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Abstract

Background: The human immune system is responsible for protecting the host from infection. However, in
immunocompromised individuals the risk of infection increases substantially with possible drastic consequences. In
extreme, systemic infection can lead to sepsis which is responsible for innumerous deaths worldwide. Amongst its
causes are infections by bacteria and fungi. To increase survival, it is mandatory to identify the type of infection rapidly.
Discriminating between fungal and bacterial pathogens is key to determine if antifungals or antibiotics should be
administered, respectively. For this, in situ experiments have been performed to determine regulation mechanisms of
the human immune system to identify biomarkers. However, these studies led to heterogeneous results either due different
laboratory settings, pathogen strains, cell types and tissues, as well as the time of sample extraction, to name a few.

Methods: To generate a gene signature capable of discriminating between fungal and bacterial infected samples, we
employed Mixed Integer Linear Programming (MILP) based classifiers on several datasets comprised of the above
mentioned pathogens.

Results: When combining the classifiers by a joint optimization we could increase the consistency of the biomarker gene
list independently of the experimental setup. An increase in pairwise overlap (the number of genes that overlap in
each cross-validation) of 43% was obtained by this approach when compared to that of single classifiers. The refined
gene list was composed of 19 genes and ranked according to consistency in expression (up- or down-regulated) and
most of them were linked either directly or indirectly to the ERK-MAPK signalling pathway, which has been shown to
play a key role in the immune response to infection. Testing of the identified 12 genes on an unseen dataset yielded
an average accuracy of 83%.

Conclusions: In conclusion, our method allowed the combination of independent classifiers and increased consistency
and reliability of the generated gene signatures.
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Background
The human body is protected by an immune system
capable of tackling most of the microorganisms it en-
counters. Severity of infections is dependent, not only
on the type of pathogen it encounters, but also on the
rapid and effective response of the immune response as
well as the site of infection [1]. If the infectious agent
has established itself and evaded the immune system, it

may cause sepsis when it disseminates (systemic infection)
throughout the body with possible deadly consequences
to the human host [2]. Sepsis is a life threatening disease
caused by systemic infection followed by an uncontrolled
immune response and organ dysfunction. Therapy con-
sists of clearance of the infection, administration of antibi-
otics and clinical supportive measures.
Most often sepsis is caused by bacterial infection. In

turn, fungal opportunistic pathogens such as C. albicans,
which mainly causes infections of the mucosa [2], may, in
immunocompromised individuals or when the epithelial
barrier is not effective, spread into the body through the
blood system. Additionally, fungal infections may arise
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during hospital admission by use of invasive monitoring
techniques such as invasive blood pressure monitoring
procedures or during arterial catheterization [3]. Hence,
systemic infection can arise from fungal or bacterial con-
tamination of the blood.
Importantly, it is essential to quickly and precisely de-

termine the cause of the disease in order to employ the
appropriate antibacterial or antifungal treatment for
clearing the infection. Employment of the wrong therapy
in infected individuals clearly has no impact and may
even promote increased infection due to effecting of the
normal gut flora allowing for proliferation of fungal
opportunistic pathogens such as Candida albicans [4].
Indeed, unable to provide accurate and early diagnosis
places patients at much higher risk to die [5, 6].
Currently, blood cultures are the “gold standard” for the

identification of pathogens in the blood. However, this ap-
proach can take several days to identify the infectious agent
[7]. A quicker way of diagnosis would be to examine the
direct host response of the infection in the blood. Despite
all efforts, no clear generic host gene signature for distin-
guishing fungal from bacterial infections exist to date.
Identifying robust biomarkers to discriminate fungal from
bacterial infection is difficult as the complexity of the im-
mune response has many variables such as the compos-
ition and ratio of immune cell types, site of infection, host
immune status, stage of infection, age of the patient and
concomitant infections. The use of transcriptomics in bio-
marker discovery is increasingly promising in infection
biology. Dix and co-workers employed a classification
based approach identifying genes capable of distinguishing
infected from non-infected and fungal from bacterial in-
fected human blood [8]. Other transcriptomics studies also
investigated the human immune response to fungal patho-
gens but yielded different gene signatures [9–12].
These approaches drawback in a lack of consistency of

the predicted gene signatures across studies. Laboratory
settings, culture conditions, different compositions of
cell types, time of sample extraction, methods of sequen-
cing and even the same experimental setups performed
at different days can lead to different results. It is vital
that methods are developed to identify consistent bio-
marker gene signatures which are rather independent of
these parameters. Consistency, in this case, refers to
similar gene signatures, irrespective of the above men-
tioned variables, for a specific disease or infection.
To tackle this issue, we employed a constrained based

