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Abstract

Background: A better understanding of the genetic architecture underlying complex traits (e.g., the distribution of
causal variants and their effects) may aid in the genomic prediction. Here, we hypothesized that the genomic variants
of complex traits might be enriched in a subset of genomic regions defined by genes grouped on the basis of “Gene
Ontology” (GO), and that incorporating this independent biological information into genomic prediction models might
improve their predictive ability.

Results: Four complex traits (i.e., milk, fat and protein yields, and mastitis) together with imputed sequence variants in
Holstein (HOL) and Jersey (JER) cattle were analysed. We first carried out a post-GWAS analysis in a HOL training
population to assess the degree of enrichment of the association signals in the gene regions defined by each GO term.
We then extended the genomic best linear unbiased prediction model (GBLUP) to a genomic feature BLUP (GFBLUP)
model, including an additional genomic effect quantifying the joint effect of a group of variants located in a genomic
feature. The GBLUP model using a single random effect assumes that all genomic variants contribute to the genomic
relationship equally, whereas GFBLUP attributes different weights to the individual genomic relationships in the
prediction equation based on the estimated genomic parameters. Our results demonstrate that the immune-relevant
GO terms were more associated with mastitis than milk production, and several biologically meaningful GO terms
improved the prediction accuracy with GFBLUP for the four traits, as compared with GBLUP. The improvement of the
genomic prediction between breeds (the average increase across the four traits was 0.161) was more apparent than
that it was within the HOL (the average increase across the four traits was 0.020).

Conclusions: Our genomic feature modelling approaches provide a framework to simultaneously explore the genetic
architecture and genomic prediction of complex traits by taking advantage of independent biological knowledge.
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production, Mastitis, Dairy cattle

* Correspondence: lingzhao.fang@mbg.au.dk
1Department of Molecular Biology and Genetics, Center for Quantitative
Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
2Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of
Agriculture & National Engineering Laboratory for Animal Breeding, College
of Animal Science and Technology, China Agricultural University, Beijing
100193, China

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Fang et al. BMC Genomics  (2017) 18:604 
DOI 10.1186/s12864-017-4004-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-4004-z&domain=pdf
http://orcid.org/0000-0003-1103-3679
mailto:lingzhao.fang@mbg.au.dk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Studying the genetic architecture (e.g., the distribution of
causal variants and their effects) and predicting future indi-
vidual phenotypes for complex traits and diseases on the
basis of genomic polymorphism data are very important in
the fields of human medicine, adaptive evolution, and plant
and animal breeding. Genomic predictions for such traits
have been most often conducted by assuming that all of the
genomic variants have a small effect drawn from the same
prior distribution [1], such as in the standard genomic best
linear unbiased prediction (GBLUP) and BayesA models
[2]. As a result, the genomic variation of complex traits has
always been treated as a “black box” that neither generates
nor utilizes biological knowledge of the genetic architecture
and the underlying biological mechanisms. This type of
model performs well in populations with a large amount of
LD (linkage disequilibrium), such as selectively bred plants
and animals [3–5]. However, such models do not work well
with populations of individuals not closely related, such as
between breeds, probably because of differences in the seg-
regated QTLs (quantitative trait loci), marker effects, allele
frequencies and LD phases in such populations [3, 6]. For
instance, the accuracy of the estimated genomic breeding
values with GBLUP ranges from zero to very low in
between-breed prediction in dairy cattle [3, 4, 7].
It has been proposed that shifting the focus from mil-

lions of whole genome sequence variants to those more
likely to have functional effects might improve the accur-
acy of genomic predictions, especially in populations of
not closely related individuals [8–12]. However, the gen-
etic architecture of complex traits is currently poorly illus-
trated by single-marker genome-wide association studies
(GWASs), owing to the many individually undetectable
loci of small to moderate effects [13]. Therefore, the pre-
selection of variants that might be causal on the basis of
prior biological knowledge (e.g., Gene Ontology and path-
way) may be key to improving prediction models, because
it appears that the genomic variants associated with com-
plex traits are more likely to be clustered in the genes be-
longing to biological pathways [9, 14, 15]. A secondary
analysis of GWAS results (i.e., post-GWAS or marker set-
test) based on biological priors may be a first step and a
computationally simple way to explore the genetic and
biological basis underlying complex traits [16]. Here, we
also extended the standard GBLUP model by incorporat-
ing biological priors to implement this strategy, thus po-
tentially leading to a better predictive ability of the model.
This extended GBLUP model is called genomic feature
BLUP (GFBLUP) model [9], and it includes an additional
genomic effect that quantifies the joint effect on the trait
of a group of variants located in a genomic feature. Both
GBLUP and GFBLUP use all the genomic variants, but
GFBLUP allows assignment of different weights to the
genomic variants in each of the genomic relationships on

