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Abstract

Background: Metagenomics allows unprecedented access to uncultured environmental microorganisms. The
analysis of metagenomic sequences facilitates gene prediction and annotation, and enables the assembly of draft
genomes, including uncultured members of a community. However, while several platforms have been developed
for this critical step, there is currently no clear framework for the assembly of metagenomic sequence data.

Results: To assist with selection of an appropriate metagenome assembler we evaluated the capabilities of nine
prominent assembly tools on nine publicly-available environmental metagenomes, as well as three simulated
datasets. Overall, we found that SPAdes provided the largest contigs and highest N50 values across 6 of the 9
environmental datasets, followed by MEGAHIT and metaSPAdes. MEGAHIT emerged as a computationally
inexpensive alternative to SPAdes, assembling the most complex dataset using less than 500 GB of RAM

and within 10 hours.

Conclusions: We found that assembler choice ultimately depends on the scientific question, the available
resources and the bioinformatic competence of the researcher. We provide a concise workflow for the

selection of the best assembly tool.
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Background

The ‘science’ of metagenomics has greatly accelerated
the study of uncultured microorganisms in their natural
environments, providing unparalleled insights into mi-
crobial community composition and putative functional-
ity [1]. Even though shotgun metagenomic sequencing
provides comprehensive access to microbial genomic
material, many of the encoded functional genes are sub-
stantially longer (~1000 bp [2]) than the length of reads
provided by the sequencing platforms [3] most com-
monly used for shotgun metagenomic studies (Illumina
HiSeq 3000, 2 x 150 bp; https://www.illumina.com/).
Thus, raw sequence data alone are typically not sufficient
for an in-depth analysis of a communities functional gene
repertoire. ~ Moreover, unassembled  metagenomic
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sequence data are fragmented, noisy, error prone and con-
tain uneven sequencing depths [4].

To assist in the accurate and thorough analysis of
metagenomes, sequence data can be assembled into
larger contiguous segments (contigs) [5]. To this end,
numerous metagenome assembly tools (assemblers) have
been developed, the vast majority of which assemble
sequences in de novo fashion. In short, metagenomic
sequences are split into predefined segments (k-mers),
which are overlapped into a network, and paths are tra-
versed iteratively to create longer contigs [6]. De novo
assembly is advantageous as it allows for more confident
gene prediction than is attainable from unassembled
data [7]. Furthermore, de novo assembled metagenomes
facilitate the discovery and reconstruction of novel
genomes and/or genomic elements [8].

Improvements to assembly quality have greatly ex-
panded the scope of questions that can be answered using
shotgun metagenome sequencing including, for example:
determination of microbial community composition and
functional capacity [9], microbial population properties
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[10], comparisons of microbial communities from various
environments [11], extraction of full genomes from meta-
genomes [5] and genomics-informed microorganism iso-
lation [12]. Each of these questions require researchers to
emphasise specific features of the metagenome. Genome-
centric questions [5, 12] require long contigs/scaffolds,
while gene-centric questions [9-11] require high confi-
dence contigs and the assembly of a large proportion of
the metagenomic dataset.

Considering the wealth of available assemblers, it is
particularly important that researchers understand as-
sembler performance, especially for investigators who
lack appropriate bioinformatic expertise. Firstly, an as-
sembler needs to produce a high proportion of long con-
tigs (>1000 bp). Long contigs allow for more accurate
interpretation of full genes within a genomic context
and facilitate the reconstruction of single genomes. A
good assembler should also utilize most of the raw
sequence data to generate the largest assembly span pos-
sible. Furthermore, an assembler needs an intuitive and
user-friendly interface to enable assembly with minimal
effort and rapid processing of the metagenomic data.
Finally, tools should be able to assemble metagenomes
using the least computational resources possible. Meta-
genomic assemblers are consistently being developed,
this requires regular benchmarking, as with other bio-
informatic tools [13].

Here we benchmark eight prominent open-source meta-
genome assemblers (Velvet v1.2.10 [14], MetaVelvet v1.2.02
[15], SPAdes v3.9.0 [16], metaSPAdes v3.9.0 [17], Ray Meta
v2.3.1 [18], IDBA-UD vl.1.1 [19], MEGAHIT v1.0.6 [20]
and Omega v1.4 as well as the commercially-available CLC
Genomics Workbench v85.1 (QIAGEN Bioinformatics;
https://www.qiagenbioinformatics.com/products/clc-genom-
ics-workbench/; Additional file 1 Table S1). We compare
each assemblers performance on nine complex metagen-
omes from three distinct environments (i.e., three publicly
available metagenomes each from soil, aquatic and human
gut niches) as well as three simulated datasets. While most
of the assemblers assessed here have been tested and
reviewed extensively [21-25], in this article we provide an
elegant reference framework which both experienced and
inexperienced researchers can use to determine which as-
sembler is best aligned with their project scope, resources
and computational background.