method based on Mixed Integer Linear Programming
(MILP). MILPs have been used for the optimization of
cell-network arrangements in order to discover patterns
in pathways which are distinctively expressed [13], in the
inference of gene regulation [14] and in the identifica-
tion of gene signatures capable of distinguishing infected
from non-infected samples [15]. A major advantage of

applying our method resides on the reduction of the search
space on which the optimization problem is performed by
the imposition of constraints. In the present study, MILPs
were employed to combine classification problems across
several datasets of fungal and bacterial infections. Two in-
dependent optimization problems were combined by con-
straining them to use the exact same set of features, thus
improving the consistency of the predicted biomarkers, ir-
respective of the experimental conditions and confounders.
Rather than focusing on performance enhancements, our
main goal was to identify a set of genes that could distin-
guish fungal from bacterial infected samples in a consistent
manner.

Methods
Dataset assembly
Normalized gene expression data from three datasets
was downloaded from Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/). The first dataset we
downloaded (accession number GSE42606) was from a
study by Smeekens and co-workers [11]. In summary, it
consisted of data from Peripheral Blood Mononuclear
Cells (PBMCs) from healthy donors challenged with
heat-killed C. albicans, M. tuberculosis and LPS (lipo-
polysaccharides) from E. coli. A total of 73 samples (24
fungal and 49 bacterial, extracted 4 h post-infection)
were collected. Further, gene expression data of a study
carried out by Czakai and colleagues [12] (GSE69723)
was generated by challenging healthy blood-derived
human dendritic cells (DCs) with thimerosal treated C.
albicans SC5314 (MOI of 1), A. fumigatus ATCC 46645
(MOI of 1) and LPS (from E. coli) (1 μg/ml). Four sam-
ples of each infection type were collected (4 h after
infection). Dix and co-workers [8] performed a study
where healthy human anticoagulated blood was chal-
lenged with either thimerosal treated A. fumigatus
ATCC 46645, C. albicans SC5314 (each at 1 × 106/ml),
S. aureus ATCC25923 (1 × 106/ml), or E. coli ATCC25922
(each at 4 × 103/ml) for 4 and 8 h (GSE65088). Samples
were grouped into bacterial (n = 20) and fungal (n = 16)
infection. A study performed by Klassert and co-workers
[16] consisted of data from healthy human blood-derived
monocytes challenged with either heat-killed C. albicans
SC5314 yeast (MOI of 1), A. fumigatus AF293 (MOI of 1)
or E. coli serotype O18:K1:H7 (MOI of 10). For our study,
we used data of a total of n = 27 samples which were ex-
tracted 3 and 6 h post-infection (n = 9 bacterial and
n = 18 fungal). We used transcriptomic data generated by
Saraiva and co-workers [15] from healthy human isolated
PBMCs which were challenged with either heat-killed C.
albicans MYA-3573 yeast (MOI of 2) or LPS (10 ηg/ml)
from E. coli 0111: B4 (InvivoGen). Four samples were ex-
tracted 4 h post-infection of each stimulus. RNA was ex-
tracted using RNAEasy Kit Qiagen and quantity and
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quality of the total RNA was analyzed using a Nanodrop
ND − 1000 spectrophotometer (Thermo Fischer Scientific,
USA) and a Tape Station 2200 (Agilent Technologies, USA).
Normalization of the dataset from Saraiva and co-workers
was achieved by applying the functions “lumiN” and
method “vsn” of the “lumi” R package [17]. All downloaded
datasets were already normalized so no further actions in
this direction were performed. To eliminate possible dupli-
cate gene entries, mean expression values were calculated
using the “avereps” function of the “limma” R package [18].
To focus on high expressed and high variant genes, genes
were removed from the data that presented a variance and
standard deviation below 40%. Finally, z-scores were calcu-
lated for each gene. This procedure was done for all datasets
separately. We next intersected the gene lists from each
dataset and obtained a final list of 1516 genes to be used for
feature selection and classification.