the basis of their estimated genomic parameters, whereas
GBLUP assumes that all of the genomic variants contrib-
ute to the determined genomic relationship equally. The
GFBLUP model has previously been used to predict gen-
etic values for complex traits in unrelated inbred lines of
the Drosophila melanogaster Genetic Reference Panel
(DGRP), and its prediction accuracy can be substantially
improved by several Gene Ontology (GO) [17] terms that
are enriched for causal genomic variants, as compared to
the GBLUP model [9]. However, the GFBLUP model is
much more computationally intensive compared to the
post-GWAS analysis when evaluating many genomic fea-
tures. Therefore, it could be important to investigate
whether the post-GWAS analysis could be used to pre-
select the predictive genomic features, which can be used
to develop more accurate GFBLUP models.
In this study, four complex traits (i.e., milk, fat and pro-

tein yields, and mastitis) together with the imputed se-
quence variants in two dairy cattle breeds, Holstein (HOL,
n = 5056) and Jersey (JER, n = 1231), were analysed. We
hypothesized that the associated variants of these traits
were likely to be clustered in genes belonging to GO terms
of biological relevance and that this pattern might be con-
sistent between breeds, although different breeds might
have different mutations. The objectives of this study were
1) to explore the genetic and biological basis underlying
milk production and mastitis by using post-GWAS ana-
lysis in the HOL training population (n = 4002), 2) to im-
prove the prediction accuracy for these complex traits
within and between breeds by using GFBLUP instead of
GBLUP, and 3) to investigate the relationship between the
degree of enrichment of association signals (i.e., P-values)
in a genomic feature based on post-GWAS in the HOL
training population and its predictive ability with GFBLUP
in the HOL validation population.

Results
Association signals of genomic variants from single-
marker GWAS
Single-marker GWAS was separately conducted for milk
production traits (i.e., protein, milk and fat yields) and
mastitis in a HOL training population using imputed se-
quence variants. The -log10(P) value of each tested vari-
ant for the four traits is shown in a Manhattan plot
(Additional file 1: Fig. S1). The genomic inflation statis-
tics (lambda) of the GWAS were less than 1.3 across the
four traits, thus suggesting that the test statistics were
not inflated by population stratification.

Genomic feature classes
A total of 449 GO terms annotated for 4216 unique genes
(~ 20% of all of the cattle Ensembl genes) were analysed.
The average number of mapped variants in each of the
studied GO terms was 2560 (ranging from 81 to 34,740). In
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total, the 449 GO terms could be grouped into 11 GO fam-
ilies (http://amigo.geneontology.org/amigo/dd_browse): im-
mune system process (n = 12), response to stimulus
(n = 66), cellular process (n = 50), localization (n = 40), be-
haviour (n = 4), metabolic process (n = 87), cellular compo-
nent biogenesis (n = 32), developmental process (n = 62),
biological regulation (n = 84), biological adhesion (n = 5),
and reproduction (n = 7). The enrichment degree of the as-
sociation signals in each of these GO families was com-
pared between milk production and mastitis based on the
post-GWAS analysis.

Post-GWAS analysis helps to provide a genetic and
biological understanding of milk production and mastitis
A post-GWAS analysis was conducted for each of the 449
GO terms in the four traits separately, on the basis of the
GWAS results in the HOL training population. Detailed
information on the post-GWAS analyses for the four traits
is summarized in Additional file 2: Table S1, Additional
file 3: Table S2, Additional file 4: Table S3 and Additional
file 5: Table S4. As shown in Fig. 1, the enrichment degree
of the association signals for mastitis had a tendency to be
higher than that for milk production in the immune

system process, response to stimulus, and cellular process,
whereas the localization, behaviour, and metabolic process
had a tendency to be more associated with milk produc-
tion relative to mastitis. These findings indirectly provided
supporting evidence that the genomic variants associated
with milk production and mastitis were not randomly or
uniformly distributed along the genome. This finding is
not consistent with the assumption of infinitesimal models
(e.g., GBLUP). The remaining GO super-families—cellular
component biogenesis, developmental process, biological
regulation, biological adhesion, and reproduction—did not
show significant differences in the enrichment of the asso-
ciation signals between milk production and mastitis
(Additional file 6: Fig. S2).

GBLUP and GFBLUP analyses within the HOL breed
Improved prediction accuracy
The prediction accuracy of the GBLUP model was
0.635 (bias = 0.862) for milk yield, 0.607 (bias = 0.808)
for fat yield, 0.602 (bias = 0.775) for protein yield,
and 0.504 (bias = 0.864) for mastitis. With the
GFBLUP model, compared with the GBLUP model,
53, 64, 47, and 78 out of the 449 GO terms led to an

