in post-
transcriptional gene silencing [62]. In most cases, pha-
siRNAs are 21 nt in length, but different pathways that
produce 22 nt and 24 nt phasiRNAs have been described
as well. Since the latter are by far less abundant, their
detection in small RNA transcriptomes is challenging
and the current approach underestimates the number of,
e.g., phased 24 nt RNAs in small RNA datasets from rice
panicles. In contrast, sensitivity of unitas depends far
less on the amount of background reads, making it more
suitable for the detection of particularly low abundance
phasiRNAs and their source loci.
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Conclusions

So far, accurate annotation of sncRNA required a large set
of different software tools with a number of additional pre-
requisites. While the installation of these bioinformatics
tools can pose a challenge for the non-expert user, unitas
brings together all annotation and analysis features with an
absolute minimum of further requirements. A complete
annotation run is finished within a few minutes and can be
started with one simple shell command, making its usage
very convenient. By facilitating sncRNA annotation and
providing in depth analyses that previously was not access-
ible for the non-expert user, we believe that unitas is a
valuable tool for researchers in all fields connected to small
RNA biology.
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