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Genomic prediction in contrast to a
genome-wide association study in
explaining heritable variation of complex
growth traits in breeding populations of
Eucalyptus
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Abstract

Background: The advent of high-throughput genotyping technologies coupled to genomic prediction methods
established a new paradigm to integrate genomics and breeding. We carried out whole-genome prediction and
contrasted it to a genome-wide association study (GWAS) for growth traits in breeding populations of Eucalyptus
benthamii (n =505) and Eucalyptus pellita (n =732). Both species are of increasing commercial interest for the
development of germplasm adapted to environmental stresses.

Results: Predictive ability reached 0.16 in E. benthamii and 0.44 in E. pellita for diameter growth. Predictive abilities
using either Genomic BLUP or different Bayesian methods were similar, suggesting that growth adequately fits the
infinitesimal model. Genomic prediction models using ~5000–10,000 SNPs provided predictive abilities equivalent
to using all 13,787 and 19,506 SNPs genotyped in the E. benthamii and E. pellita populations, respectively. No
difference was detected in predictive ability when different sets of SNPs were utilized, based on position (equidistantly
genome-wide, inside genes, linkage disequilibrium pruned or on single chromosomes), as long as the total number of
SNPs used was above ~5000. Predictive abilities obtained by removing relatedness between training and validation
sets fell near zero for E. benthamii and were halved for E. pellita. These results corroborate the current view that
relatedness is the main driver of genomic prediction, although some short-range historical linkage disequilibrium (LD)
was likely captured for E. pellita. A GWAS identified only one significant association for volume growth in E. pellita,
illustrating the fact that while genome-wide regression is able to account for large proportions of the heritability, very
little or none of it is captured into significant associations using GWAS in breeding populations of the size evaluated in
this study.
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Conclusions: This study provides further experimental data supporting positive prospects of using genome-wide data
to capture large proportions of trait heritability and predict growth traits in trees with accuracies equal or better than
those attainable by phenotypic selection. Additionally, our results document the superiority of the whole-genome
regression approach in accounting for large proportions of the heritability of complex traits such as growth in contrast
to the limited value of the local GWAS approach toward breeding applications in forest trees.
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Background
Species of Eucalyptus are the most planted hardwood
trees worldwide due to their multipurpose applica-
tions (e.g. pulp, paper, solid wood and bioenergy), su-
perior growth, high adaptability and wood quality [1].
Amongst the 800 catalogued species of Eucalyptus
L’Hér. (Myrtaceae), the “big nine” species within sub-
genus Symphyomyrtus account for over 95% of the
world’s eucalypt plantations [2]. Within this group,
Eucalyptus grandis Hill ex Maiden, E. urophylla S.T.
Blake, and E. camaldulensis Dehnh are the most eco-
nomically prominent ones in tropical regions, whereas
E. globulus Labill and E. nitens H. Deane & Maiden
are notable in temperate regions [1]. The extensive
intra- and interspecific diversity and sexual compati-
bility across species of Symphyomyrtus has been a
major advantage to breeders, as it allows rapid blend-
ing of gene pools that evolved separately under con-
trasting environmental pressures [3]. Nevertheless,
there is still ample opportunities for expanding the
use of some secondary species of Symphyomyrtus not
included among the “big nine”, to develop uniquely
adapted genetic material that combine rapid growth,
good wood quality and adaptation to environmental
stresses such as frost, heat and drought.
Eucalyptus benthamii Maiden & Cambage (Camden

white gum), a species of restricted occurrence in its
natural range in Australia [4], has showed great po-
tential to expand eucalypt commercial plantations into
subtropical regions subject to periodic frosts [5]. Eu-
calyptus benthamii planted as pure species or in
hybrid combinations has received increasing attention
in subtropical regions of southern Brazil and south-
eastern USA [6, 7]. Another species of marginal im-
portance until recently, Eucalyptus pellita F. Mueller
(large-fruited red mahogany), is highly suitable for
growth in year-round humid lowland equatorial cli-
mates under high temperatures, showing a particularly
high resistance to pathogens. Eucalyptus pellita is en-
demic to tropical regions in two disjoint natural for-
ests, in southern New Guinea and in northern
Australia [8]. It has shown fast growth in hybrid
combination with E. grandis providing resistance to a
number of fungal diseases [9].

Genomic selection (GS) was proposed by Meuwissen
et al. [10], and has gained increasing interest among for-
est tree breeders. This predictive methodology provides
an alternative approach to using marker-assisted selec-
tion (MAS) that relies on previously detected discrete
quantitative trait loci (QTL) in bi-parental mapping and
association genetics experiments. In forest trees, gen-
omic prediction began to be addressed by simulation
studies [11, 12] followed by experimental reports in
Pinus [13] and Eucalyptus [14] demonstrating the posi-
tive prospects of this breeding method. Since then, a
number of experimental genomic prediction studies have
confirmed the potential of GS in conifer species, includ-
ing Pinus [15–17] and Picea [18–21]. Recently, genomic
prediction models were evaluated across generations in
maritime pine (Pinus pinaster), [22, 23] demonstrating
even more encouraging perspectives of this novel ap-
proach to accelerate breeding of forest trees.
Several parameters were shown to affect GS prediction

accuracy in simulation studies, such as the number of
QTLs controlling the trait, trait heritability, the size of
the training population, number of markers and the ef-
fective population size (Ne) of the target population [11].
If an adequate density of markers is provided for a given
Ne, it is expected that most QTL will be in LD with at
least one marker and will be captured in predictive
models. Consequently, high-throughput and low-cost
genotyping platforms constitute an essential tool to
apply GS. The reduction of the effective population size
leads to increased relatedness between individuals and
more extensive LD in the population. Markers fitted in a
GS model will capture not only LD but also relatedness
between individuals in the training and validation sets.
An increase in prediction ability with enhanced related-
ness among the training and validation sets was shown
early on from simulation studies [24], and underscored
in all recent reviews on the perspectives GS in plant and
domestic animals breeding [25, 26]. Phenotypes of indi-
viduals closely related to the training population will be
better predicted over distantly related individuals.
In this study, we report the development of gen-

omic prediction models for growth traits in two
breeding populations of E. benthamii (n =505) and E.
pellita (n =732) using SNP data generated with the
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multi-species Eucalyptus EUChip60k SNP chip. Using
a genomic relationship matrix (GRM) we compared
the pedigree and genome-estimated breeding values
and narrow-sense heritabilities in the two populations.
Different Bayesian methods for predicting growth
traits were compared. The impact of variable numbers
of SNPs, different SNP sampling methods based on
their position in the genome, and the impact of re-
latedness on genomic prediction were also evaluated.
Finally, a genome-wide association analysis was car-
ried out on the same datasets to evaluate what would
be the ability to capture heritability and detect
discrete associations for complex growth traits in an
operational breeding population under selection.

