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Short DNA sequence patterns accurately
identify broadly active human enhancers
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Abstract

Background: Enhancers are DNA regulatory elements that influence gene expression. There is substantial diversity
in enhancers’ activity patterns: some enhancers drive expression in a single cellular context, while others are active
across many. Sequence characteristics, such as transcription factor (TF) binding motifs, influence the activity patterns

of regulatory sequences; however, the regulatory logic through which specific sequences drive enhancer activity
patterns is poorly understood. Recent analysis of Drosophila enhancers suggested that short dinucleotide repeat
motifs (DRMs) are general enhancer sequence features that drive broad regulatory activity. However, it is not known
whether the regulatory role of DRMs is conserved across species.

Results: We performed a comprehensive analysis of the relationship between short DNA sequence patterns,
including DRMs, and human enhancer activity in 38,538 enhancers across 411 different contexts. In a machine-
learning framework, the occurrence patterns of short sequence motifs accurately predicted broadly active human
enhancers. However, DRMs alone were weakly predictive of broad enhancer activity in humans and showed
different enrichment patterns than in Drosophila. In general, GC-rich sequence motifs were significantly associated
with broad enhancer activity, and consistent with this enrichment, broadly active human TFs recognize GC-rich

motifs.

Conclusions: Our results reveal the importance of specific sequence motifs in broadly active human enhancers,
demonstrate the lack of evolutionary conservation of the role of DRMs, and provide a computational framework for

investigating the logic of enhancer sequences.
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Background

Enhancers are DNA regulatory elements distal to pro-
moters that bind transcription factors (TFs) to drive tissue-
specific gene expression. They control patterns of gene
expression during development, allowing diverse tissues to
differentiate from a single cell and continue functioning
properly in maturity [1, 2]. Because enhancers play a cen-
tral role in regulating essential transcriptional programs,
genome-wide association studies (GWAS) often implicate
non-coding variation in enhancer regions as associated
with risk for numerous complex diseases [3, 4]. Several in-
depth experimental analyses of loci identified by GWAS
have revealed that the causal mutations in these regions
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disrupt enhancer activity [5-8]. However, the function of
many of these variants is unknown, and it can be unclear
in what cell types they alter activity. Better understanding
of how enhancer sequences drive activity patterns across
cellular contexts would enable more accurate interpret-
ation of the effects of non-coding mutations.

Enhancers harbor binding motifs recognized by TFs;
thus, the information encoded in enhancer sequences
provides valuable information about regulatory specificity
[2, 9]. Technological advances in high-throughput sequen-
cing have enabled the development of genome-scale as-
says to identify sequences with putative enhancer activity.
Several large-scale efforts have applied methods such as
chromatin immunoprecipitation followed by sequencing
(ChIP-seq) [10], identification of DNasel-hypersensitive
sites (DHS) via sequencing (DNase-seq) [11], and identifi-
cation of enhancer RNA (eRNA) transcription via cap
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analysis of gene expression (CAGE) [12] to map putative
enhancers over many tissues and cell lines [13-16].

Analyses of these and smaller-scale enhancer datasets
have enabled identification of the unique sequence and
chromatin properties of enhancers active in different
tissues, which can then be used to predict enhancers in
other contexts [17-19]. Indeed, enhancer-finding
algorithms based solely on sequence information have
successfully predicted active enhancers in many tissues
[20-24]. These algorithms usually perform better than
enhancer-finding algorithms built only on the occur-
rence profiles of known TF motifs, suggesting that the
algorithms detect previously unidentified functional se-
quence characteristics that, if interpreted, could fill gaps
in current knowledge about TF binding specificities and
other enhancer sequence properties. For example, a re-
cent study proposed a model in which short repetitive
sequences—dinucleotide repeat motifs (DRMs)—pro-
mote general enhancer activity and play an essential role
in driving broad enhancer activity across many cell types
[16]. In spite of these successes, we still lack a compre-
hensive understanding of how enhancer sequences drive
their activity across tissues and development.