Fig. 1 Comparisons of enrichment degrees of association signals between milk production and mastitis in Gene Ontology (GO) super-families in
the Holstein (HOL) training population. Each point is a GO term. –log10P is from post-GWAS analysis. The significant levels were determined on
the basis of paired Student’s t-test: “**” means P < 0.01, “*” means P < 0.05, “о” means P ≤ 0.1, “N.S” means P ≥ 0.1
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increase of at least 0.001 in prediction accuracy for
milk, fat and protein yields and mastitis, respectively,
and these were considered predictive GO terms for
each trait. Detailed information on the GFBLUP ana-
lyses for the four traits is summarized in Additional
file 2: Table S1, Additional file 3: Table S2, Additional
file 4: Table S3 and Additional file 5: Table S4. The
changes in prediction accuracy with GFBLUP were
significantly (P < 0.05) correlated with the degree of
enrichment of association signals based on post-
GWAS for all 449 GO terms across four traits (Fig.
2). These findings provided evidence that these pre-
dictive GO terms were not randomly detected from
the GO database. The post-GWAS analysis in training
population might be used to preselect predictive gen-
omic features for GFBLUP models. However, some
significant (P < 0.05) GO terms based on post-GWAS
resulted in no or negative improvement in the accur-
acy of genomic prediction. Therefore, alternative post-
GWAS methods should be developed to be better
predictors of the genomic prediction improvement
with GFBLUP. The top five predictive GO terms for
each trait are summarized in Table 1. The average in-
crease in prediction accuracy across the four traits
with the best-performing GO term was 0.020. For the
milk, fat and protein yields, the top predictive GO
term was “retinol metabolic process”, with the in-
creases of 0.020, 0.041 and 0.010 in prediction accur-
acy, respectively. Notably, the well-known milk-

associated gene DGAT1 was included in this GO
term. Compared to GBLUP, several GO terms rele-
vant to the immune response led to the increased
prediction accuracies with GFBLUP for milk produc-
tion traits, such as “response to lipopolysaccharides”,
with the increases of 0.013 and 0.028 in prediction
accuracy for milk and fat yield, respectively, and “de-
fence response to bacteria”, with a increase of 0.006
in prediction accuracy for protein yield (Table 1). For
mastitis, all of the top five predictive terms were en-
gaged in immune responses, and the best-performing
term was “positive regulation of activated T cell pro-
liferation”, with an increase of 0.009 in prediction ac-
curacy (Table 1). When the top five GO terms in
each trait were combined as a single genomic feature,
the prediction accuracy with GFBLUP was increased
by 0.030, 0.046, 0.019 and 0.016 for milk yield, fat
yield, protein yield and mastitis, respectively. In
addition, when all GO terms in the “immune system
process” were considered as a single genomic feature,
the prediction accuracy with GFBLUP was increased
by 0.012 for mastitis. These findings also provide bio-
logical insights into the genetic architecture under-
lying milk production and mastitis.

Estimated genomic parameters

The total genomic heritabilities for GFBLUP (h2GFBLUP )
across all of the GO terms were very similar to those for

Fig. 2 Comparisons of enrichment degree of association signals based on post-GWAS and the changes (Δr) in prediction accuracy with GFBLUP
for all 449 Gene Ontology (GO) terms across the four traits. Each point is a GO term; −log10P in the y axis is based on post-GWAS analysis in the
HOL training population; r is the Pearson correlation, and P is determined with the correlation test
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GBLUP for all four traits (Additional file 2: Table S1,
Additional file 3: Table S2, Additional file 4: Table S3
and Additional file 5: Table S4), thus indicating that the
estimated genomic parameters with GFBLUP are not
biased as compared with those with GBLUP. The pro-
portions of the total genomic variance explained (H2

f ) by

the top five predictive GO terms were 11.6–20.9% for milk
yield, 20.0–35.2% for fat yield, 1.0–5.1% for protein yield,
and 0.6–4.7% for mastitis (Table 1). Notably, this range of
total genomic variance was explained by only 0.003–
0.029% of the total genomic markers (SNPf ) for milk yield,
0.003–0.025% for fat yield, 0.003–0.057% for protein yield,
and 0.001–0.047% for mastitis (Table 1). These findings
provided further evidence that the genomic variance of
these traits is not evenly or randomly distributed through-
out the whole genome [15], but instead appears to be
enriched in a subset of genomic regions defined by the

GO terms. These findings further suggest that the genetic
architecture of the studied traits is not consistent with the
assumption of an infinitesimal model such as GBLUP.

Improved prediction accuracy with GFBLUP between
breeds by using predictive GO terms detected within the
HOL breed
The prediction accuracies with the GBLUP model were
very low when the entire HOL population (n = 5056) was
used as a training set to validate JER individuals: 0.160
(bias = 0.762) for milk yield, 0.070 (bias = 0.482) for fat
yield, 0.098 (bias = 0.622) for protein yield, and −0.058
(bias = −0.343) for mastitis. In total, 30 of the 53 predictive
GO terms detected within the HOL breed were also identi-
fied as predictive (Δr ≥ 0.001) between breeds for milk
yield, 38 of 64 for fat yield, 29 of 47 for protein yield, and
46 of 78 for mastitis. Several GO terms led to decreases in

Table 1 Top five Gene Ontology (GO) terms with GFBLUP in Holstein for the four traits

Trait GO ID ra_GFBLUP biasb Δrc ðH2
f Þd Nsetse GO term GO family

Milk GO:0042572 0.655 0.863 0.020 0.169 586 Retinol metabolic process Metabolic process

GO:0034605 0.655 0.864 0.020 0.185 1517 Cellular response to heat Response to stimulus

GO:0040018 0.650 0.863 0.015 0.116 914 Positive regulation of
multicellular organism growth

Biological regulation

GO:0008285 0.650 0.865 0.015 0.209 4972 Negative regulation of cell
proliferation