Support vector machine implementation
The MILP implementation of the SVM was realized as fol-
lows: The objective function was defined as the
maximization of the margin of the SVM as seen in Eq. 1,

objclassifier ¼ max t1−t2ð Þ; ð1Þ

with t1 and t2 are the margins of class 1 and class 2 to the
separating hyperplane, respectively. The objective was
subjected to the following constraints. Equations 2 and 3,

XnGenes

i¼1

nigij ≥ t1−Myj∀j∈C1; ð2Þ

XnGenes

i¼1

nigij ≤ t2 þMyj∀j∈C2; ð3Þ

define the constraints applied to the classifier, for class 1
(C1, fungal) and class 2 (C2, bacterial), respectively. The
scalar product of the gene expression of sample j with the
weight n (for all genes i ϵ {1, …, nGenes}) assigned them
to a specific side of the margin but only for samples whose
variables yj ϵ {0,1} were equal to 1. If this scalar product
was less or equal than t2 than the samples were classified
as bacterial and if greater or equal to t1, classified as fun-
gal. M was a large constant (“big M”) that was set to allow
exceptions if yj equaled 1. Equation 4,

XnSamples

j¼1

yj ≤ k ð4Þ

constrained the number of allowed misclassifications k
during the training (with nSamples training samples) of
the classifier. k was set to 10% of the total number of
samples |S|. In order to ensure that only genes i whose

corresponding variables xi ϵ {0,1} equaled to 1 were used
for classification, constraints of eqs. 5 and 6 were
established,

ni ≤ xi∀i∈G ð5Þ

−ni ≤ xi∀i∈G: ð6Þ
The number of features (genes) which should be deter-

mined was constrained by eq. 7, in our present study l
was set to 30,

XnSamples

i¼1

xi ≤ l: ð7Þ

x and y were defined as binary variables which belong to
the set of genes G and samples S by:

xi∈ 0; 1f g∀i∈G

yj∈ 0; 1f g∀j∈S
To note, applying these sets of constraints generated a

MILP problem and not an ordinary Linear Programming
(LP) problem. Selection of consistent genes across all
datasets required the combination of two independent
MILPs. Each independent classifier was established by
applying all previously defined equations. Next, the
problems were connected by a combined objective func-
tion, Eq. 8,

objcombined ¼ objclassif ier1 þ objclassif ier2 ð8Þ
adding up the objective functions of each classifier.
Using identical x variables in both classifiers ensured
that they use the same set of features, possibly leading to
a decrease in performance of a single classifier (Fig. 1).

Machine learning implementation and statistical analysis
Support Vector Machines are, in principle, designed for
balanced classes, although sub-optimal results can still
be ascertained having unbalanced classes in the datasets.
Indeed, training of SVM classifiers on imbalanced data-
sets will often generate models biased towards the class
with the highest number of samples [19]. Two prevent
this effect we employed stratification in each classifica-
tion problem. Cross-validation was employed in which
2/3 of the samples from each class (fungal and bacterial)
were randomly chosen for training in which we allowed
10% of the samples to be misclassified. Random samples
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of the majority class were selected that amounted to the
number of samples in the minority class. The remaining
samples were used for validation in order to determine
classifier performance. This procedure was repeated 100
times generating 100 lists of selected genes used as fea-
tures of the SVMs. For comparability, we constrained
the number of selected genes to n = 30. Performance
was assessed by accuracy of the classification on the val-
idation sets. Regarding the cases in which two classifiers
were combined, the average of the performances was
calculated. To compare the performances of single clas-
sifiers with the performances of combined classifiers, we
calculated the overall average from the single classifiers
and combined classifiers, respectively. Consistency of se-
lected genes was calculated for each pair of lists of se-
lected genes by calculating the pairwise overlap (POL)
between the 100 gene lists generated during classifica-
tion of the two datasets in question. The mean POL and
standard deviations (1б) were calculated from the list of
POL. The final list of intersecting genes was obtained by
taking the union of genes from each classifier that were
selected in at least 40% of the cross-validation runs.
To evaluate the overall quality of the generated models

we determined several performance metrics such as sensi-
tivity, specificity, positive predictive value (PPV), negative
predictive value (NPV) and accuracy. As benchmark, the
average across all single classifiers, of each of these per-
formance measures was calculated. For the combined
classifiers the average was taken for all combinations of
classifiers. Differential gene expression was calculated
using Student’s t-tests and multiple testing correction was
performed by the Benjamini-Hochberg method [20].

Genes were considered to be differentially expressed if
their adjusted p-value was below 0.05. All statistical ana-
lyses were performed using R software (http://www.r-pro-
ject.org/) and packages from Bioconductor [21]. MILP
implementation was also performed in R using the Gurobi
interface library and solved with the Gurobi solver (ver-
sion 6.5.1, www.gurobi.com).