In this study, we comprehensively analyzed the of ability
of short DNA sequence patterns, including DRMs, to
predict the breadth of activity of tens of thousands of
human enhancers across hundreds of human tissues. First,
we computed the enrichment of DRMs among broadly
active enhancers, and unlike in Drosophila, we consistently
observed significant enrichment of GC DRMs and deple-
tion of TA DRMs. To evaluate the ability of DRMs to pre-
dict broadly active enhancers, we trained a support vector
machine (SVM) classification algorithm on the occurrence
patterns of DRMs. In further contrast to results in Drosoph-
ila, we found that DRMs alone were only weakly predictive
of broadly active enhancers versus context-specific en-
hancers or random regions from the genomic background.
However, when trained on all possible 6-bp sequences,
SVMs could readily distinguish between broadly active,
context-specific, and genomic background regions. The
6-mer sequence patterns most enriched—and most predic-
tive—of broadly active enhancers were GC-rich, suggesting
that DRM contributions to enhancer activity are part of a
larger trend seen among other 6-mers that is driven by GC
content. Furthermore, we show that broadly active human
TFs are more likely to bind GC-rich sequences than tissue-
specific TFs. Thus, we conclude that DRMs are not unique
drivers of human enhancer activity, but broadly active
human enhancers exhibit distinct sequence properties.

Methods

Enhancer data

We focused our analyses on enhancers identified by
CAGE from the FANTOM Consortium across 411
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different tissues and cellular contexts, which by definition
exclude regions near known transcription start sites and
exons of mRNAs (both protein-coding and noncoding)
and IncRNAs [13]. We subdivided their 38,538 robust
phase 1 enhancers based on the number of contexts in
which each was found to be active. We defined the top 5%
most active enhancers as the “broadly active” set; this
corresponded to 1961 enhancers with activity in greater
than 45 contexts. As 15% of enhancers had activity in a
single context, we randomly picked 1961 of these to be
the “context-specific” or “narrow” enhancers.

We generated several sets of random non-enhancer
regions for each enhancer set, using shuffleBed [25] to
obtain length-matched regions for each input set of genomic
regions. We also generated negative regions matched on GC
content, chromosome distribution, and length using a
custom script. We excluded all locations in the positive set
as well as all enhancers from the full permissive CAGE en-
hancer dataset (43,011 total sequences), ENCODE blacklist
regions, genome (hgl9) assembly gaps, and experimentally
verified VISTA enhancers (downloaded in March 2014) [26]
from the negatives. Further, classifiers trained excluding
known transcription start sites and exons [27] from the neg-
atives were also able to accurately distinguish broadly active
(Additional file 1: Figure S1), and there was a strong correl-
ation between the weights assigned to each 6-mer between
the two classifiers (Spearman’s p = 091, P < 2.2E-308),
suggesting that they learned similar models of sequence.

To enable comparison with the fold enrichment ana-
lyses carried out by Yéfiez-Cuna et al. (2014), we analyzed
two additional human enhancer sets. We obtained DNase
I hypersensitivity peaks and enhancer-associated histone
modification data [15] from ENCODE (https://geno
me.ucsc.edu/ENCODE). Using intersectBed [25], we de-
fined 13,069 broadly active DHS peaks found in at least
120 cell types, and 1449 regions containing both H3K27ac
and H3K4mel marks that were active in at least 10 cell
lines: GM12878, Hlhesc, Hmec, Hsmm, Huvec, K562,
Nha, Nhlf, Nhek, and Osteoblast. We also filtered both
sets to exclude regions overlapping CpG islands from the
CpG Islands track in the UCSC Genome Browser. Many
of the DHS peaks are expected to be enhancers, but this
set includes other regulatory regions as well. We gener-
ated matched negative regions for these sets using the
criteria described above for CAGE enhancers.