Methods
Populations and phenotypic data
This study was carried out on progeny trials of popula-
tions of E. benthamii and E. pellita that are part of the
breeding program of EMBRAPA (Brazilian Agricultural
Research Corporation). The E. benthamii progeny trial
was composed of 40 seed sources, being 36 open-
pollinated (OP) half-sib families from wild Australian
populations and four bulked seed sources (two from
Australian populations, one from a first generation
breeding population established in Colombo, PR, Brazil
and one from a second-generation breeding population
planted in Candói, PR, Brazil). The complete E. bentha-
mii trial involved 2000 trees planted in May 2007 in
Candói, in a randomized complete block design with 50
blocks in single-tree plots (one progeny individual per
block for each one of the 40 seed sources). The experi-
ment was thinned three times (removing 600 trees in
March 2009, 700 in March 2010 and approximately 200
in December 2010) to eliminate trees with poor growth,
malformed stems and damaged plants. The population
underwent 25 heavy frosts recorded (temperature vary-
ing from −3.4 to −12.6 °C) in 58 months, between plant-
ing (May 2007) and field evaluation (February 2012) that
killed or affected the growth of many trees which were
therefore culled. For E. benthamii 508 trees were ultim-
ately phenotyped at age 56 months for the following
growth traits: Diameter at Breast Height (DBH, cm),
Total Height (HT, m) and Wood Volume (WV, m3)
(Table 1). The E. pellita breeding trial was composed of
24 OP maternal families derived from a second-
generation clonal seed orchard located in Mareeba,
Queensland, Australia, established with selections from
four provenances in the areas of Kiriwo, Serisa and Keru
in the Morehead district of the Western Province of Pa-
pua New Guinea. The experimental design was a ran-
domized complete block design with 24 families and 40
blocks in single-tree plots (960 trees total) planted in
February 2010 in Rio Verde, GO, Brazil. For E. pellita

phenotypic evaluations were made at age 42 months
(September 2013) for DBH, HT and WV (Table 1).

Genotyping and filtering
A total of 552 E. benthamii trees and 771 E. pellita trees
were genotyped using the Eucalyptus Illumina Infinium
EUChip60K [27]. The genotypic data were filtered to re-
move SNPs with call rate (CR) ≤ 90% and monomorphic
SNPs, therefore keeping all SNPs with Minimum Allele
Frequency (MAF) > 0 in the analysis. Because trees were
genotyped before the final field measurements, some
genotyped trees died, so that ultimately 505 individuals
of E. benthamii and 732 of E. pellita had full genotypic
and phenotypic data for further analyses. An alternative
SNP dataset was also generated by keeping only SNPs
MAF ≥0.05. With the objective of evaluating the effect
of LD-pruning on predictions, polymorphic SNPs
(CR ≥ 90% and MAF > 0 or MAF ≥ 0.05) were pruned
based on pairwise linkage disequilibrium (LD) estimates
using PLINK v1.9 [28], to generate a pruned subset of
SNPs that are in approximate linkage equilibrium (LE).
The LD based SNP pruning method was applied with a
window size of 100 Kbp, shifting the window by one
SNP at the end of each step and removing one SNP from
a pair of SNPs if LD was greater than 0.2 (plink command:
–indep-pairwise 100 kb 1 0.2).

Effective population size estimation, population structure
and LD analyses
Effective population size (Ne) was estimated based on the
linkage disequilibrium (LDNe) method implemented in
NeEstimator v2.01 [29] for each species. A random mating
model and MAF < 0.05 was used for excluding rare alleles
in LDNe. Confidence intervals for these estimates were ob-
tained using the parametric method in NeEstimator,

Table 1 General attributes of the breeding populations and
trials studied

Phenotypic data E. benthamii E. pellita

Total number of trees in trial 2000 960

Total number of open pollinated (OP)
families

40 24

Number of blocks 50 40

Number of individuals/OP family 10 32

Number of trees measured 508 747

Number of trees used in the analyses 505 732

Effective population size (Ne) estimated
from LD data

50 35

Age at phenotyping (yr) 4.6 3.5

Site Candói, PR Rio Verde, GO

Coordinates 25o43’00″S/
52o11’00″W

25o36’00″S/
52o03’00″W

Number of traits 3 3
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where the number of independent alleles is used as the de-
gree of freedom in a chi-square distribution. The genetic
structure for both eucalypt populations estimated based
on a Bayesian clustering method was determined with
STRUCTURE v2.2.4 [30] using only the LD-pruned SNPs
set. The individual structures were classified in K clusters
according to genetic similarity. The admixture model was
applied, with correlated allelic frequencies, using no previ-
ous population information. The number of tested clusters
(K) ranged from 1 to 10, and each K was replicated 10
times. The burn-in period and the number of Markov
Chain Monte Carlo (MCMC) replications were 100,000
and 200,000, respectively. The number of genetic groups
was determined based on the criteria proposed by Evanno
et al. [31] using the program STRUCTURE HARVESTER
v0.6.93 [32]. The software CLUMPP v1.1.2 [33] was used
to find consensus among the 10 most probable K interac-
tions. Principal component analysis (PCA) was performed
using SNPRelate R package [34], with only the LD-pruned
SNPs set. Analyses of linkage disequilibrium were per-
formed using LDcorSV [35]. Pairwise estimates of LD
were calculated by the classical measure of the squared
correlation of allele frequencies at diallelic loci (r2), as well
as correcting for bias due to relatedness and population
structure (r2VS), and adjusting it independently for re-
latedness (r2V) and for population structure (r2S). To esti-
mate the adjusted LD, the genomic relationship matrix
(GRM) was computed using the Powell method [36] im-
plemented in R. The population structure results were
based on the most probable value of K (K = 2). The LD
decay of r2 with distance in Kbp was fitted by a nonlinear
regression model between adjacent sites using the R script
by Marroni et al. [37]. To visualize patterns of LD decay
in the two eucalypts species, all the LD estimates (r2, r2V,
r2S, r2VS) were plotted up to a 100 Kbp distance.

Genomic and pedigree-based breeding value predictions
Prediction of breeding values by best linear unbiased pre-
diction (BLUP) [38] based on pedigree information
(ABLUP) was calculated using the expected genetic rela-
tionship between individuals. For the genomic estimated
breeding values the individual SNPs had their effects esti-
mated by adjusting all the allelic effects simultaneously
using Genomic BLUP (GBLUP) frequentist [39]. A 10-fold
cross-validation approach was used, defined as a random
subsampling partitioning of the data for each trait into
two subsets. The first subset with 90% of the individuals
was used as a training population to estimate the marker
effects. The second subset with the remaining 10% was
used as validation population, and had their phenotypes
predicted based on the marker effects estimated in the
training population. This process was repeated 10 times,
randomly selecting in each fold a different set of samples
as the validation population, until all individuals had their

phenotypes predicted and validated. Analyses of each trait
were carried out using the package rrBLUP [40] with the
following mixed linear model:

y ¼ Xbþ Zaþ e

where y is the phenotypic measure of the trait being an-
alyzed; X and Z are incidence matrices for the vectors
for parameters b and a, respectively; b is a vector of
fixed block effects; a is a vector of random additive ef-
fects and e is the random residual effect. The variance
structure of the model for pedigree-estimated breeding
values or simply estimated breeding values (EBVs) was
calculated with a

e

N 0;Aσ2a
� �

and the genomic-estimated
breeding values (GEBVs) with a

e

N 0;Gσ2a
� �

; where A is
a matrix of additive genetic relationships among indi-
viduals and G is a GRM estimated using the method
proposed by VanRaden [39]. The predictive ability
(rgy) was estimated as the correlation between the ob-
served and the genomic-estimated breeding values
(r(y,GEBV)). The narrow-sense heritability (h2) was
calculated as the ratio of the additive variance σ2a to
the phenotypic variance σ2y h2 ¼ σ2a=σ

2
y

� �

.

Bayesian methods
The SNP effects were estimated using five different
Bayesian genome-wide regression models, namely Bayes-
ian Ridge-Regression (BRR), Bayes A, Bayes B, Bayes Cπ
and Bayesian Lasso (BL) as implemented in the BGLR
package [41]. For these methods the genotypic informa-
tion was fitted using the following base model:

y ¼ Xbþ Zmþ e

where y is the vector of observations representing the
trait of interest; b is a vector with intercept and fixed
block effects; m is a vector of random markers effects
(m = [m1 … mk]

T); X and Z are incidence matrices for
the vectors for parameters b and m, respectively; e is a
vector of the random error effects. The Z matrix takes
values 2, 1 or 0 if the genotype of the ith marker is AA,
Aa and aa, respectively, where a is the least frequent al-
lele. Missing genotypes were replaced by the mean of
the genotype for the given SNP. In all Bayesian models it
was assumed that:

y b;m; σ2e
e

N Xbþ Zm; Iσ2e
� �

�

�

�

b
e

N 0; 106I
� �

e σ2eeN 0; Iσ2e
� ��

�

σ2e Se; νe
e

χ−2 νe; Seð Þ
�

�

�

The assumptions of the m vector depend on the prior
adopted. The respective priors used in the linear
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regression coefficients for each model are described in
Additional file 1. To estimate the parameters of the
models a total 200,000 iterations of MCMC were used
with a burn-in period of 50,000 cycles and every fifth sam-
ple was kept. For all these models, a 10-fold cross-
validation approach was applied as described previously.