Results
Rationale and workflow
We intended to obtain a consistent gene signature to
distinguish fungal from bacterial infections. We imple-
mented a classification problem using linear Support
Vector Machines (SVMs) to select the most discriminate
features. Two independent optimization problems were
defined, each based on a separate dataset. Each problem
consisted of optimizing the margin of an SVM for each
classifier based on two different datasets. Now, within
the same optimization problem, we enforced the classi-
fiers to use the same feature sets. This led to solve an
optimization problem for pairs of classifiers. The fea-
ture selection dependency limited the search space
and features (genes) were only selected if they were
discriminative for both classification problems (see
Fig. 1). In this manner, collaborative selection of fea-
tures was enforced which was intended to improve
consistency of gene selection.
For determining classification performance and to get

an estimate of variance of the selected features, each pair
of classifiers was run within a cross-validation proced-
ure, randomly selecting different sets of samples used
for training and validation. Pairwise overlap (POL) of

Fig. 1 The upper two SVMs maximize the margin independently. The lower two SVMs maximize the sum of the two margins, but are constrained
to use the same set of genes for features. Obviously the margins cannot increase but note that the overall SVM efficiencies were as good as before after
applying these conditions.
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each “combined” classifier was calculated with another
“combined” classifier composed of different datasets to
those in the first. For instance, the gene overlap of the
classifier which was composed of Smeekens and Dix was
only calculated with selected genes from classifiers based
on two sets of Klassert and Czakai and Klassert and
Saraiva (see Fig. 2). This procedure was performed for
all possible combinations of the different runs of the
cross-validations yielding the averaged pairwise overlap.
As a benchmark, the averaged POL using the single clas-
sifiers of each of the datasets was used. To estimate if
the classification performance decreased if constraining
them to use the same features, the performances of the
combined classifiers were compared to the performances
of the single classifiers. Finally, a ranked list of genes
which were most often selected by the combined classi-
fiers was assembled and top ranking genes were selected
as biomarkers if they were consistently differentially
expressed in a majority of the analyzed datasets.

Combining classifiers improves consistency
For each dataset the classifiers ran on 100 randomly
selected different training sets. Each run yielded a list
of 30 genes which best discriminated between fungal
and bacterial infection. The POL of the 100 gene lists
from each single classifier returned an average value
of 1.09 (1б = 0.35) (Additional file 1: Table S1 for the
results of each dataset POL and average). Our main
goal was to obtain a consistent gene signature for dis-
tinguishing fungal from bacterial infections, independ-
ent of the experimental setup. For this, we combined
two classifiers from different datasets. We calculated
the POL for these combined classifiers as described
above and obtained an average POL of 1.57
(1б = 0.46). It should be noted that as stated in the
methods section, the POL was only calculated for

distinct datasets. Our combined approach improved
the consistency of our gene signature by 43% when
compared to that of single classifiers which demon-
strates the benefits of our method. This difference
was significant (P = 2.2E-16 using a two-sided
Kolmogorov-Smirnov test). Next, we combined the
gene lists from all single classifiers and obtained a
total of 72 genes (Additional file 1: Table S2). To
note, we only intersected genes that were selected in
at least 40% of the runs. We performed the same
procedure for the combined classifiers and obtained a
gene list composed of 88 genes (Additional file 1:
Table S2). Comparing the gene lists from each ap-
proach showed that out of the 72 single classifier
genes, 46 also were selected by the combined ap-
proach which corresponds to 64%. We performed
gene set enrichment analysis of the resulting lists
(intersection, and both classifiers approach specific) in
order to obtain a functional overview of each of them
using The Database for Annotation, Visualization and
Integrated Discovery (DAVID, version 6.7, https://
david.ncifcrf.gov/home.jsp) [22]. Gene Ontology terms
such as immune response, purine nucleotide meta-
bolic process and cell death and regulation of alpha-
beta T cell activation were enriched using the com-
bined classifier specific gene list. Single classifier spe-
cific genes were enriched in negative regulation of
catalytic activity. We were interested which genes
were consistently selected across all runs. Five genes
were used in more than 70 runs for the combined
classifiers, but only three single classifier specific
genes were used in more than 70 runs. For the latter,
we got the genes T cell activation RhoGTPase Acti-
vating Protein (TAGAP), ArfGAP with GTPase Do-
main (AGAP3) and C-C Motif Chemokine Ligand 8
(CCL8). The first gene, as suggested by its description
is involved in the activation of T cells. This gene is
also a target of vitamin D [23], which has been
shown to modulate inflammation and regulation of
calprotectin expression which, in turn, influences neu-
trophil activity linked to oral candidiasis [24]. AGAP3
is a GTPase activating protein that may be involved
in the degradation of expanded polyglutamine pro-
teins via the ubiquitin-proteasome pathway. How this
gene is related to fungal infections still remains elu-
sive. Lastly, CCL8 is a cytokine that displays chemo-
tactic activity for several immune cells (e.g.
monocytes and lymphocytes) recruiting them to sites
of inflammation and has been shown to be a ligand
for several C-C motif receptors (CCRs) such as CCR1
[25, 26]. Considering the combined classifier specific
genes, 5 were selected in more than 70 runs:
C14orf159, SLC16A3, SLC7A7, KLF4 and EMP1. Sol-
ute Carrier Family 16 member 3 (SLC16A3) encodes