DRM definition and identification

We searched for DRMs using position weight matrices
(PWMs) with probability of one for the appropriate nucleo-
tide in each position: CACACA, GAGAGA, GCGCGC, and
TATATA. We identified and counted DRM occurrences
using the python package MOODS, which searches input
DNA sequences on both strands for occurrences of motifs
defined by PWMs [28, 29], with a pseudocount of 0.001 and
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a match cutoff of P < 1/1024. Considering both strands
meant that instances of the GC and TA repeats were
counted twice, as they are their own reverse complements.
We used the human genomic nucleotide frequencies for the
background probabilities when calculating match scores and
P-values, since the human genome is 42% GC.

We settled on these parameters after evaluating different
combinations of thresholds and background frequencies
with respect to the number and sequence diversity of
DRMs we found. Using P < 1/4096 resulted in no perfect
matches to the TA DRM passing the significance thresh-
old, due to the higher genomic background frequency of
TA bases (Additional file 1: Figure S2). Thus, we chose
P < 1/1024 as it minimized the number of inexact matches
included, while still allowing all perfect matches to pass
the cutoff. Results were similar when identifying only
exact matches (Additional file 1: Figure S3). We explicitly
controlled for length in most analyses, because length is
positively associated with activity in the FANTOM data-
set. This step was unnecessary for relative fold enrichment
analyses, as we compared relative occurrences in length-
matched positive and negative sets.

Our parameters for defining DRMs differ from those
used in Yanez-Cuna et al. (2014), where they assumed
an equal background probability for each nucleotide and
used a PWM match cutoff of P < 1/256 [16, 30]. In
addition, we used an invariant CA repeat motif, rather
than the more variable motif inferred from STARR-seq
data (Additional file 1: Figure S2). We believe that
considering the background human genome nucleotide
frequencies is necessary, due to the non-uniform GC
content genome-wide and in enhancers. We also chose
to use a stricter threshold (P < 1/1024) for identifying
matches to DRM motifs, because lower thresholds, such
as 1/256, allowed many diverse, non-repetitive motifs to
match. This is a partial cause of the lower DRM density
we observed compared to Yanez-Cuna et al. (2014).
Additionally, using invariant motifs of consistent length
and information content for all four DRMs facilitated
direct comparison of the results for different DRMs. We
felt that these settings best captured the notion of a
“dinucleotide repeat motif.” Other than these differences,
the parameters used were the same as in Ydnez-Cuna
et al. as best as we could determine.

Fold enrichment analyses

We calculated motif fold enrichment (FE) by dividing
the mean count of the occurrence of the sequence in
question for the enhancer set by that in the negative set,
which was either the matched non-enhancer regions
from the genomic background or the context-specific
enhancers. When we were comparing enhancers to
genomic backgrounds, we analyzed four independent
negative sets separately, and then plotted the mean and
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standard deviation of the log,(FE). For consistency with
the enhancer prediction analyses, we analyzed 600 bp
regions centered on each enhancer for all enhancer sets.
In the broad vs. context specific comparison, all context-
specific enhancers (activity = 1) were used. P-values were
calculated for the distribution of counts in broadly active
enhancers vs. a negative set by the Wilcoxon rank sum
test. All violin plots are scaled by area.

Enhancer prediction
To predict whether occurrence patterns of short DNA se-
quence motifs were sufficient to distinguish broadly active
enhancers from the genomic background and from
context-specific enhancers, we trained 6-mer spectrum
kernel SVMs [31]. The spectrum kernel is a string kernel
that defines the similarity of two DNA sequences based
on the occurrence of all possible short DNA sequence pat-
terns of a given length, &, within them. We computed the
weight given to each possible 6-mer by each SVM [32]
and averaged the weights across training runs vs. four in-
dependent negative sets. For predictions using DRMs, we
used the counts per base pair for each DRM as training
features. To predict enhancers based on counts of motifs
of known transcription factors, we used 2911 PWMs from
three databases: JASPAR 2016 vertebrate database [33],
CIS-BP [34], and ENCODE [35]. We counted the occur-
rences of each motif in our genomic regions of interest
using FIMO under default settings [36]. We then used the
motif counts per base pair as features for the classifier.
Performance of all SVM classifiers was evaluated using
10-fold cross-validation, which limits overfitting by only
training the classifier on a subset of the data at any given
time. Receiver Operator Characteristic (ROC) and Preci-
sion Recall (PR) curves were calculated by averaging
over the 10 cross-validation runs. All SVM analyses were
performed using the SHOGUN Machine Learning
Toolbox v4.0.0 [37]. For the predictions of broadly active
regions versus context-specific regions, we took a
random subset of the larger set to maintain the number
of regulatory regions considered across analyses. We
controlled for length differences by expanding or con-
tracting enhancers in each set to be 600 bp long while
maintaining their original centers; this was necessary
due to a positive correlation between enhancer length
and activity (Additional file 1: Figure S4).