Biological regulation

GO:0032496 0.648 0.864 0.013 0.144 1579 Response to lipopolysaccharides Response to stimulus

Fat GO:0042572 0.648 0.804 0.041 0.257 586 Retinol metabolic process Metabolic process

GO:0034605 0.645 0.804 0.038 0.291 1517 Cellular response to heat Response to stimulus

GO:0040018 0.644 0.801 0.037 0.200 914 Positive regulation of multicellular
organism growth

Biological regulation

GO:0007283 0.640 0.802 0.033 0.323 4273 Spermatogenesis Reproduction

GO:0000724 0.639 0.802 0.032 0.352 1308 Double-strand break repair via
homologous recombination

Cellular process

Protein GO:0042572 0.612 0.782 0.010 0.051 586 Retinol metabolic process Metabolic process

GO:0030154 0.610 0.783 0.008 0.016 9840 Cell differentiation Developmental process

GO:0090502 0.609 0.782 0.007 0.011 735 RNA phosphodiester bond
hydrolysis, endonucleolytic

Cellular process

GO:0042742 0.608 0.782 0.006 0.010 1231 Defence response to bacteria Response to stimulus

GO:0050821 0.607 0.781 0.005 0.021 3162 Protein stabilization Biological regulation

Mastitis GO:0042104 0.513 0.873 0.009 0.006 331 Positive regulation of activated
T cell proliferation

Immune system process

GO:0050729 0.513 0.872 0.009 0.007 626 Positive regulation of inflammatory
response

Response to stimulus

GO:0043066 0.512 0.871 0.008 0.047 8158 Negative regulation of apoptotic
process

Biological regulation

GO:0032465 0.511 0.872 0.007 0.014 151 Regulation of cytokinesis Biological regulation

GO:0006914 0.510 0.871 0.006 0.018 1753 Autophagy Cellular process
aPrediction accuracy with GFBLUP
bThe regression coefficient of de-regression proofs (DRP) on predicted genomic breeding values (GEBV)
cThe change of prediction accuracy with GFBLUP relative to GBLUP
dProportion of the total genomic variance explained by GO terms
eThe number of SNPs in GO terms
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the prediction accuracy with GFBLUP relative to GBLUP,
probably because differently segregated QTLs or LD pat-
terns between breeds led to “incorrect” weights being
placed on the genomic variants in the features. The details
of the GFBLUP analyses between breeds are summarized in
Additional file 7: Table S5, Additional file 8: Table S6, Add-
itional file 9: Table S7 and Additional file 10: Table S8. The
improvement of the prediction with GFBLUP relative to
GBLUP between breeds was more apparent than that
within the HOL breed. The top five predictive GO terms
for each trait between breeds are shown in Table 2. The
average increase in prediction accuracy with the best-
performing GO term was 0.161 across all four traits. For
milk yield, the best-performing GO term was “positive
regulation of multicellular organism growth”, with an in-
crease of 0.200 in prediction accuracy. For fat yield, the
best-performing term was “retinol metabolic process”, with
an increase of 0.176 in prediction accuracy. For protein

yield, the best-performing term was “defence response to
bacteria”, with an increase of 0.134 in prediction accuracy.
For mastitis, the best-performing term was “negative regu-
lation of apoptotic process”, with an increase of 0.135 in
prediction accuracy (Table 2). Notably, the GO term “re-
sponse to lipopolysaccharides” led to an increase in predic-
tion accuracy for both milk production and mastitis (Table
2), that is, 0.165 for milk yield, 0.130 for fat yield, and 0.125
for mastitis.

Discussion
To the best of our knowledge, few studies have simultan-
eously explored the genetic architecture and genomic pre-
diction of complex traits in dairy cattle by integrating
biological priors and whole sequence variants. Although
the current GO annotation of the bovine genome (as ob-
served in the current study only ~20% of genes were in-
cluded) and the imputation accuracy of sequence genotypes

Table 2 Top five Gene Ontology (GO) terms with GFBLUP between breeds for the four traits

Trait GO ID ra_GFBLUP biasb Δrc ðH2
f Þd Nsetse GO term GO family

Milk GO:0040018 0.360 0.826 0.200 0.103 962 Positive regulation of multicellular
organism growth

Biological regulation

GO:0042572 0.342 0.808 0.182 0.171 678 Retinol metabolic process Metabolic process

GO:0034605 0.336 0.805 0.176 0.178 1621 Cellular response to heat Response to stimulus

GO:0045944 0.331 0.805 0.171 0.190 11,185 Positive regulation of transcription
from RNA polymerase II promoter

Cellular process

GO:0032496 0.325 0.798 0.165 0.129 1702 Response to lipopolysaccharides Response to stimulus

Fat GO:0042572 0.246 0.680 0.176 0.262 678 Retinol metabolic process Metabolic process

GO:0000122 0.238 0.642 0.168 0.348 8755 Negative regulation of transcription
from RNA polymerase II promoter

Cellular process

GO:0032496 0.200 0.577 0.130 0.219 1702 Response to lipopolysaccharides Response to stimulus