Fig. 2 Benchmark results were compared to the combined approach
by intersecting the gene lists of each combination which contained
one of the datasets (here exemplarily shown for Smeekens) with each
combination containing the other dataset (here: Klassert). We did not
consider the intersections, highlighted in red, in which one of the
datasets occurred on both “sides” of the combination (e.g. combinations
Klassert & Czakai versus Smeekens & Czakai; or Dix & Klassert versus
Smeekens & Dix)
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a protein involved in the transport of monocarboxy-
lates such as lactate, pyruvate and branch-chained
amino acids derived from leucine, valine and isoleu-
cine. Glycolysis is essential in the activation of the in-
nate immune response. Enhanced glycolysis leads to
increased lactate production. Extracellular transport of
these products is performed by SLC16A3. Studies
have shown that up regulation of SLC16A3 maintains
a high rate of glycolysis and, subsequently, the im-
mune response [27]. Similar to the latter, SLC7A7 is
involved in the sodium-independent transport of biba-
sic amino acids and sodium dependent neutral amino
acids. Studies have suggested a role in nitric oxide
synthesis in human umbilical endothelial cells
(HUVECs) through L-arginine transport [28]. Arginine
has been shown to play an important role in the dif-
ferentiation of monocytes into macrophages [29].
Kruppel-Like Factor 4 (KLF4) encodes a transcription
factor involved in both inhibition as well as activation
of target genes. Studies have shown that it modulates
interleukin 6 (IL6) release in human dendritic cells
(DCs) following fungal infection [12]. Epithelial mem-
brane protein 1 (EMP1) encodes a protein involved
in many processes related to cell proliferation and
differentiation. This gene has been linked to several
cancer types [30–32], however, to our knowledge,
not to fungal infections so far. The mere analysis of
the top classifier specific genes already shows the in-
crease in biological information extraction from the
combined classifier approach when compared to the
single classifiers. Although 46 genes were selected by
both single and combined classifiers, the average
number of runs the genes were selected was higher
using the combined approach. Common single and
combined classifier genes were, on average, selected
in 55 and 60 runs, respectively. These results already
demonstrate a clear improvement in consistency when
employing our combined classifiers.
Next, we calculated differential gene expression of

the selected genes for each dataset. We discarded
genes which were not differentially expressed in at
least four (out of five) datasets. From our biomarker
list, 19 met this criterion and, out of these, 12 were
constantly upregulated in all datasets. The respective
gene list and differential expression are shown in
Table 1, whilst their adjusted p-values are shown in
Additional file 1: Table S3 in the Supplementary data.
Genes that were up-regulated in all datasets are
ranked as the highest followed by genes that were
down-regulated in all datasets and lastly by the
remaining non-homogenously directional genes. Within
each group they are further ranked by highest average
number of times they are selected in each combined
classifier. In the following, we regarded this gene list

as our refined biomarker list and discuss its functional
relevance below (section 3.4). As seen in Table 2,
eight combined classifier specific genes were present
in the refined biomarker gene signature and no single
classifier specific genes. The refined biomarker gene
list contained 11 genes that were selected using both
approaches.

Table 1 Refined list of biomarker genes and their regulation
across the investigated datasets