Transcription factor binding motif and expression analysis
We obtained transcription factor binding motif PWMs
from the JASPAR 2016 vertebrate database [33], CIS-BP
[34], and ENCODE [35]. In total, we considered 2911 mo-
tifs representing 1463 TFs. We obtained tissue specificity
scores (TSPS) for 1326 TFs from the FANTOM Consor-
tium [38]. A TF with uniform expression across all tissues
was assigned a TSPS equal to zero, while a TF expressed in
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only a single tissue received a maximum TSPS of ~5. We
classified TFs as “specific” (TSPS >1) or “broad” (TSPS <1)
in their expression (Additional file 1: Figure S5), following
the threshold used in the original publication [38].

We matched motif sequences to TF expression data
using a combination of computational name matching
and, where that failed, hand curation. For all motif
names that did not have a match in the expression data,
we identified synonyms and alternate names from
Ensembl (Release 88) [39] and searched the expression
data for any matches. Any TSPS or motif that could not
be conclusively paired after manual inspection was dis-
carded. For cases where a motif represented complex of
TFs that had individual TSPS values, we assigned the
greater of the two values, on the assumption that a com-
plex cannot have wider expression than its most specific
component. Ultimately, we obtained 1837 motifs for 563
unique TFs or complexes with TSPS expression values,
of which 313 were broad and 250 were specific. The full
list of motifs and TSPS values is given in Additional file
2: Table S1. For TFs with multiple motifs, we considered
the mean GC and CpG content over all motifs. We
compared the mean GC and CpG content distributions
of the specific and broadly expressed TF groups using
the Wilcoxon rank sum test. To determine whether
CpG contributed any additional information to a model
using GC content to predict TF expression, we calcu-
lated the squared semipartial correlation for two models.
The first used TSPS as a continuous variable to repre-
sent expression while the second used dummy-coding to
categorize TFs as broad or specific.

Results

DRMs are enriched (GC) and depleted (TA) in human
enhancers, but the patterns do not match those in
Drosophila

Recent work in Drosophila suggested that DRMs are a
general feature of enhancers and that presence of many
DRMs in an enhancer is a main driver of broad regulatory
activity across diverse tissues [16]. To test the hypothesis
that high DRM occurrence drives broad enhancer activity
across tissues in humans [16], we analyzed sequence pat-
terns in putative enhancers across diverse human cells
and tissues. We considered 38,538 transcribed enhancers
identified via CAGE for 411 contexts by the FANTOM
consortium [13]. We defined the 1961 enhancers in the
top 5% of the breadth of activity distribution (active in
more than 45 contexts) as broadly active.

As a first step in investigating the contribution of DRMs
to human enhancer activity, we computed the relative en-
richment of DRMs in broadly active enhancers compared
to context-specific enhancers and length-matched back-
ground regions using position weight matrices (PWMs).
Drosophila enhancers exhibit enrichment for all DRMs
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except TA, and also show a positive association between
DRM frequency and breadth of activity most strongly with
GA and CA repeats, and GC to a lesser extent. Thus,
under the Drosophila DRM model, we would expect CA,
GA, and GC DRMs to be enriched in broadly active
human enhancers compared to the other sets.