Genomic predictions using selected SNPs subsets
The Bayesian Ridge-Regression (BRR) model was fitted
using different subsets of SNPs of various sizes and se-
lected using different criteria as described below. Initially
a random sampling of SNPs stratified by chromosome
was tested using (i) a cumulative approach, such that
from the smallest subset of SNPs tested, additional ones
were added to the previous set and (ii) a non-cumulative
fashion, where different final sets of SNPs were ran-
domly selected from all available SNPs. Next, variable
positions of SNPs were tested, including: (iii) evenly
spaced SNPs across the genome; (iv) only SNPs within
gene models annotated in the Eucalyptus reference gen-
ome [42]; (v) SNPs based on LD-pruning and (vi) SNPs
from individual chromosomes. For each subset we esti-
mated the predictive ability and genomic heritability.
First, we evaluated models using different SNP subsets
(from all 13,787 and 19,506 SNPs available for E. bentha-
mii and E. pellita respectively, down to 2000 in smaller
increments of 1000 SNPs, 1500, 1250, 1000, 750, 500,
300, 250, 200, 150 and 100 SNPs) with either a cumula-
tive (i) or non-cumulative (ii) sampling of SNPs. For
each number of SNPs and sampling strategy, ten repli-
cates were performed. The evenly spaced SNPs subsets
(iii) were created using different target windows sizes,
with 1 SNPs every 10, 50, 100, 250, 500 Kbp and 1 Mbp,
resulting in variable average distances between SNPs
(Additional file 2: Table S1). For the within-gene SNP
subset (iv), all SNPs located within annotated gene
models (genic regions) and SNPs located outside of
annotated gene models (intergenic regions) in the Euca-
lyptus genome were evaluated. To create the subsets of
SNPs selected based on LD pruning (v), SNPs in ap-
proximate LE (r2 ≤ 0.2) with each other were chosen
using PLINK v1.9 [28]. Finally, in the chromosome-
specific SNP subsets (vi) the prediction models were fit-
ted independently using only SNPs on each chromosome
separately.

Genomic prediction controlling for relatedness between
training and validation sets
To assess the relative impact of relatedness versus his-
torical LD on the predictive ability, BRR prediction
models were fitted minimizing relatedness between
training and validation populations. Individuals were split
into training and validation sets based on a Principal
Component Analysis (PCA) or STRUCTURE analysis

(K = 2). In E. benthamii, 21 outlier individuals were re-
moved and the remaining individuals were split into two
subpopulations based on maximum genetic distance, one
with 310 trees and the other with 174. For E. pellita, 26
outliers were excluded and the remaining 706 individuals
were split into two subpopulations with 192 and 514 trees.
As a control, a 10-fold cross-validation in each direction,
with the same numbers of individuals used in the split
populations, was carried out by random allocation of the
individuals to training and validation sets.

Genome-wide association analysis
A mixed linear model association (MLMA) analysis was
performed using the GCTA software [43]. This associ-
ation analysis was fitted using the following base model:

y ¼ Xbþ g þ e

where y is the phenotype; b is a vector of fixed effects in-
cluding intercept, block, population structure and SNPs
to be tested for association; X is the incidence matrix for
the vectors for the parameters b; g is the polygenic effect
(random effect) captured by the GRM calculated using
all SNPs and e is the random residual effect. The covari-
ate computed for population structure was based on the
fact that the population had two subpopulations (K = 2).
The variance structure of the MLMA model were g

e

N
0;Gσ2g

� �

; e
e

N 0; Iσ2e
� �

; cov(g, e′) = 0, where G is the
GRM between individuals calculated as described earlier
[44] and I is the identity matrix. For comparisons with
the MLMA model, we also performed a linear model
based association (LMA) analysis fitting each SNP inde-
pendently. This single-SNP association analysis was car-
ried out using PLINK [28] using a similar model as
MLMA, except for the exclusion of the polygenic effect
(g). The Bonferroni procedure was implemented to con-
trol for type I error at α = 0.05 and the Benjamini &
Hochberg procedure [45] was used to control for false
discovery at a rate FDR = 5%. The quantile-quantile
(Q-Q) and Manhattan plots were generated using the
qqman R package [46].

Results
SNP genotyping
Of the 60,904 SNPs in the EUChip60K, 50,303
(82.6%) and 49,518 (81.3%) were genotyped for E.
benthamii and E. pellita respectively (Additional file
2: Figure S1A), by using the phylogenetically appro-
priate SNP clustering file for SNP calling [27], and
filtering for SNPs with CR ≥ 90%. After selecting
polymorphic SNPs (MAF > 0) 13,787 and 19,506
SNPs were retained for further analyses with a final
rate of missing data of 1.4% and 0.8% for E. bentha-
mii and E. pellita, respectively. An alternative SNP
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dataset was also used by filtering out SNPs with
MAF < 0.05 to investigate whether removing lower
frequency SNPs had an impact on genomic predic-
tions. A total of 7563 SNPs for E. benthamii and
12,483 SNPs for E. pellita were retained for this alter-
native set.

Linkage disequilibrium and estimated effective
population sizes
Linkage disequilibrium (r2) was calculated for all pair-
wise physical distances among all the polymorphic SNPs
(MAF > 0) on each chromosome separately. The aver-
age, genome-wide LD for pair of SNPs within a 100 Kbp
distance from each other was 0.141 and 0.271 for E.
benthamii and E. pellita, respectively. When correcting
the LD for biases due to relatedness and population
structure (r2VS), the average estimates were reduced to
0.096 and 0.178 (Additional file 2: Table S2). The
genome-wide LD decayed to an r2 below 0.2 within 15.6
Kb and 70.6 Kb (red line), while r2VS showed a slightly
faster decay within 7.7 and 25.5 Kb (pink dots) for E.
benthamii and E. pellita, respectively (Fig. 1a and c).
Linkage disequilibrium decayed to <0.2 for r2S (correct-
ing for population structure) within 14.7 and 66.2 Kb
(green line), while r2V (correcting for relatedness)
showed a slightly faster decay within 7.7 and 25.6 Kb
(blue line), very similar to r2VS for E. benthamii and E.
pellita, respectively (Fig. 1a and c, Additional file 2:
Table S2). The faster LD decay for r2V or r2VS confirms
the strong effect of genetic relationship in these breeding
populations. Slightly different patterns of LD decay were
observed when including the SNPs with MAF < 0.05
(Fig. 1a and c, MAF > 0) or excluding those (Fig. 1b and
d). Datasets without the SNPs with MAF < 0.05 showed
a slightly higher pairwise r2, with corrected LD (r2VS)
decaying to r2 = 0.2 at 14.5 Kb in E. benthamii and 35.8
Kb in E. pellita (Fig. 1b and d, Additional file 2: Table
S2). Estimated effective populations sizes based on LD
data were Ne = 50 and Ne = 35 for E. benthamii and E.
pellita, respectively (Table 1).