Gene Dix Smeekens Saraiva Klassert Czakai Average N° runs

HMOX1 1** 1 1 1 1 71

CCR1 1 1 1 1 1 61

GLA 1 1 1 1 1 48

TNFSF14 1 1 1 1 1 60

TBC1D7 1 1 1 1 1 65

SPRY2 1 1 1 1 1 63

EGR2 1 1 1 1 1 60

BCAR3 1 1 1 1 1 59

PAPSS1 1 1 1 1 1 58

RRAGD 1 1 1 1 1 55

DHRS9 1 1 1 1 1 54

SDSL 1 1 1 1 1 53

RNF144B −1 −1 −1 −1 −1 67

ADA −1 −1 -1 -1 -1 56

SCARB2 1 1 1 1 -1 64

SOWAHC 1 1 1 1 -1 55

BLVRA -1 1 -1 -1 -1 64

EDN1 1 1 1 1 -1 97

TNFSF15 1 1 1 1 -1 53

**1: up-regulated, −1: down-regulated, in fungal versus bacterial infected
immune cells

Table 2 Single and combined classifier gene lists

Intersection of combined
and single classifiers

Combined only

HMOX1 GLA

CCR1 EGR2

TNFSF14 BCAR3

TBC1D7 SDSL

SPRY2 RNF144B

PAPSS1 ADA

RRAGD BLVRA

DHRS9 TNFSF15

SCARB2

SOWAHC

EDN1
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The classification performances of the combined classifiers
were comparable to the single classifiers
The combined classifiers had a mean value of 0.96 for
sensitivity, 0.97 for specificity, 0.97 for positive predictive
value (PPV), 0.96 for negative predictive value (NPV)
and 0.96 for accuracy. Single classifiers presented
practically identical values (maximum difference of 1
%) demonstrating that our method did not decrease
performance. The full performance results can be
found in Additional file 1: Tables S4 and S5 in the
Supplementary material.

Test data of monocytes challenged with LPS and A. fumigatus
To get an estimate of the generalizability of our identi-
fied biomarker list, we applied the biomarker list to a
new, unseen dataset. In order to determine if the sample
is infected with a fungal or bacterial pathogen, we used
only the expression values of the 12 genes from the re-
fined biomarker list that were up-regulated in all data-
sets. Classification was performed by employing random
forest classifiers (available through the “caret” R package,
version 6.0–71), trained on each of our datasets
(Smeekens, Dix, Czakai and Klassert), except the Saraiva
dataset which was too small for getting reliably trained
classifiers (4 fungal and 4 bacterial datasets). Measuring
the performance of our classifiers (i.e. capacity to distin-
guish fungal from bacterial infected samples) required
that the testing samples, the ones we wish to classify, be
independent from the training samples used to build the
classifiers. For this we used unseen/new microarray data
(from ArrayExpress, www.ebi.ac.uk/arrayexpress, E-MEXP-
1103) consisting of 6 samples of human monocytes
challenged with LPS and 5 samples challenged with A.
fumigatus. Samples were extracted 6 h post-infection.
Table 3 shows all the performance results. Strikingly,
analysing classification performance using the new
data, all our models classified the fungal samples with
more than 73% accuracy, yielding an average of 87%.
Average sensitivities and specificities yielded an aver-
age of 79% and 100%, respectively. All misclassified
samples belonged to the bacterial class.

Functional roles of the refined biomarker genes
In the following, we will discuss the top ranking genes
from our biomarker gene list that were consistently
differentially expressed (i.e. from the refined biomarker
list) and which were up-regulated in host cells chal-
lenged with fungal infections compared to bacterial in-
fections. The Breast Cancer Antigen-estrogen Resistance
3 (BCAR3) is a gene related to estrogen resistance.
Overexpression of the latter has been shown to activate
CDC42 [33] which, in turn, participates in signalling
pathways related to cellular functions such as cell
morphology, endocytosis, cell cycle progression and T
cell activation. In addition, CDC42 induces phagocytosis
in macrophages via FcγR [34]. A study using human
polymorphonuclear leukocyte (PMNs) showed that
BCAR3 was down-regulated by gliotoxin, a mycotoxin
produced by A. fumigatus, which further enhances the
importance of this gene in the host immune response
during fungal infection [35]. Early Growth Response 2
(EGR2) is a transcription factor closely related to
HOXA4 gene and has been shown to be up-regulated
during C. albicans infection in bone marrow derived
macrophages [36]. Macrophage and dendritic cell in-
flammatory response restrictions have also been associ-
ated with Egr2 and Egr3 when induced by Dectin − 1
[37]. Studies have shown that Dectin − 1, a well-known
receptor for recognition of fungal β − 1,3-glucans trig-
gers NFAT activation which, in turn, regulates the induc-
tion of EGR transcription factors [38]. The NFAT
transcription factor family has roles in processes such as
thymocyte development, T cell differentiation and activa-
tion. Early growth response transcription factors have
been shown to mediate production of reactive oxygen
species (ROS) and TNFα which, in turn, have been
linked to immune responses [39]. Galactosidase A
(GLA) is a gene involved in recycling processes within
the cells, converting mellibiose into galactose and glu-
cose. A study by Bhavan and colleagues [40] demon-
strated that C. albicans required mellibiose but was
incapable of assimilating it. This suggested that the
human host may get triggered to activate genes in this
process facilitating carbon uptake of the fungal patho-
gen. Heme oxygenase 1 (HMOX1) is involved in the
cleavage of the heme ring at the α-methene bridge to
form biliverdin. Excess free heme has been demonstrated
to sensitize cells to undergo apoptosis and heme oxyge-
nease 1 protects cells from this process [41]. It has also
been shown that HMOX1 expression is up-regulated
during events such as oxidative stress or in the presence
of inflammatory cytokines (Poss & Tonegawa, 1997).
The immune system, upon recognition of infection, in-
duce the production of inflammatory cytokines and che-
mokines. Both bacteria and fungi infected cells induce
the expression of heme oxygenase 1, however, our results