In humans, the CA, GA, and GC DRMs were all signifi-
cantly enriched in broadly active enhancers compared to the
genomic background (Fig. 1a; P = 2.0E-14, P = 2.3E-14,
and P 1.7E-59, respectively). However, the magnitude of the
enrichments for CA (1.3x) and GA (1.3x) were modest
compared to GC (31.1x), and when compared to context-
specific enhancers, significant enrichment remained only for
the GC DRM (Fig. 1b, 15.9x, P = 1.1IE-128). The TA DRM,
on the other hand, was significantly depleted compared to
both the genomic background (4.5 x, P = 5.8E-34) and
context-specific enhancers (-2.7x, P = 5.3E-35).

Furthermore, GC DRM density (DRM/bp) significantly
increased as breadth of activity increased (Additional
file 1: Figure S6; Spearman’s p = 0.12, P = 3.0E-114),
indicating that this is a general trend across enhancers.
Similarly, TA DRM density significantly decreased with
breadth of activity (Spearman’s p = -0.020; P = 9.72E-05).
There was not a significant trend for GA and CA DRMs
(Additional file 1: Figure S6).

To confirm that the observed trends in DRM patterns
were not unique to the transcribed enhancers defined by
CAGE, we also analyzed DRM patterns in a “histone-de-
rived set” of 1449 enhancers, consisting of regions with
overlapping H3K4mel and H3K27ac histone marks from
13 contexts [40], and a “DHS set,” of 13,069 DNasel
hypersensitive peaks across 126 contexts from ENCODE
[15]. The DRM enrichment patterns were similar in these
enhancer sets to those observed for CAGE enhancers: GC
was significantly enriched and TA significantly depleted
(Additional file 1: Figure S7).

The majority of the broadly active histone-mark-defined
enhancers contained at least one DRM (Additional file 1:
Figure S7); this is in contrast to their relative rarity in the
CAGE and DHS sets. The increased counts are likely due
to the greater length (and presumably lower resolution) of
the histone-derived set: average enhancer length of
5797 bp vs. 200 and 297 bp for the DHS and CAGE sets,
respectively. In contrast, the Drosophila enhancers were
500 bp long and had median DRM counts between 1 and
6, which is more similar to the histone set despite being
an order of magnitude smaller [16, 41].

Overall, DRM patterns in human enhancers do not
match the patterns observed for Drosophila enhancers,
where CA, GA, and GC DRMs all showed enrichment
in broadly active enhancers [16]. However, it is possible
that DRMs in general maintain importance in driving
broad enhancer activity between these diverse species,
but the specific motifs are not conserved.
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DRMs alone are weakly predictive of broadly active
human enhancers

To directly evaluate the ability of DRMs to identify
broadly active human enhancers, we used a support vec-
tor machine (SVM) learning framework [17]. We trained
a linear SVM classifier to distinguish broadly active

enhancers from context-specific enhancers and the gen-
omic background using patterns of DRM occurrence.
Using only DRM counts as features yielded poor perform-
ance at each classification task (Fig. 2a and Additional file 1:
Figure S8A). We first trained the SVM to distinguish
broadly active enhancers from a set of length-matched
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genomic background regions that excluded all putative en-
hancers, gaps in the genome assembly, and ENCODE black-
list regions (Methods). In 10-fold cross validation, the
classifier performed poorly; it achieved an area under the re-
ceiver operating characteristic curve (ROC AUC) of 0.61
and a precision recall (PR) AUC of 0.64.

Enhancers are known to have greater GC content
compared to the genomic background (mean 46% vs.
42%), so to determine whether DRM sequence patterns
held predictive value independent from overall GC
content, we repeated the previous analysis training the
classifier on negative training sets generated from ran-
dom background regions matched to broadly active
enhancers for both length and GC content. This classi-
fier had decreased performance compared to the non-
GC-matched classifier (Fig. 2a and Additional file 1:
Figure S8A, P = 6.2E-8), suggesting that GC content was
important for some for the predictive ability of DRMs.