Genomic and pedigree-estimated heritabilities
For E. benthamii the pedigree-based narrow-sense heri-
tabilities (h2) estimated for DBH and WV were 0.326
and 0.297, and considerably lower for HT (0.088). Esti-
mates of genomic heritabilities varied depending on the
method used, with GBLUP and BL yielding considerably
lower heritabilities than the pedigree-based ones and
those obtained using other Bayesian methods (Table 2).
When using Bayes B and BRR, heritabilities were higher
(0.155 and 0.190). Estimates of variance components are
reported in Additional file 3. In E. benthamii, the vari-
ance components had similar estimates with all methods
used. The pedigree-based narrow-sense heritabilities

estimated for E. pellita were zero for DBH and WV, and
nearly zero for HT (0.019), while the genomic estimated
heritabilities based on SNP data were considerably
higher (e.g. 0.414–0.527 for DBH using the different
methods) (Table 2). This unexpected result strongly sug-
gests that the informed pedigrees for the E. pellita popu-
lation do not match the true relationships that the SNP
data correctly recovered. Differently from E. benthamii,
in E. pellita the genomic heritabilities had similar esti-
mates for all methods used. Average heritabilities for E.
pellita considering all genomic methods (~0.47 for DBH;
~0.29 for HT; ~0.44 for WV) were higher for all traits,
compared to those estimated for E. benthamii (~0.23
for DBH; ~0.09 for HT; ~0.20 for WV). Heritabilities
estimated including or not lower frequency SNPs
(MAF < 0.05) in the genomic relationship matrix
were equivalent for both species, varying within the
standard error of the estimates (Table 2). Genomic
heritabilites captured large proportions of the pedi-
gree-based heritability in E. benthamii. The Bayesian
methods on average captured 73% and 69% of the
pedigree-heritability for DBH and WV, respectively. For
HT, however, genomic heritabilities varied considerably de-
pending on the method, at times surpassing the pedigree-
based estimate. No assessment was possible for E. pellita
due to the inconsistency of the pedigree data that provided
no valid estimate of pedigree-based heritability.

Genomic predictions
Consistent with expectations, predictive abilities (rgy)
followed the same trend as the estimated genomic heri-
tabilities (Table 2). Predictive abilities estimated using
different Bayesian methods produced equivalent esti-
mates to those obtained using GBLUP and pedigree-
based. For the E. benthamii population both pedigree
and genomic predictive abilities were generally low, aver-
aging 0.16 for DBH, 0.14 for WV and close to zero for
HT across all methods. For E. pellita, genomic predictive
abilities were considerably higher, averaging 0.44 for
DBH, 0.34 for HT and 0.42 for WV, suggesting the pres-
ence of a larger amount of additive genetic variation for
these traits in this breeding population (Table 2). No dif-
ference was observed in the predictive abilities when
using SNP sets including or not lower frequency SNPs.
During cross-validation of genomic predictions a consid-
erable variation was observed in the predictive abilities
estimated across the different folds (Additional file 2:
Table S3). This variation was larger for E. benthamii,
where the predictive ability across folds ranged from a
low −0.058 to 0.415 using BRR for DBH, with an average
of 0.162 with a standard error (SE) of ±0.044. In E. pel-
lita, the variation was smaller, with estimates ranging
from 0.358 to 0.550 for DBH, with the ten-fold average
equal to 0.441 ± 0.019 (Additional file 2: Table S3).
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Impact of variable numbers of SNPs on genomic
predictions
Based on results of the different prediction methods, we
chose to use only BRR to evaluate the impact of different
SNPs sampling schemes on the predictive abilities. Subsets
with progressively increasing randomly selected num-
bers of SNPs stratified by chromosome were used to
estimate genomic predictions. Estimates of predictive
ability and heritability increased rapidly with increas-
ing number of SNPs up to ~3000 for all traits in both
populations, (Table 3, Fig. 2). Predictive abilities

plateaued at approximately 5000 SNPs although heri-
tabilities and predictive abilities still increased by 5 to
10% after that. Additionally, when less than 5000
SNPs were used, a much larger variation in predictive
ability was seen across the validation folds. These re-
sults indicate that at least in these populations,
models with ~5000 to 10,000 SNPs will provide pre-
dictive abilities equivalent to those obtainable by
using all the available SNPs. The non-cumulative
sampling approach yielded essentially the same results
with a plateau at ~5000 SNPs, but showed a more

Fig. 1 Genome-wide pattern of Linkage Disequilibrium (LD) decay up to 100 Kbp pairwise SNP distances. Decay curves of the classical measure
of the squared correlation of allele frequencies at diallelic loci (r2), adjusted for population structure (r2S) and relatedness (r2V), and adjusted for
both (r2VS). a Plot with SNPs filtered using MAF > 0 and b MAF ≥ 5% in E. benthamii. c Plot with SNPs filtered using MAF > 0 and d MAF ≥ 0.05
in E. pellita

Müller et al. BMC Genomics  (2017) 18:524 Page 7 of 17



Ta
b
le

2
Es
tim

at
es

of
na
rr
ow

-s
en

se
he

rit
ab
ili
tie
s
(h

2 )
an
d
pr
ed

ic
tiv
e
ab
ili
tie
s
(r g

y)
,o
bt
ai
ne

d
us
in
g
pe

di
gr
ee

da
ta

(A
BL
U
P)

an
d
ge

no
m
ic
da
ta

(s
ev
er
al
m
et
ho

ds
),
fo
r
th
e
E.
be
nt
ha

m
ii

an
d
E.
pe
lli
ta

br
ee
di
ng

po
pu

la
tio

ns

M
et
ho

d
Fi
lte
r

E.
be
nt
ha

m
ii

E.
pe
lli
ta

D
BH

H
T

W
V

D
BH

H
T

W
V

h2
r g
y
(S
E)

h2
r g
y
(S
E)

h2
r g
y
(S
E)

h2
r g
y
(S
E)

h2
r g
y
(S
E)

h2
r g
y
(S
E)

A
BL
U
P

0.
32
6
(N
A
)

0.
14
8
(0
.0
45
)

0.
08
8
(N
A
)

0.
09
0
(0
.0
33
)

0.
29
7
(N
A
)

0.
14
2
(0
.0
39
)

0.
00
0
(N
A
)

-
0.
03
0
(0
.0
28
)

0.
01
9
(N
A
)

0.
04
0
(0
.0
28
)

0.
00
0
(N
A
)

-
0.
00
9
(0
.0
26
)

G
BL
U
P

M
A
F
>
0

0.
18
1
(N
A
)

0.
15
7
(0
.0
44
)

0.
00
0
(N
A
)

0.
00
6
(0
.0
44
)

0.
14
7
(N
A
)

0.
14
1
(0
.0
41
)

0.
46
6
(N
A
)

0.
43
9
(0
.0
19
)

0.
26
0
(N
A
)

0.
34
2
(0
.0
42
)

0.
42
4
(N
A
)

0.
42
4
(0
.0
28
)

Ba
ye
s
A

0.
20
2
(0
.0
17
)

0.
16
0
(0
.0
45
)

0.
05
8
(0
.0
16
)

0.
01
0
(0
.0
40
)

0.
16
5
(0
.0
20
)

0.
14
1
(0
.0
41
)

0.
46
5
(0
.0
08
)

0.
44
0
(0
.0
19
)

0.
28
0
(0
.0
11
)

0.
34
2
(0
.0
42
)

0.
42
8
(0
.0
08
)

0.
42
4
(0
.0
28
)

Ba
ye
s
B

0.
28
7
(0
.0
32
)

0.
16
6
(0
.0
45
)

0.
15
5
(0
.0
52
)

0.
00
3
(0
.0
41
)

0.
28
4
(0
.0
28
)

0.
14
6
(0
.0
38
)

0.
52
7
(0
.0
20
)

0.
43
9
(0
.0
19
)

0.
34
1
(0
.0
17
)