Table 3 Performance using our identified gene signature on
unseen data

Dix Klassert Smeekens Czakai Average

Sensitivity 0.71 0.83 1 0.63 0.79

Specificity 1 1 1 1 1

PPV 1 1 1 1 1

NPV 0.67 0.83 1 0.5 0.75

Accuracy 0.82 0.91 1 0.73 0.87
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suggest a more protective effect of human immune cells
during fungal infection. C. albicans also encodes HMOX1
which is induced by hemoglobin [42]. Studies have shown
that C. albicans increases its adhesion to host cells in the
presence of hemoglobin and, subsequently, infection
dissemination. The same study demonstrated that
hemoglobin induced C. albicans HMOX1 enzyme activity
produced biliverdin which lead to the hypothesis that this
gene provided the fungal pathogen with a growth nutri-
tional advantage in the human host. Biliverdin was also
suggested to have protective effects on C. albicans killing
by phagocytosis [43]. This leads us to the next gene which
is consistently differentially expressed in our list of bio-
marker genes, Biliverdin Reductase A (BLVRA). In this
case, BLVRA is down-regulated in all datasets except that
of Smeeken’s. Amongst its functions is the conversion of
biliverdin to bilirubin which has a potent antioxidant ac-
tivity. The latter is converted back into biliverdin via ROS
allowing their neutralization. Apart from its reductase ac-
tivity, this gene has also been shown to activate cellular
signalling pathways such as the MAPK signalling cascade.
This suggests a complex regulation of the production of
ROS and several cell signalling pathways that should be
further investigated [44]. Sulfate adenyltransferase 1
(PAPSS1) is involved in sulfate activation. Sulfite has anti-
microbial and antioxidant properties and has been shown
to be toxic for C. albicans [45]. The upregulation of this
gene could indicate a possible defence mechanism of the
human host to fungal pathogens. Ras-related GTP binding
D (RRAGD) is a gene involved in activation of the mam-
malian target of the rapamycin (mTOR) signalling cascade
by amino acids [46–48]. Studies have shown that mTOR
plays a fundamental role in the protection of epithelial
cells during fungal infections [49] as well as in the induc-
tion of monocytes via trained immunity [50]. Serine
Dehydratase like (SDSL) gene encodes a serine protease.
These proteases are involved in several processes which
include blood coagulation, apoptosis and inflammation.
The regulation of proteases has been shown to prevent
self-induced damage [51]. However, no information is
available which link the human host immune response
and the expression of SDSL during fungal infections.
Sprouty RTK Signalling Antagonist 2 (SPRY2) acts as a
negative regulator of the MAPK-ERK signalling pathway
[49]. Studies have shown that this gene was up-regulated
in mouse peritoneal fibroblasts challenged with C. albi-
cans [52]. C-C Chemokine Receptor 1 (CCR1) encodes a
member of the chemokine receptor family. Chemokines
and their respective receptors have important roles in the
recruitment of effector immune cells to sites of infection
[53]. CCR1 knockout mice presented higher mortality,
compared to the wild type, when infected with A. fumiga-
tus which suggests a role in the control of fungal infec-
tions [54]. This is not surprising since chemokines and

their receptors have been shown to play central roles in the
recruitment of immune cells to sites of fungal infection,
regulation of cytokine production and antigen presentation
[26]. Nevertheless, in other studies CCR1 knockout mice
show, in the late phase of invasive candidiasis, impaired
accumulation of neutrophils in the kidney associated with
improved renal function and survival without impact on
tissue fungal burden [25]. In line with this, late onset of
antagonistic inhibition of CCR1 in chronic fungal asthma
caused by A. fumigatus attenuated late disease features such
as peribronchial inflammation [55]. These results suggest
that CCR1 knockout in the host at early stages of fungal
infection is detrimental whilst at later stages is ad-
vantageous. Finally, Cell Migration-Inducing Protein 23
(TBC1D7) is a negative regulator of the mTORC1 signal-
ling cascade by acting as a GAP (GTPase activating) pro-
tein for Ras homolog enriched in brain (RHEB). Since
RHEB has been identified as an activator of the MAPK
signalling cascade regulating cellular processes such as cell
growth and proliferation [47], its inactivation via TBC1D7
may affect the activity of the MAPK signalling pathway.
Summarizing, we identified a gene signature being highly

relevant in the response of human immune cells due to
fungal infection when compared to bacteria, in particular,
comprising genes of the MAPK kinase activation pathway.