Next, we evaluated the ability of DRMs to distinguish
broadly active enhancers from context-specific enhancers.
Since the context-specific enhancers were shorter on
average (Additional file 1: Figure S4), we controlled for
length by expanding or contracting all enhancers in both
sets to be 600 bp long, approximately the mean length of
the most active enhancers. This DRM-based classifier
trained vs. context-specific enhancers also performed
poorly: ROC AUC of 0.56 and PR AUC of 0.61 (Fig. 2a
and Additional file 1: Figure S8A). Because DRMs were
rare in broadly active enhancers (median occurrence of
zero for all DRMs; Fig. 2b), the poor performance of
the DRM-based SVM is not surprising, and it suggests
that DRMs are not major drivers of enhancer activity
in humans.

Comprehensive analysis of short DNA sequence motif
occurrence accurately identifies broadly active human
enhancers

Given that DRMs by themselves were only weakly predict-
ive of broadly active human enhancers, we evaluated the
ability of additional short DNA sequence motifs to predict
the breadth of enhancer activity. Using the occurrence
patterns of all 4096 possible 6-mers in the enhancer
sequence as features in a spectrum kernel SVM [31], we
repeated the classifications performed for the DRMs. The
classifier trained on broadly active enhancers vs. random
background regions performed very well (Fig. 3a and
Additional file 1: Figure S8B; ROC AUC = 093, PR
AUC = 0.92). When classifying GC-matched regions, the
performance of this classifier decreased, but was still strong
(Fig. 3a and Additional file 1: Figure S8B; ROC AUC = 0.87,
PR AUC = 0.86, P = 8.3 E-15). Furthermore, the classifier
performed as well at distinguishing between broadly active
and context-specific enhancer classes as it did distinguish-
ing broadly active enhancers from GC-matched genomic
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background (Fig. 3a and Additional file 1: Figure S8B; ROC
AUC = 0.87, PR AUC = 0.88, P = 0.61).

To test whether considering all possible 6-mers increased
performance compared to using current knowledge of TF
binding preferences, we evaluated the performance of
classifiers trained using counts of matches to 2911 known
TF binding motifs (Methods). All three classifiers per-
formed very slightly, but significantly, worse in these ana-
lyses than when considering all 6-mers (Fig. 3a vs. 3b;
negatives P = 0.0245, GC-matched P = 7.5E-3, context-
specific P = 3.2E-5). Thus, limiting the training features to
current knowledge of TF specificity only modestly de-
creased performance.

Since the relative performance of the classifiers indicates
that DRMs are not the strongest contributors to enhancer
sequence activity patterns, we evaluated their contribution
to human enhancer activity in the context of all possible
6-mers (Fig. 3c). The enrichment of the GC DRM in
broadly active enhancers was more than two standard
deviations (SDs) above the mean over all 6-mer enrich-
ments for all three comparisons. The TA DRM was more
than 1 SD less than the mean for the broadly active
enhancers vs. genomic background and context-specific
enhancers (Fig. 3c). The CA and GA DRMs were both
within 1 SD of the mean for all three comparisons. This
suggests that the GC DRM, and to a lesser extent the TA
DRM are enriched and depleted, respectively, in broadly
enhancers compared to the enrichment of 6-mers in
general. Despite this enrichment, the rarity of DRMs in
broadly active enhancers (Fig. 2b) reduced their predictive
ability overall. Collectively, these results show that DRMs
alone are not nearly as informative about enhancer activity
and breadth as models that include additional short
sequence patterns or known TF binding motifs.

GC-rich motifs are predictive of broadly active enhancers
Given the elevated GC content of enhancers and the
enrichment and depletion of the GC and TA DRMs (the
two DRMs with unequal GC content), we quantified the
relationship between GC content and 6-mer enrichment
in broadly active enhancers. In comparisons with the gen-
omic background, the correlation was significantly positive
(Fig. 4a; Spearman’s p = 0.87, P < 2.2E-308). This is not
surprising given that enhancers have high GC content
compared to the genomic background. As expected, this
trend was strongly attenuated in the GC-matched com-
parison (Fig. 4b; Spearman’s p = 0.045, P = 0.004).