0.
34
2
(0
.0
42
)

0.
51
7
(0
.0
25
)

0.
42
5
(0
.0
28
)

Ba
ye
s
C
π

0.
26
7
(0
.0
17
)

0.
15
8
(0
.0
44
)

0.
10
9
(0
.0
07
)

0.
01
6
(0
.0
39
)

0.
23
7
(0
.0
14
)

0.
14
8
(0
.0
39
)

0.
48
0
(0
.0
07
)

0.
43
9
(0
.0
19
)

0.
30
3
(0
.0
09
)

0.
34
2
(0
.0
42
)

0.
45
3
(0
.0
07
)

0.
42
3
(0
.0
28
)

BL
0.
13
3
(0
.0
19
)

0.
15
5
(0
.0
45
)

0.
04
4
(0
.0
04
)

0.
01
0
(0
.0
42
)

0.
10
3
(0
.0
11
)

0.
14
0
(0
.0
41
)

0.
41
4
(0
.0
21
)

0.
43
4
(0
.0
21
)

0.
24
2
(0
.0
14
)

0.
33
8
(0
.0
43
)

0.
40
6
(0
.0
07
)

0.
42
4
(0
.0
28
)

BR
R

0.
26
7
(0
.0
08
)

0.
16
2
(0
.0
44
)

0.
19
0
(0
.0
05
)

0.
02
2
(0
.0
36
)

0.
24
3
(0
.0
08
)

0.
14
6
(0
.0
39
)

0.
45
5
(0
.0
05
)

0.
44
1
(0
.0
19
)

0.
28
3
(0
.0
08
)

0.
34
2
(0
.0
42
)

0.
41
8
(0
.0
05
)

0.
42
5
(0
.0
28
)

G
BL
U
P

M
A
F
≥
0.
05

0.
17
9
(N
A
)

0.
15
3
(0
.0
44
)

0.
00
0
(N
A
)

0.
00
9
(0
.0
44
)

0.
14
4
(N
A
)

0.
13
8
(0
.0
41
)

0.
45
7
(N
A
)

0.
43
7
(0
.0
20
)

0.
25
4
(N
A
)

0.
34
0
(0
.0
42
)

0.
41
9
(N
A
)

0.
42
2
(0
.0
28
)

Ba
ye
s
A

0.
21
4
(0
.0
13
)

0.
15
8
(0
.0
45
)

0.
07
3
(0
.0
08
)

0.
02
0
(0
.0
40
)

0.
19
0
(0
.0
17
)

0.
14
4
(0
.0
41
)

0.
46
3
(0
.0
07
)

0.
43
8
(0
.0
20
)

0.
27
9
(0
.0
08
)

0.
34
0
(0
.0
42
)

0.
43
7
(0
.0
05
)

0.
42
2
(0
.0
28
)

Ba
ye
s
B

0.
35
4
(0
.0
41
)

0.
16
2
(0
.0
45
)

0.
11
0
(0
.0
16
)

0.
01
9
(0
.0
40
)

0.
26
9
(0
.0
29
)

0.
14
6
(0
.0
40
)

0.
55
1
(0
.0
20
)

0.
43
8
(0
.0
19
)

0.
39
3
(0
.0
36
)

0.
33
9
(0
.0
42
)

0.
50
1
(0
.0
10
)

0.
42
3
(0
.0
28
)

Ba
ye
s
C
π

0.
25
9
(0
.0
11
)

0.
15
7
(0
.0
46
)

0.
11
6
(0
.0
06
)

0.
02
0
(0
.0
39
)

0.
23
2
(0
.0
08
)

0.
14
3
(0
.0
40
)

0.
48
5
(0
.0
05
)

0.
43
7
(0
.0
20
)

0.
30
0
(0
.0
08
)

0.
34
0
(0
.0
42
)

0.
44
9
(0
.0
07
)

0.
42
3
(0
.0
28
)

BL
0.
14
3
(0
.0
23
)

0.
15
3
(0
.0
43
)

0.
04
5
(0
.0
03
)

0.
02
0
(0
.0
41
)

0.
10
1
(0
.0
09
)

0.
13
4
(0
.0
41
)

0.
40
8
(0
.0
09
)

0.
42
7
(0
.0
23
)

0.
24
4
(0
.0
10
)

0.
33
9
(0
.0
41
)

0.
40
3
(0
.0
06
)

0.
42
2
(0
.0
29
)

BR
R

0.
26
0
(0
.0
07
)

0.
15
8
(0
.0
44
)

0.
18
4
(0
.0
04
)

0.
02
5
(0
.0
36
)

0.
23
9
(0
.0
06
)

0.
14
3
(0
.0
40
)

0.
44
3
(0
.0
05
)

0.
43
7
(0
.0
20
)

0.
28
0
(0
.0
08
)

0.
34
1
(0
.0
42
)

0.
41
5
(0
.0
06
)

0.
42
2
(0
.0
28
)

N
A
-
Th

e
st
an

da
rd

er
ro
r
of

th
e
he

rit
ab

ili
ty

co
ul
d
no

t
be

es
tim

at
ed

us
in
g
rr
BL

U
P

Pe
di
gr
ee

BL
U
P
(A
BL

U
P,

Pe
di
gr
ee

Be
st

Li
ne

ar
U
nb

ia
se
d
Pr
ed

ic
to
r)
,G

en
om

ic
BL
U
P
(G
BL

U
P,

G
en

om
ic
Be

st
Li
ne

ar
U
nb

ia
se
d
Pr
ed

ic
to
r)
,B

L
(B
ay
es
ia
n
La
ss
o)
,B

RR
(B
ay
es
ia
n
Ri
dg

e-
Re

gr
es
si
on

),
M
A
F
(M

in
im

um
A
lle
le

Fr
eq

ue
nc
y)
,

D
BH

,c
m

(D
ia
m
et
er

at
Br
ea
st

H
ei
gh

t)
,H

T,
m

(T
ot
al

H
ei
gh

t)
an

d
W
V,

m
3
(W

oo
d
Vo

lu
m
e)
,S
E
(S
ta
nd

ar
d
Er
ro
r)

Müller et al. BMC Genomics  (2017) 18:524 Page 8 of 17



Ta
b
le

3
G
en

om
ic
es
tim

at
es

of
na
rr
ow

-s
en

se
he

rit
ab
ili
tie
s
(h

2 )
an
d
pr
ed

ic
tiv
e
ab
ili
tie
s
(r g

y)
fo
r
th
e
E.
be
nt
ha

m
ii
an
d
E.
pe
lli
ta

br
ee
di
ng

po
pu

la
tio

ns
us
in
g
di
ffe
re
nt

SN
P
sa
m
pl
in
g

m
et
ho

ds

SN
P
sa
m
pl
in
g
m
et
ho

d
E.
be
nt
ha

m
ii

E.
pe
lli
ta

N
um

be
r

of
SN

Ps
D
BH

W
V

N
um

be
r

of
SN

Ps
D
BH

H
T

W
V

h2
(S
E)

r g
y
(S
E)

h2
(S
E)

r g
y
(S
E)

h2
(S
E)

r g
y
(S
E)

h2
(S
E)

r g
y
(S
E)

h2
(S
E)

r g
y
(S
E)

A
ll
SN

Ps
13
,7
87

0.
26
7
(0
.0
08
)

0.
16
2
(0
.0
44
)

0.
24
3
(0
.0
08
)

0.
14
6
(0
.0
39
)

19
,5
06

0.
45
5
(0
.0
05
)

0.
44
1
(0
.0
19
)

0.
28
3
(0
.0
08
)

0.
34
2
(0
.0
42
)

0.
41
8
(0
.0
05
)

0.
42
5
(0
.0
28
)

Ra
nd

om
ly
se
le
ct
ed

50
00

0.
25
0
(0
.0
03
)