GO:0007283 0.176 0.538 0.106 0.313 4950 Spermatogenesis Reproduction

GO:0034605 0.171 0.558 0.101 0.271 1621 Cellular response to heat Response to stimulus

Protein GO:0042742 0.232 0.767 0.134 0.010 1333 Defence response to bacteria Response to stimulus

GO:0042475 0.224 0.732 0.126 0.011 3244 Odontogenesis of dentin-containing
teeth

Developmental process

GO:0006665 0.197 0.721 0.099 0.011 805 Sphingolipid metabolic process Metabolic process

GO:0042572 0.178 0.699 0.080 0.010 678 Retinol metabolic process Metabolic process

GO:0006810 0.168 0.693 0.070 0.040 6999 Transport Localization

Mastitis GO:0043066 0.077 0.277 0.135 0.064 8831 Negative regulation of apoptotic
process

Biological regulation

GO:0032496 0.067 0.176 0.125 0.020 1702 Response to lipopolysaccharides Response to stimulus

GO:0032091 0.045 0.171 0.103 0.032 702 Negative regulation of protein binding Biological regulation

GO:0043280 0.018 0.178 0.076 0.003 583 Positive regulation of cysteine-type
endopeptidase activity involved in
apoptotic process

Metabolic process

GO:0071346 0.014 0.115 0.072 0.020 3494 Cellular response to interferon-gamma Response to stimulus
aPrediction accuracy with GFBLUP
bThe regression coefficient of de-regression proofs (DRP) on predicted genomic breeding values (GEBV)
cThe change of prediction accuracy with GFBLUP relative to GBLUP
dProportion of the total genomic variance explained by GO terms
eThe number of SNPs in GO terms
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are limited [16], our results still provided novel biological
insights into the genetic architecture underlying milk pro-
duction traits and mastitis and demonstrated that the pre-
diction accuracy with GFBLUP can be improved over that
with GBLUP by incorporating biological information of
GO especially in between-breed prediction.

GO terms associated with milk production and mastitis in
dairy cattle
Here, we took the high-ranking predictive GO terms de-
tected between breeds as examples of the power of our
GFBLUP model to reveal biological processes associated
with complex traits. For milk production, five GO terms,
“positive regulation of multicellular organism growth”,
“retinol metabolic process”, “response to lipopolysaccha-
rides”, “positive regulation of transcription from RNA
polymerase II promoter” and “cellular response to heat”,
were highly predictive (Table 2). The first three GO
terms have previously been proposed to be associated
with milk production in studies on the cow mammary
transcriptome during lactation cycles [18, 19]. For the
latter two GO terms, “positive regulation of transcription
from RNA polymerase II promoter” plays an important
role in regulating the expression of genes [20] and the
expression levels of many genes are altered during lacta-
tion [19], thus it may be interesting to investigate how
“positive regulation of transcription from RNA polymer-
ase II promoter” influences the milk production. Simi-
larly, heat stress has been shown to directly affect feed
intake, thus resulting in reduced milk production, espe-
cially in dairy breeds that generate substantial metabolic
heat [21]. This result, together with our findings, pro-
vides supporting evidence that “cellular response to
heat” may be associated with milk production traits.
For mastitis, all of the top five predictive GO terms,

“negative regulation of apoptotic process”, “response to li-
popolysaccharides”, “negative regulation of protein bind-
ing”, “positive regulation of cysteine-type endopeptidase
activity involved in apoptotic process”, and “cellular
response to interferon-gamma”, have previously been sug-
gested to be associated with mastitis in transcriptome stud-
ies on specific tissues (e.g., liver and mammary gland) of
cows with and without intra-mammary infection [22–25].
Of most interest is “response to lipopolysaccharides”, which
is also highly predictive of milk production, consistently
with results from a previous study [15] that partitioned the
genomic variance of the milk production traits in HOL cat-
tle by using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways, thus revealing that several immune-
relevant pathways (e.g., chemokine signalling pathway and
leukocyte transendothelial migration) are significantly asso-
ciated with milk production. All of these findings might re-
flect the genetic correlation between mastitis and milk
production.

Alternative biological priors
The genomic feature modelling approaches can be easily
extended to integrate different sources of prior informa-
tion, such as biological pathways, sequence ontologies,
conservative genomic regions across species, and other
types of evidence from functional experimental studies
(e.g., transcriptomes and proteomes). The biological inter-
pretation can become informative when additional layers
of biological knowledge are included in the modelling ap-
proaches. However, a proportion of genes have not yet
been functionally characterized or mapped to any manu-
ally curated or predicted pathways [16, 26–28], particu-
larly in livestock and plants. Additionally, in this study,
only approximately 10% of the total genomic variance in
the milk yield was accounted for by its top predictive GO
term, 26% for the fat yield, 1% for the protein yield, and
6% for masitits. Thus, further research on annotating the
functional regions of the genome for a range of traits is re-
quired to realize the full potential of these genomic feature
modelling approaches. Moreover, a host of functional
modules (e.g., differentially expressed genes and differen-
tially methylated regions) detected from independent ex-
perimental studies on same-scale populations may be used
to develop more accurate genomic feature models for
large-scale populations. Because increasing functional an-
notation data will be easily accessible for a range of traits
and species, such as the ongoing Functional Annotation
of Animal Genomes project (FAANG) [29], genomic fea-
ture modelling approaches should be increasingly useful.