We previously observed that enhancer GC content varied
in different tissues’ enhancers [17], and here we found that
GC content is positively correlated with breadth of activity
among the enhancers (Fig. 4c; Spearman’s p = 0.25,
P < 2.2E-308). Similarly, GC content showed a high correl-
ation with enrichment in broadly active vs. context-specific
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enhancers (Fig. 4d; Spearman’s p = 0.88, P < 2.2E-308).
This mirrors the patterns shown by the GC and TA DRMs.

The classification function learned by a trained spectrum
kernel SVM implicitly assigns weights to each 6-mer that
indicate its contribution to the classifier’s prediction.
Repeating the GC content analyses using these 6-mer
weights rather than their enrichment resulted in similar

correlations (Additional file 1: Figure S9; Spearman’s
p = 031, 0.014, 0.29, P = 14E-93, P = 0.36, P = 45E-80
for genomic background, GC-matched, and context-
specific enhancers respectively). This argues that, in terms
of both individual motif enrichment and importance to
trained classifiers, high GC content is characteristic of
broadly active enhancers, regardless of status as a DRM.
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Broadly active TFs have GC-rich motifs

The highly weighted/enriched motifs likely serve important
biological functions that contribute to enhancer activity.
Since enhancers function by binding transcription factors,
we hypothesized that DNA sequence patterns that facilitate
the binding of broadly expressed transcription factors could
drive broad enhancer activity across many contexts. To ex-
plore this, we analyzed the sequences and breadth of
expression of known TF binding motifs from three motif
databases: JASPAR [33], CIS-BP [34], and ENCODE [35].
We classified the TFs into broadly expressed and tissue-
specific classes based on expression data from the FAN-
TOM Consortium [38]. In support of our hypothesis, the
motifs of broadly active TFs have significantly higher GC
content than those of context-specific TFs (Fig. 5a; 51% vs.
40%, P = 9.3E-13), mirroring the trend seen in 6-mers
predictive of broad enhancer activity. The broad TF motifs
also had higher CpG content than context-specific TF

motifs (Fig. 5b; 0.05 vs. 0.03 per bp, P = 2.0E-4). This
suggests that DNA methylation of those sites could play a
role in regulating binding of broadly-active TFs [42].
However, a semipartial correlation analysis revealed that
CpG content did not explain additional information about
breadth of expression beyond what was expected from GC
content (TSPS score P = 0.11, Broad vs. Specific P = 0.17).

Discussion

We analyzed the contribution of DRMs and other short
DNA sequence motifs to the activity patterns of human en-
hancers across hundreds of cellular contexts. In contrast to
the model proposed in Drosophila [16], GC DRMs were
enriched in broadly active enhancers compared to both the
genomic background and context-specific enhancers, while
TA DRMs were depleted. Using an unbiased machine
learning framework, we found that DRM occurrence pat-
terns were only weakly predictive of broadly active human
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enhancers (ROC AUC ranging from 0.55 to 0.61). However,
a classifier trained on the occurrence of all possible
6-bp sequences very accurately distinguished broadly
active human enhancers from the genomic background
(ROC AUC = 0.93), GC-matched background regions
(ROC AUC = 0.87), and context-specific enhancers
(ROC AUC = 0.87). Furthermore, 6-mers highly predictive
of broad activity tended to be GC-rich, while those with
the most negative weights tended to be GC-poor, even
when classifying GC-matched regions. These results sug-
gest that broadly active enhancers have distinct sequence
properties, and that the enrichment and depletion of
DRM sequences is part of a larger pattern in which
particularly GC-rich and GC-poor sequences are indica-
tive of broad and context-specific activity, respectively.
Consistent with this pattern, TFs with broad expression
have greater affinity for GC- and CpG-rich motifs than
TFs with tissue-specific expression patterns.

Our findings in human enhancers differ from recent re-
sults in Drosophila in several respects. Broadly active
Drosophila enhancers exhibit enrichment for all DRMs
except TA, while broadly active human enhancers are
consistently enriched only for the GC DRM. We also
found that DRM counts alone are significantly less pre-
dictive of enhancer activity than wider sequence patterns
or Drosophila models including many motifs [16]. Other
sequences predictive of broad enhancer activity tend to be
GC-rich, demonstrating that the effects on human enhan-
cer sequence activity are not unique to repeat elements.