0.
16
3
(0
.0
04
)

0.
23
4
(0
.0
03
)

0.
14
8
(0
.0
04
)

50
00

0.
41
0
(0
.0
06
)

0.
42
7
(0
.0
03
)

0.
26
9
(0
.0
03
)

0.
33
6
(0
.0
02
)

0.
39
0
(0
.0
04
)

0.
41
6
(0
.0
03
)

Ra
nd

om
ly
se
le
ct
ed

30
00

0.
23
9
(0
.0
05
)

0.
15
3
(0
.0
08
)

0.
22
6
(0
.0
04
)

0.
13
7
(0
.0
08
)

30
00

0.
38
5
(0
.0
06
)

0.
41
7
(0
.0
03
)

0.
25
4
(0
.0
05
)

0.
32
8
(0
.0
03
)

0.
36
3
(0
.0
06
)

0.
40
6
(0
.0
03
)

Ra
nd

om
ly
se
le
ct
ed

15
00

0.
22
9
(0
.0
05
)

0.
15
3
(0
.0
08
)

0.
21
7
(0
.0
05
)

0.
13
7
(0
.0
08
)

15
00

0.
33
4
(0
.0
05
)

0.
39
7
(0
.0
03
)

0.
23
2
(0
.0
04
)

0.
31
3
(0
.0
03
)

0.
32
2
(0
.0
04
)

0.
38
9
(0
.0
03
)

Ra
nd

om
ly
se
le
ct
ed

50
0

0.
18
1
(0
.0
06
)

0.
10
4
(0
.0
17
)

0.
17
4
(0
.0
05
)

0.
09
1
(0
.0
15
)

50
0

0.
27
0
(0
.0
08
)

0.
36
4
(0
.0
06
)

0.
20
3
(0
.0
03
)

0.
29
1
(0
.0
06
)

0.
26
4
(0
.0
08
)

0.
36
1
(0
.0
06
)

Ev
en

ly
sp
ac
ed

10
Kb

p
10
,8
37

0.
26
4
(0
.0
07
)

0.
15
9
(0
.0
46
)

0.
23
5
(0
.0
07
)

0.
14
1
(0
.0
41
)

13
,9
46

0.
45
2
(0
.0
04
)

0.
43
6
(0
.0
19
)

0.
27
2
(0
.0
09
)

0.
34
0
(0
.0
42
)

0.
41
5
(0
.0
10
)

0.
42
1
(0
.0
28
)

Ev
en

ly
sp
ac
ed

50
Kb

p
68
67

0.
25
3
(0
.0
07
)

0.
15
3
(0
.0
41
)

0.
24
2
(0
.0
06
)

0.
13
5
(0
.0
35
)

76
19

0.
47
2
(0
.0
08
)

0.
44
0
(0
.0
21
)

0.
28
6
(0
.0
08
)

0.
33
9
(0
.0
43
)

0.
43
9
(0
.0
08
)

0.
42
1
(0
.0
31
)

Ev
en

ly
sp
ac
ed

10
0
Kb

p
46
34

0.
25
2
(0
.0
04
)

0.
14
6
(0
.0
44
)

0.
24
1
(0
.0
06
)

0.
14
1
(0
.0
36
)

48
46

0.
46
0
(0
.0
06
)

0.
44
2
(0
.0
24
)

0.
28
7
(0
.0
07
)

0.
33
9
(0
.0
41
)

0.
45
2
(0
.0
08
)

0.
43
2
(0
.0
31
)

Ev
en

ly
sp
ac
ed

25
0
Kb

p
22
81

0.
26
1
(0
.0
04
)

0.
16
6
(0
.0
39
)

0.
25
8
(0
.0
05
)

0.
16
0
(0
.0
29
)

22
97

0.
37
4
(0
.0
07
)

0.
41
4
(0
.0
26
)

0.
27
1
(0
.0
05
)

0.
32
8
(0
.0
42
)

0.
36
0
(0
.0
04
)

0.
40
0
(0
.0
30
)

Ev
en

ly
sp
ac
ed

50
0
Kb

p
12
03

0.
21
2
(0
.0
06
)

0.
13
1
(0
.0
53
)

0.
19
9
(0
.0
04
)

0.
11
6
(0
.0
50
)

12
04

0.
32
6
(0
.0
04
)

0.
38
8
(0
.0
26
)

0.
22
6
(0
.0
04
)

0.
30
6
(0
.0
43
)

0.
30
7
(0
.0
05
)

0.
37
8
(0
.0
33
)

Ev
en

ly
sp
ac
ed

1
M
bp

61
0

0.
19
6
(0
.0
02
)

0.
11
1
(0
.0
31
)

0.
17
8
(0
.0
03
)

0.
09
7
(0
.0
22
)

60
9

0.
25
6
(0
.0
04
)

0.
36
4
(0
.0
27
)

0.
20
3
(0
.0
04
)

0.
30
7
(0
.0
41
)

0.
26
0
(0
.0
04
)

0.
36
5
(0
.0
29
)

G
en

ic
re
gi
on

s
72
54

0.
25
1
(0
.0
08
)

0.
16
3
(0
.0
45
)

0.
24
0
(0
.0
06
)

0.
14
8
(0
.0
37
)

11
,2
12

0.
42
1
(0
.0
07
)

0.
43
3
(0
.0
20
)

0.
26
9
(0
.0
08
)

0.
34
0
(0
.0
42
)

0.
39
4
(0
.0
05
)

0.
42
6
(0
.0
28
)

In
te
rg
en

ic
re
gi
on

s
65
33

0.
25
3
(0
.0
08
)

0.
15
2
(0
.0
46
)

0.
23
2
(0
.0
05
)

0.
13
1
(0
.0
46
)

82
94

0.
44
9
(0
.0
07
)

0.
43
2
(0
.0
21
)

0.
28
9
(0
.0
09
)

0.
34
0
(0
.0
41
)

0.
41
4
(0
.0
06
)

0.
41
0
(0
.0
30
)

SN
Ps

in
LE

(L
D
-p
ru
ni
ng

)
10
,4
60

0.
27
4
(0
.0
11
)

0.
17
4
(0
.0
43
)

0.
25
6
(0
.0
10
)

0.
16
1
(0
.0
39
)

10
,9
84

0.
42
5
(0
.0
10
)

0.
42
6
(0
.0
24
)

0.
27
5
(0
.0
07
)

0.
33
9
(0
.0
41
)

0.
40
4
(0
.0
06
)

0.
41
3
(0
.0
31
)

D
BH

,c
m

(D
ia
m
et
er

at
Br
ea
st

H
ei
gh

t)
,H

T,
m

(T
ot
al

H
ei
gh

t)
an

d
W
V,

m
3
(W

oo
d
Vo

lu
m
e)
,S
E
(S
ta
nd

ar
d
Er
ro
r)

Müller et al. BMC Genomics  (2017) 18:524 Page 9 of 17



spiky pattern of increasing predictive ability as more
SNPs were fitted into the model (Additional file 2:
Figure S2).