Post-GWAS with biological priors
Post-GWAS using prior biological knowledge may be a
computationally simple approach to help open the
“black box” of the genetic architecture underlying com-
plex traits and to simultaneously offer novel insights into
biological mechanisms. Multiple methods have been de-
veloped to implement this strategy, and the statistical
properties of most of them have been thoroughly
reviewed [30]. Our previous studies have shown that the
performance of the current procedure is better than or
similar to that of other commonly used methods (e.g.,
score or count -based) in most scenarios, especially
when the following two criteria are met: 1) the average
number of variants in each gene is approximately the
same among the genomic features and 2) the average
linkage disequilibrium (LD) between variants in different
genes is approximately the same, so that the number of
false positives can be very well controlled [12, 31].

GFBLUP and alternative models
We hypothesize that the difference in prediction accuracy
between GFBLUP and GBLUP is because the assumption
of GBLUP (i.e., each genomic marker contributes to the
genomic variance of the trait equally) does not match the
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genetic architecture of the traits. Instead, the genomic var-
iants of complex traits seem to be enriched in certain gen-
ome regions. The genomic variants located in these
enriched regions have greater weights than the remaining
variants in GFBLUP, on the basis of their estimated gen-
omic parameters, thus resulting in greater prediction ac-
curacy. However, if the estimated genomic parameters
deviate from their true values, less accurate predictions
will result, because too much weight is placed on the “in-
correct” genomic relationships in the prediction equa-
tions, as shown in Fig. 2, in which multiple GO terms lead
to decreases in the prediction accuracy with GFBLUP rela-
tive to GBLUP. Previous simulation studies have demon-
strated that the premise of the GFBLUP model is that
genomic features are enriched in genomic variants associ-
ated with the traits and are less diluted by non-associated
variants [9]. The imperfect imputation of whole-sequence
variants may be another factor limiting the predictive abil-
ity of the GFBLUP model. All of the factors influencing
the performance of GFBLUP have been discussed in detail
previously [9, 12].
When the validation populations are very closely related

to the training populations, the increase in prediction ac-
curacy with GFBLUP may be limited compared to that
achieved with GBLUP. In such populations with a high de-
gree of LD, the determined genomic relationship in GBLUP
(i.e., the individual genetic variants contribute to the gen-
omic relationship equally) may provide accurate informa-
tion about the causal genomic variants. A recent study has
demonstrated that in a purebred Danish Duroc pig popula-
tion, the increase in prediction accuracy with GFBLUP rela-
tive to GBLUP for complex traits (i.e., average daily gain,
feed efficiency and lean meat percentage), incorporating
prior information of QTL regions, ranges from very small
to zero [12]. However, that simulation study has indicated
that correctly separating the true causal variants from the
non-causal (noise) markers in the GFBLUP further in-
creases the prediction accuracy, even in such populations
with highly related individuals [12]. Between breeds, the
prediction accuracy with GBLUP for milk production and
mastitis ranges from zero to very low, a result in agreement
with findings from previous studies [3, 4, 7]. The GFBLUP
models based on several GO terms have much greater in-
creases in prediction accuracy compared with those within
the HOL breed, thus reflecting that the GFBLUP model has
the potential to improve genomic prediction between
breeds, provided that they have similarities in the genetic
architecture of the traits being investigated.
Our GFBLUP is implemented in a linear mixed-

modelling framework, in which the known genetic and en-
vironmental factors can easily be adjusted [9, 32]. In
addition, the genomic feature model was also implemented
in Bayesian mixture models such as BayesRC [11]. The core
element of the GFBLUP and GF Bayesian mixture models

is the use of biological priors to partition the genomic vari-
ance. When sufficient information is available in the data,
so that the data themselves can indicate which variants
should have greater weights, the GF Bayesian mixture
model might reliably assign the variants into the different
variance classes defined in the model [9, 32], thus leading
to a better prediction performance compared with that of
GFBLUP. If this is not the case, a major difference between
them in prediction performance is not expected [9, 32].
Compared with the GF Bayesian mixture model, GFBLUP
is considerably more computationally efficient [11]. Com-
pared with the post-GWAS approaches, both the GF
Bayesian mixture models and GFBLUP are computationally
intensive and require both the genotypes and phenotypes
of the study populations.

Conclusion
This study demonstrated that integrating prior biological
knowledge on GO categories with whole-sequence vari-
ants can help to elucidate the genetic architecture and
improve the genomic prediction of milk production and
mastitis in dairy cattle, especially in between-breed pre-
diction. The GFBLUP model is a flexible framework to
simultaneously improve the understanding of the genetic
architecture and the accuracy of the genomic prediction
for complex traits, through taking advantage of inde-
pendent biological priors, such as Gene Ontology and
KEGG pathways. With the accumulation of biological
knowledge regarding the functional annotation of the
genome for a range of species, approaches such as
GFBLUP will be increasingly useful, in particular for
genomic prediction in validation populations that are
not closely related to the training populations.