Discussion
In the present study we aimed identify biomarker gene
lists for distinguishing fungal from bacterial infections
across several datasets. Our combined classifier ap-
proach produced a consistent list composed of 75 genes.
Following differential expression analysis and imposing
that genes should be differentially expressed in at least 4
datasets, decreased the list to 19 genes of which 12 were
consistently up-regulated in all datasets which we se-
lected as the refined biomarker gene set. We employed
Mixed Integer Linear Programming to extend the classi-
fication problem. MILP, unlike ordinary LP, allows the
modelling of discrete variables and constraints such as
defining the number of misclassifications allowed during
classification. However, as in other classification ap-
proaches, MILPs also have disadvantages such as the
theoretically long running time required to obtain the
perfect solution. Limiting the amount of time expended
to obtain the optimized solution by use of solvers such
as gurobi decreases the latter, while still presenting good
solutions. To note, a previous study which we presented
on a conference (see [15]) has demonstrated an initial
implementation of our approach in the identification of
consistent gene signatures capable of discriminating be-
tween infected and healthy samples. This was a more
straight forward application when compared to the dis-
crimination of the kind of infection (fungal versus
bacterial).
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Gene signatures, in general, lack consistency across
studies due to differing experimental procedures, patho-
gen strains, laboratory settings and even between sam-
ples processed in equal conditions but collected at
different times. With our approach, we were able to
identify a set of genes capable of distinguishing between
fungal and bacterial infected samples with an average ac-
curacy of 96%. The pairwise overlap (number of genes
consistently selected across runs) was 43% higher than
that of the single classifiers which shows an immediate
improvement in feature identification without introdu-
cing prior knowledge into the feature selection and clas-
sification problem. Our method showed no decrease in
performance when compared to single classifiers. From
the genes consistently selected by single classifiers, 64%
were also identified by our combined classifier approach
which demonstrates that combining classifiers does not
result in a completely different gene list. We tested
whether our 12 consistently selected, differentially
expressed and up-regulated genes were capable of distin-
guishing fungal infected from bacterial infected samples
in a dataset not used during the training and feature se-
lection. The gene list was tested on new data, yielding
an average accuracy of 87%. Interestingly, misclassifica-
tion of samples only occurred for bacterial infected sam-
ples which is shown by a perfect score in terms of
specificity. This may have an advantage for clinical
transfer as in particular the comparably less often occur-
ring fungal systemic infections need to be precisely iden-
tified during sepsis.
Several of the consistently differentially expressed

genes selected by our approach show a strong link to
the MAPK signalling pathway either directly or indir-
ectly. The MAPK signalling cascade is highly conserved
across species and its role in the regulation of gene ex-
pression during infection or stress-related events has
been well described [56]. Fungal cell wall biogenesis,
morphogenesis and environmental adaptation has also
been shown to be influenced by the MAPK signalling
cascade in A. flavus [57, 58]. Despite our main goal be-
ing the host response towards fungal infection, how both
host and pathogen MAPK signalling cascades are regu-
lated during infection should be addressed in future
studies. Additionally, our identified gene signature
should be empirically verified by studies on gene expres-
sion in animal models and in samples from septic pa-
tients. All donors were healthy and the immune cells
were isolated from their blood and cultivated in vitro in
medium containing antibiotics. Pathogens were grown,
killed and used to challenge the immune cells in a very
controlled standardized procedure, independent from
the healthy donors. It is known that there is a strong
interplay between the gut microbiome of the host and
its immune system. As future work, it might be

intriguing to shape out differences in immune response
which may be due to this interplay. Our method allows
the integration of additional information such as protein-
protein interaction networks, which could provide add-
itional insight on how these genes are connected. Our
method also allows the combination of multiple classifiers
with the respective increase in computational running
time. In our present study, no optimization on the num-
ber of features for classification was performed. No signifi-
cant difference, in terms of performance and pairwise
overlaps, was obtained when using 20 rather than 30
genes for classification in a previous study [15] which sug-
gested that, while not optimal, a different selection of the
constrained number of features would not lead to much
different results.

Conclusions
In summary, employing our approach combining classi-
fiers constrained to base on the same set of selected fea-
tures led to a consistent biomarker gene signature across
the investigated datasets. It was robust enough to obtain
good classification results when tested on an unseen
dataset and the obtained biomarker genes are function-
ally plausible in demonstrating the different regulatory
response mechanisms to fungal when compared to bac-
terial infections.
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