Impact of variable position-based SNP sampling methods
Overall, no difference was seen in the estimates of heri-
tabilities and predictive abilities when different position-
based SNP sampling schemes were used, as long as the
total number of SNPs was close to 5000 (Table 3, Fig. 2).
The predictive abilities estimated with a subset of evenly
spaced SNPs every 1 Mbp windows (610 SNPs in E.
benthamii and 609 SNPs in E. pellita), were slightly
higher than those using 500 randomly sampled SNPs
(Table 3). Although these results indicate that the
number, and not the position of SNPs, determines the
accuracy of predictions, they also suggest that even dis-
tribution might provide a small-added advantage when
compared to random sampling. No significant differ-
ences in predictions were seen for any trait in both spe-
cies when SNPs located in genic versus intergenic
regions were used, and the predictions were equivalent
to those obtained by random sampling of equivalent

numbers of SNPs. The same result was observed with
the LD-pruning approach, where estimates of predictive
ability were similar either using LD-pruned SNPs in LE
or all polymorphic SNPs (Table 3). There was no differ-
ence observed in the estimates of variance components
when different sets of SNPs sampled based on position
in the genome were used (Additional file 3).
When only SNPs located on single chromosomes were

used, heritabilities dropped on average by 30–45% when
compared to using all SNPs (e.g. for WV from 0.243 to
0.177 in E. benthamii; from 0.418 to 0.244 in E. pellita),
indicating that genome-wide marker coverage is critical
for capturing the additive genetic variance (Table 4). The
predictive abilities using SNPs on single chromosomes
were similar across chromosomes and also dropped on
average by 15–30% when compared to using all SNPs
(Table 4). However, when the heritabilities and predictive
abilities provided by single chromosomes were com-
pared to those obtained using equivalent numbers of
randomly sampled SNPs subsets, no appreciable differ-
ences were seen. This result indicates that the drop in
predictive ability is most likely due to the small number

Fig. 2 Estimates of heritability (h2) and predictive ability (rgy) with increasing numbers of SNPs for different traits using a cumulative approach to
SNP sampling. a and b estimates of h2 and rgy for E. benthamii, respectively; c and d estimates of h2 and rgy for E. pellita, respectively
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of SNPs per chromosome (average of 1253 for E. bentha-
mii and 1773 for E. pellita) and not to the fact that they
are located on a single chromosome. We did not have
sufficient numbers of SNPs on a single chromosome to
compare to the larger random subsets of 3000 or 5000
to see the effect on predictions.

Impact of relatedness between training and validation sets
To assess the relative contribution of relatedness to the
predictive ability (as opposed to short-range historical
LD between SNPs and QTL), GS models were fitted try-
ing to minimize relatedness between training and valid-
ation sets based on genetic differentiation determined by
a PCA (Additional file 2: Figure S3). Predictive ability ob-
tained when minimizing relatedness was null for E.
benthamii (Fig. 3a) (e.g. from 0.108 to −0.032 for DBH)
and reduced approximately by half for E. pellita (e.g. from
0.348 to 0.154 for DBH) compared to the predictive abil-
ities achieved when the same number of individuals were
used to build the model without controlling for related-
ness (Fig. 3b). These results suggest that predictions in the
E. benthamii population were fully dependent on related-
ness, while in E. pellita some short-range SNP-QTL LD
might be contributing to predictions, although relatedness
also seems to be the main driver.

Association genetics models comparison
GWAS under an LMA model, i.e. without the intro-
duction of a GRM, resulted in a large number of as-
sociations, most or all of them likely spurious. For
example, with only block as a covariate in the
model, the number of SNPs associated with wood
volume (WV) in E. pellita was 249. When the

population structure was included as covariate, the
number of associated SNPs was reduced to 120 (Fig.
4a, red line). The quantile-quantile (Q-Q) plot exhib-
ited in Fig. 4b shows the inappropriateness of the
LMA model without the GRM, as the observed and
expected P-values differed considerably for a large
number of SNPs. When the genomic relationship
matrix, block and structure effects were included in the
MLMA model, five significant associations (Fig. 4c, blue
line) were detected using a FDR of 0.05 (Additional file 2:
Table S4). All these five significant SNPs have low allele
frequency (MAF < 0.005). Nevertheless, when a more
stringent adjustment for multiple testing was used
(Bonferroni 5%), only one significant association persisted
for volume in E. pellita (Fig. 4c, red line). In the MLMA
model adjusted for the GRM, population structure and
block covariates, most P-values were consistent with the
expected ones along the diagonal in the Q-Q plot, indicat-
ing suitability of this GWAS model (Fig. 4d). Furthermore,
the model built with GRM reduced considerably the num-
ber of significant associations, likely removing spurious
associations. The single SNP associated with volume in E.
pellita on chromosome 6 (Fig. 4c, red line) is located in an
exonic region of a gene whose function is involved in a
plant-type cell wall cellulose biosynthetic process
(Additional file 2: Table S4). In E. benthamii, no significant
associations were found when the GRM was included in
the model.

Discussion
This study makes a further step towards the experimen-
tal assessment of whole-genomic prediction of complex
traits in species of forest trees in general and of Eucalyptus

Fig. 3 Estimates of predictive ability (rgy) with different levels of relatedness between training and validation sets. Related: random allocation of
individuals to training and validation sets; Unrelated: individuals were split into training and validation sets by minimizing relatedness between
sets based on a principal component analysis (a) E. benthamii and (b) E. pellita
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in particular. Our results corroborate previous reports in
forest trees showing encouraging perspectives of using
genome-wide SNP data to capture large proportions of
trait heritability and predict traits such as height and
diameter growth with accuracies as good as or better than
those attainable by conventional phenotypic selection.

Genomic heritabilities and predictions
Genomic heritabilities, irrespective of the method used,
were generally lower than the pedigree-based estimates,

with the exception of HT in E. benthamii (Table 2).
Genomic heritability is considered to better reflect the
true genetic relationships among individuals and as such,
it corresponds to the proportion of phenotypic variance
that can be explained by regression on molecular
markers. The genomic heritability and trait heritability
are expected to be equal only when all causal variants
are typed. Additionally, when close relatives sharing long
chromosome segments are analyzed, high prediction ac-
curacy and very small bias in genomic heritability

Fig. 4 Manhattan and Quantile-quantile (Q-Q) plots for wood volume (WV) in E. pellita. a and b represent the Manhattan and the Q-Q plots, re-
spectively, for LMA model adjusted for block and population structure covariates. c and d represent the Manhattan and Q-Q plots, re-
spectively, for the MLMA model adjusted for block and population structure covariates, and for the genomic relationship matrix. Red line
indicates Bonferroni-corrected threshold with an experimental type I error rate at α = 0.05 and blue line indicates false discovery rate (FDR) at 5%
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estimates are expected [47]. Given the relatively long-
range LD and relatedness in our populations, our esti-
mates of genomic heritability should closely reflect the
amount of additive genetic variance for the traits mea-
sured. Genomic heritabilities lower than the pedigree-
based estimates were also reported in open-pollinated
families of spruce [19, 21]. Pedigree-based heritability es-
timates from open-pollinated families could be inflated
due to the presence of full-sibs or selfs and the inability
of these estimates to disentangle the non-additive from
the additive genetic components [48]. For E. pellita,
pedigree-based heritability could not be estimated. How-
ever, by using the SNP data, heritability estimates were
obtained that breeders would not otherwise have had ac-
cess to.
Predictive abilities of growth traits using GBLUP

and different Bayesian methods reached similar results
for all traits, in line with previous reports in forest
trees [16, 20, 22]. These results provide further evi-
dence that growth traits in Eucalyptus, and likely for
all forest trees, are complex in architecture, controlled
by a large number of small effect loci and fit ad-
equately the infinitesimal model. The predictive ability
estimates obtained for growth traits in E. pellita
(0.34–0.44) using GBLUP were slightly lower than
those reported for E. grandis x E. urophylla (0.46–
0.55) [14]. For E. benthamii, predictive abilities were
lower (~0.16), possibly the result of (i) the larger ef-
fective population size; (ii) the relatively limited num-
ber of individuals used for model training (only
~500); and (iii) the limited genetic diversity available
in this species and particularly so in this introduced
population in Brazil, also indicated by the low herit-
ability found in our study as well as in others with
similar germplasm [6]. From the applied breeding
standpoint however, the genomic predictive abilities
were as good as or better than the predictive abilities
based on phenotypic data.
Prediction models using ~5000 SNPs provided predict-