Methods
Phenotypes
The phenotypes used in this study were de-regressed
proofs (DRP) of milk production traits (milk, fat and
protein yields) and mastitis from a routine genetic evalu-
ation by Nordic Cattle Genetic Evaluation (http://
www.nordicebv.info/) and were available for 5056 HOL
and 1231 JER cattle. All of the known fixed effects were
corrected. Detailed information on these phenotypes has
been previously described in [33–35]. The average reli-
abilities of the DRP for the milk, fat and protein yields
and mastitis were 0.95, 0.95, 0.95, and 0.83, respectively,
in HOL cattle and 0.92, 0.92, 0.92, and 0.76, respectively,
in JER cattle. The heritability was 0.39, 0.39, 0.39, and
0.04 for milk, fat and protein yields and mastitis in HOL
cattle and very similar in JER cattle [33, 35].

Genotypes
Details of the imputation from the 50 K or High Density
(HD) genotypes of these cattle to whole genome
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sequence data have been described previously [36, 37].
Briefly, the 50 K genotype for each individual was first
imputed into a HD SNP array using IMPUTE2 v2.3.1
[38] on the basis of a multi-breed reference of 3383 ani-
mals (1222 HOL, 1326 Nordic red cattle, 835 JER) that
had been genotyped using Illumina BovineHD chips
(Illumina, Inc., San Diego, CA). A total of 648,219 SNPs
were obtained after imputation to HD with an averaged
accuracy of 0.97 [36]. The imputed HD genotypes were
next imputed to the whole genome sequence level using
Minimac2 [39] on the basis of a multi-breed reference
population of 1228 individuals from Run4 of the 1000
Bull Genomes Project [40] and additional whole genome
sequences from Aarhus University including 368 HOL,
86 Nordic red, and 88 JER [41]. A total of 22,751,039
biallelic variants were obtained in the imputed sequence
data, and the accuracy of imputation was 0.85 for
19,498,365 SNPs. Therefore, a given imputed sequence
genotype (that was not in the 50 K) being correctly
assigned was approximate 0.82 when considering the ac-
curacy of the first step imputation (i.e., from 50 k to
HD) together. The details of the imputation accuracy
were described in [37]. The imputed sequence dataset
was further edited to exclude markers with a minor al-
lele frequency (MAF) < 0.01 and a deviation from
Hardy-Weinberg proportions (HWP) < 10−6. Finally,
15,355,382 and 13,403,916 SNPs remained for further
analysis in HOL and JER cattle, respectively. It has been
suggested this two-step imputation strategy is more ac-
curate than the one-step strategy (i.e., directly from 50 K
to whole sequence) due to the complex LD pattern in
dairy cattle, in particular when using individuals from
multiple breeds as reference population [36].

Training and validation populations
For the within-HOL prediction, the dataset was sepa-
rated into training (n = 4002) and validation (n = 1054)
sets on the basis of the animals’ birth years. The birth
year cut-off was 2006, and the younger animals were
assigned to the validation set. This validation strategy
was chosen because it is the most meaningful in the
context of dairy cattle breeding, in which young bulls
are selected for breeding on the basis of their estimated
genomic values, which are predicted using a training
population of older animals with phenotypes. For the
between-breed prediction, the entire HOL population
(n = 5056) was used as training data to predict the gen-
omic values of JER individuals (n = 1231).

Genomic features
Genes grouped into a specific GO term were considered
to be genomic features. The Bioconductor package “org.B-
t.eg.db” v. 3.3.0 [42] was used to link genes to the GO
terms. Here, we focused on only the GO terms belonging

to “Biological processes”, and only the GO terms consist-
ing of at least 10 directly evidenced genes were analysed.
The imputed sequence variants were mapped to the bo-
vine reference genome (UMD3.1). A genomic variant was
assigned to a gene if the chromosome position of the vari-
ant was between the start and end chromosome positions
of the gene (i.e., within the open reading frames). Finally, a
total of 615,329 genomic variants were linked to 4216
unique genes belonging to 449 GO terms.

Sequence-based GWAS in the HOL training population
The association signals for the imputed sequence variants
were assessed by using a two-step variance component-
based method accounting for population stratification that
was implemented in EMMAX [43]. The details of this
model have been previously described [43]. In the first
step, the polygenic and residual variances were estimated
using the linear model

y ¼ 1μþ Zaþ e;

where y is a vector of the phenotype (i.e., DRP); 1 is a
vector of ones; μ is the overall mean; Z is a design
matrix connecting phenotypes to random polygenic ef-
fects; α is a vector of random polygenic effects (i.e.,
breeding values), in which α ~ N(0, Gσ2a ), and G is the
genome relationship matrix built using HD genotypes,
excluding the chromosome harbouring the candidate
SNP for controlling double fitting (i.e., fitting the variant
as a random effect as part of the G and a fixed effect for
testing association) [44], and σ2a is the additive genetic
variance; and e is the vector of residuals, where e ~N(0,
Iσ2e ), and I is the identity matrix, and σ2e is the residual
variance. In the following step, the individual variant ef-
fect was assessed using the linear regression model

y ¼ 1μþ xbþ η;

where y and 1 are the same as described above, x is a
vector of genotype dosages (ranging from 0 to 2), b is
the allele substitution effect (i.e., variant effect), and η is
a vector of random residual deviates with (co)variance
structure Gσ2

a þ Iσ2e . The genome-wide significance
thresholds corresponding to an error rate of 0.05 were
set at 3.3 × 10−9, on the basis of Bonferroni multiple
testing correction. Manhattan plots were generated
using qqman v.0.1.2 in the R package [45]. The genomic
inflation statistic (lambda) was defined as the median of
the resulting chi-squared test statistics divided by the ex-
pected median of the chi-squared distribution with one
degree of freedom.