There are several possible causes of the observed differ-
ences in DRM patterns between humans and Drosophila.
First, they could be due to differences in the enhancer
identification strategy used. The main set of human en-
hancers analyzed was identified using CAGE to detect
native eRNAs, while the Drosophila enhancer sets were
assembled using STARR-seq [41]. Both methods have

potential weaknesses. CAGE-seq is only able to identify
enhancers that produce bidirectional capped transcripts,
while the STARR-seq assay isolates potential regulatory
sequences in reporter constructs separate from their gen-
omic contexts and thus could introduce activity patterns
not representative of enhancers in their natural chromatin
context. To address this concern, we analyzed other hu-
man enhancer sets defined using functional genomics data
(histone modifications and DNasel hypersensitivity data).
We found patterns consistent with the CAGE enhancers,
so this suggests that our findings are robust among human
enhancers. Second, differences in the number of biological
contexts considered could influence the comparison. We
considered enhancer activity across 411 human cellular
contexts, while only three cell types were considered in the
Drosophila study. These cells were from different lineages
and developmental stages, but further work that considers
more cellular contexts in Drosophila would be necessary
for a more direct comparison. Finally, there were a number
of technical differences in how DRMs were defined
between the studies. For example, we used stricter P-value
thresholds for calling DRMs and a background model
tailored to the genome GC content rather than uniform
frequencies. We felt that these definitions better reflected
the concept of a “dinucleotide repeat motif” and enabled
comparison between different motifs. Nonetheless, we
found that this and other technical differences did not
influence our conclusions (Additional file 1: Figures S1-3).

Thus, while technical factors may have contributed, the
observed differences were likely also influenced by bio-
logical differences between the Drosophila and human
genomes. For example, despite having similar GC content,
the Drosophila genome is not as CpG-depleted as humans
[43]. This could influence the roles and dynamics of CpG
islands in enhancer activity between the species. In
addition, while recent studies of transcriptional networks
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and TF binding preferences have revealed remarkable
conservation of elements of metazoan gene regulation
[44—46], there are differences in the TF complement and
gene expression patterns between these two species. It is
possible that the differences in DRM enrichments reflect a
difference in the sets of TFs that bind broadly active
enhancers in the two species, or that broadly expressed
transcription factors in Drosophila do not show the same
collectively higher GC content compared to context-
specific TFs (Fig. 5).

Since the motifs of broadly expressed human TFs have
higher GC and CpG content than context-specific TFs,
DNA methylation could play a larger role in determining
their binding and activity. This raises the possibility that
broadly active enhancers and TFs in mammals have
evolved to be GC- and CpG-rich, perhaps influenced by
the repressive role of CpG methylation. As DNA methyla-
tion in Drosophila is much less pervasive [47], TFs in
Drosophila would not have the same pressure. More gen-
erally, high GC content could also facilitate broad activity
by influencing DNA shape near binding motifs [48]. The
differences in the evolution and function of DRMs, other
regulatory sequence motifs, and GC content between
humans, flies, and other organisms must be explored
further, but such studies will require comprehensive cata-
logs of enhancers active across many tissues in species.

Conclusions

We demonstrate that while short DNA sequence patterns
can accurately identify broadly active human enhancers,
DRMs are not the main drivers of activity. This emphasizes
the importance of DNA sequence patterns on enhancer
biology and suggests several avenues for future research.
Most importantly, more work is needed to understand the
regulatory logic of enhancer sequences; we suspect that
highly predictive sequence patterns could be mined to
identify novel binding motifs and combinatorial interac-
tions. Our results also reveal that we understand relatively
little about how enhancer sequence and activity evolve,
especially in the context of DNA methylation. Resolving
the evolution and mechanistic functions of these enriched
sequences will require further statistical and experimental
analyses, but the approach presented here provides a frame-
work in which to quantify and explore how DNA sequence
influences gene regulatory activity.
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