ive abilities almost equivalent to using all available SNPs
for all traits and no difference was observed using differ-
ent sets of SNPs. These results suggest that genomic
prediction is largely driven by relatedness such that once
a certain number of randomly sampled SNPs across the
genome are used, suitable predictive ability is reached.
This outcome indicates that low-density SNP chips could
be contemplated as a way to reduce cost of GS in line to
what has been the case for domestic animals [26, 49]. It is
expected, however, that genomic predictions will decay
over generations due to the combined effect of recombin-
ation and selection on the patterns of LD [50], unless con-
tinuous model retraining strategies are adopted [12]. At
this point, therefore, it is not clear whether the use of
smaller SNP subsets is warranted for the long-term

implementation of GS in Eucalyptus. A better assessment
will be possible when predictions are carried out across
breeding generations testing variable SNP densities.
We observed a major impact of relatedness on predic-

tions, more so in E. benthamii than E. pellita (Fig. 3)
consistent with theoretical expectations [24] and previ-
ous experimental results in forest trees [14, 18, 19]. The
relative contributions of historical LD and relatedness
are however difficult to disentangle. Predictive ability
can be high even in the absence of LD when markers
capture genetic relationships, but it will be even greater
if markers are in LD with causal loci [24]. The extent of
LD detected in these populations reflected their differ-
ences in evolutionary and breeding history. A faster
genome-wide LD decay was observed in E. benthamii
(7.7 Kb, Fig. 1a) than in E. pellita (25.6 Kbp, Fig. 1c).
While the E. benthamii population is derived from seeds
collected in wild stands and its LD was similar to that
found in natural populations of E. grandis (≈4–6 Kb)
[51], the E. pellita population comes from a clonal seed
orchard established with advanced selections such that a
smaller effective population size and more extensive LD
was expected.
The presence of some level of short-range historical

LD could in part explain why predictions were still
reasonable in E. pellita even after attempting to
minimize relatedness between training and validation
sets (Fig. 3b). However, another possibility is that our
attempt to decrease relatedness was not completely
efficient. To evaluate these alternative hypotheses we
compared the predictive abilities obtained using the
same number of markers concentrated on a single
chromosome (capturing largely the effect of related-
ness), versus distributed genome-wide (capturing re-
latedness and LD). Assuming an infinitesimal model
in which growth traits are controlled by many QTLs
with small effects distributed genome-wide, the differ-
ence between these two sets could be tentatively
taken as the contribution of historical LD to predic-
tions. An increase of 22 to 35% in predictive ability
was seen (e.g. 0.306 versus 0.414 for DBH) when
genome-wide SNPs were used, suggesting that some
short-range historical LD between markers and causal
loci could be accounted for in this population. Over-
all, our results corroborate previous reports on the
major impact of relatedness on genomic prediction
and further highlight the importance of properly plan-
ning the populations on which GS models will be
trained and those where the models will be applied. If
the training population is more or less related to the
validation population than the future selection candi-
dates, then the expected outcome of implementing
genomic selection will be over- or underestimated,
respectively.
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GWAS versus genomic prediction in breeding populations
The objective of our GWAS was to assess the value of
this approach in closed breeding populations under se-
lection and compare it to whole-genome prediction from
the standpoint of how much genetic variation could be
captured for practical breeding. After duly controlling
for population structure and experimental fixed effects,
and applying experiment-wide corrections for multiple
tests, we identified only one significant association for
volume growth in E. pellita (Fig. 4c). Despite the rela-
tively larger population size (n = 732) when compared to
populations used in previous GWAS in forest trees
(typically between ~300 and ~700 individuals), our
results are consistent with the fact that very few asso-
ciations were also found for growth in all those re-
ported GWAS to date [52–59]. Population sizes used
have been small, such that experiments have suffered
from low power to detect the likely large number of
small effect loci controlling growth. Integrating link-
age mapping data from bi-parental pedigrees with as-
sociation populations has been attempted but results
have not improved and only a handful of associations
have been found, again explaining very little of the
genetic variation [56, 57, 59]. Our direct comparison
between GS and GWAS is novel and more explicitly
corroborates the fact that while genome-wide regres-
sion is able to account for large proportions of the
pedigree-heritability (e.g. 73% for DBH in E. bentha-
mii) and provide useful phenotype predictions, very
little of the heritability is captured into significant as-
sociations using the GWAS approach. Reasons for
this major discrepancy are not surprising and have
been widely discussed in the plant, animal and human
literature [60–62]. They derive essentially from the
fact that GWAS by principle, relies on the application
of stringent significance tests to declare an associ-
ation. These very stringent tests typically result in
only the largest effect QTLs being found, while the
vast majority have too small an effect to be detectable
in the limited power GWAS populations used. If no
major effect exists, then no associations are found,
which is most likely the case of the limited associ-
ation results for growth targeted in our study.
A potential criticism to our GWAS is the fact that

it was carried out in a breeding population with lim-
ited diversity and not in a canonical GWAS popula-
tion sampled from the wild. GWAS studies for
growth traits in forest trees have in fact targeted col-
lections of trees derived from natural populations
sampling large amounts of diversity. The goal of those
studies has been to detect associations that would po-
tentially allow gene discovery or even the identifica-
tion of the elusive QTN (quantitative trait nucleotide)
[63]. However, notwithstanding the fact that very few

associations were found for growth traits in those
GWAS, explaining overall negligible fractions of trait
heritability, it is not clear yet how marker-trait associ-
ations detected in undomesticated tree populations,
genetically distant from improved germplasm, would
be converted into useful information to breeding prac-
tice. This, in fact, has not been demonstrated yet in
forest trees. Targeted alleles found by GWAS in nat-
ural populations might contribute relatively negligible
effects, be already fixed or simply not be sampled in
existing breeding populations [64]. On the other
hand, although genetic variation available in breeding
populations is in principle more limited, associations
detected in genetically improved material should be
more relevant to breeding. A recent GWAS in a Eu-
calyptus breeding population reported promising re-
sults using a regional heritability mapping, an
approach able to capture both common and rare al-
lelic effects that individually contribute too little vari-
ance to be detected by conventional GWAS [58]. The
availability of GWAS data could be valuable to im-
prove genomic predictions accuracies by assigning
locus- or trait-specific priors to genomic prediction
models [65], as recently shown in rice [66].

Conclusions
This study contributes further experimental data sup-
porting the positive prospects of genomic selection to
predict complex traits such as height and diameter
growth in forest trees with accuracies equivalent or su-
perior to those achievable by phenotypic selection. We
show that genetic relatedness captured by the SNP data
between training and validation populations and, by ex-
tension, to future selection candidates, is what will most
likely determine the successful use of genomic selection
in Eucalyptus breeding. We also conclude that more im-
portant to GS than the number and position of the SNPs
fitted in the model, is the extensive LD created in closed
breeding populations with small effective population
sizes. Lower density SNP panels with ~5000 to 10,000
SNPs, distributed across the genome, should provide a
good compromise between genotyping costs and pre-
dictive ability in such standard breeding populations ad-
vanced by open pollinated breeding. However, further
experiments are necessary to evaluate the performance
of such SNP densities across generations of breeding.
Our results also illustrate the superiority of the whole-
genome regression approach in accounting for large pro-
portions of the heritability in contrast to the limited
value of the local GWAS approach for breeding applica-
tions. To provide useful GWAS data toward breeding
for growth traits in Eucalyptus and likely in all forest
trees, it will be necessary first to massively increase the
sample size, such that sufficient power is reached to
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detect at least part of the slightly larger effects segregat-
ing in the target breeding population. In the meantime,
the encouraging results of genomic prediction that we,
and others, have shown in this and other studies should
probably receive greater attention if the objective is to
impact breeding practice.
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