Post-GWAS analysis in the HOL training population
Because the genomic variance of the milk production
and mastitis has been generally considered to be
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governed by many genes, each having small to moderate
effects, the following summary test statistic of a genomic
feature (i.e., a GO term) was used, which may be more
powerful than the commonly used count-based methods
described previously [12, 31]:

Tsum ¼
Xmf

i¼1
t2;

where mf is the number of variants located in a genomic
feature, and t2 is the square of t, which was calculated as
the estimated effect of a variant divided by its standard
error. The cyclical permutation strategy applied to test
the association between a phenotype and a genomic fea-
ture was described previously [12, 31]. Briefly, the ob-
served test statistic (i.e., t2) of each variant was ranked
according to the chromosome position of the variant
(i.e., t1, t2 ⋯ tt−1, tt). A test statistic (i.e., tk) was ran-
domly chosen from this vector. All test statistics were
then shifted to the new positions, where the selected one
(i.e., tk) became the first, and the statistics of the other
variants were shifted to new positions, but retained their
original order (i.e., tk, tk+1 ⋯ tt, t1 ⋯ tk-1). Any associ-
ation between the variants and genomic features was
uncoupled while maintaining the correlation structure
among test statistics. Afterward, a new summary statistic
of a genomic feature was calculated according to the ori-
ginal chromosome position of the feature. This permuta-
tion was repeated 1000 times for each tested genomic
feature, and an empirical P-value was calculated on the
basis of one-tailed tests of the proportion of randomly
sampled summary statistics larger than that observed.

Genomic prediction models
For each of the 449 genomic features, a separate analysis
was conducted. By partitioning the genomic variants
into two sets (within the genomic feature and the
remaining genome), in each of the GFBLUP analyses,
the collective contribution of a genomic feature to the
trait was evaluated. The GFBLUP model is

y ¼ 1μþ gf þ gR þ e;

where y is the vector of phenotypic observations (i.e.,
DRP), 1 is a vector of ones, μ is the overall mean, gf is
the vector of genetic values captured by variants in the
genomic feature, gR is the vector of genomic values cap-
tured by variants in the remaining genome, and e is the
vector of residuals. The assumptions for all of the ran-
dom effects are given by

gf
gR
e

0

@

1

AeN
0

0
0

0

@

1

A;

Gf σ2
f 0

0 GRσ2
R

0
0

0 0 Dσ2e

0

@

1

A

2

4

3

5,

Gf and GR are genomic relationship matrices, built
using the variants in the genomic feature and the

remaining genome, respectively. Both G were calculated
using the second method described by VanRaden (2008)
[46]. D is a diagonal matrix with diagonal elements equal

to 1−r2
r2 , where r2 is the reliability of a DRP. σ2f and σ2

R are

the variance components accounted for by the variants
in the genomic feature and the remaining genome, re-
spectively, and σ2e is a residual variance component. All
of these variance components were estimated using an
average information restricted maximum likelihood
(REML) procedure [47], as implemented in DMU [48].
The proportion of the genomic variance explained by

the genomic feature was calculated as

H2
f ¼

σ2f
σ2f þσ2R

,

The proportion of SNPs in the genomic feature was
calculated as
SNPf ¼ mf

mfþmR
,

where mf is the number of variants in the genomic fea-
ture, and mR is the number of variants in the remaining
genome.
GBLUP uses only one random genomic effect,
y = 1μ + g + e,
with the same notation as above except for g, which is

the vector of genomic values captured by all of the gen-
omic variants. The random genomic values and the re-
siduals were assumed to be independently distributed:

eN 0;Gσ2
g

� �
and eeN 0;Dσ2e

� �
.

Inferences on the genomic heritability for GFBLUP
and GBLUP were calculated as

h2GFBLUP ¼ σ2f þσ2R
σ2f þσ2Rþσ2e

for GFBLUP, and h2GBLUP ¼ σ2g
σ2gþσ2e

for

GBLUP
Genomic prediction accuracy: In the GFBLUP model,

the total genomic value (GEBV) is g ̂ total ¼ g ̂ f þ g ̂ R , and

in GBLUP it is g ̂ total ¼ g . The accuracy of the predicted
genomic breeding values (r) is calculated as the correl-
ation between GEBV and DRP in the validation popula-
tions. The bias of genomic predictions was measured as
the regression coefficient of DRP on the GEBV, i.e. bias
¼ cov DRP;GEBVð Þ=σ2GEBV.
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