Methods

Metagenomic datasets

In this study we contrast the assemblies of nine publicly
available metagenomic datasets uploaded to the MG-
RAST server (https://metagenomics.anl.gov/), or the
sequence read archive (SRA) (https://www.ncbi.nlm.nih.-
gov/sra). The metagenomes are from three distinct envi-
ronments, namely; soil (Iowa [8], Oklahoma [26], and
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Permafrost [27]); aquatic (Kolkata Lake (unpublished
data), Arctic Frost Flower [28] and Tara Ocean [29]) and
human gut niches (Scandinavian Gut [30], European
Gut [31] and Infant Gut [32]; Table 1). Each dataset was
unique in its complexity and sequencing was performed
at different depths. All metagenomes were sequenced
using Illumina short read technology producing paired-
end reads ranging from 100 to 151 bp in length. Most
datasets were sequenced on the Illumina HiSeq 2000
platform, except for the Permafrost metagenome which
was sequenced using an Illumina Genome Analyzer IJ,
and the Kolkata Lake metagenome which comprised se-
quences generated by an Illumina MiSeq. This allowed
for comparisons of each assemblers’ performance under
different coverage and taxonomic diversity. We opted to
exclusively evaluate metagenomes sequenced using Illu-
mina platforms due to their popularity and applicability
to metagenomic datasets [3].

Prior to assembling the short read metagenomes, we
used Prinseq-lite v0.20.4 [33] for read quality control. We
removed all reads with mean quality scores of less than 20
[-min_qual_mean 20], and removed all sequences con-
tains any ambiguous bases (N) [-ns_max_n 0].

After quality filtering, we assessed the level of coverage
of each metagenome using Nonpareil, a statistical pro-
gram that uses read redundancy to estimate sequence
coverage [34].

Evaluation of the metagenome assemblers

Most assemblies were performed on a local server (48
Intel® Xeon” CPU E5-2680 v3 @ 2.50 GHz processors,
504 GB physical memory, 15 TB disk space) using 8
threads. However, SPAdes, metaSPAdes and IDBA-UD
required more memory, and assembly was performed on
the Lengau cluster of the Centre for High Performance
Computing (CHPC) for the Iowa and Oklahoma soil
datasets. SPAdes, metaSPAdes, IDBA-UD and MEGA-
HIT iteratively analyse k-mer lengths to find the optimal
value, and these assemblers were allowed to optimise
their own k-mer lengths. The other assemblers used k-
mer values of 55 (Velvet: 51; MetaVelvet: 51; SPAdes:
33, 55, 71; metaSPAdes: 33, 55, 71; Ray Meta: 55; IDBA-
UD: 20, 30, 40, 50, 60, 70, 71; MEGAHIT: 21, 41, 61, 81,
99; CLC Genomics Workbench: 55). In contrast to the
above de Bruijn graph assemblers, Omega uses overlap-
layout-consensus graphs to generate assemblies. Read
pairs are first aligned, followed by read error correction,
hash-table construction, overlap graph construction be-
fore generating contigs. We selected a minimum overlap
length of 60. To control for k-mer length bias, we com-
pared each assembler’s performance at k-mer lengths be-
tween 50 and 61. Quality of the generated assemblies
were assessed using MetaQUAST. This tool calculates
basic assembly statistics, including number of contigs
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Table 1 Assembly statistics and computational requirements for assembly of the Tara Oceans metagenome. Time required is given
in seconds, minutes and hours for illustrative purposes and memory in GB of RAM required

Tara Ocean

CLC IDBA-UD MEGAHIT ~ metaSPAdes MetaVelvet Omega Ray Meta SPAdes Velvet
Number of contigs (= 500 bp) 50,716 163,815 216,938 185419 67,161 15,982 6128 220,178 57816
Total length 46,069409 179,686,756 210,621,485 202,770,058 55972515 34861819 7,277,214 275920632 45425460
No. of long contigs (= 1 kbp) 10,720 50,498 56,243 48,640 12,590 13,305 2179 70,711 8802
No. of ultra-long contigs (= 50 kbp) 0 2 1 37 0 9 0 54 0
Largest contig 39,748 101,400 62,649 141,519 30177 102,255 41,443 197,381 21,980
N50 880 1166 982 1124 805 2691 1329 1415 749
L50 14,113 38,236 58,246 39,033 21,544 2737 1345 39,617 19,631
Mapping rate (%) 38.98 52.24 5592 64.03 4117 13.64 8.25 64.46 48.19
Time (seconds) 3527 69,782 10455 125,862 2527 168,213 16419 80,039 2342
Time (minutes) 58.78 1163.03 174.25 2097.70 4212 2803.55 273.65 133398 3903
Time (hours) 0.98 19.38 2.90 34.96 0.70 46.73 4.56 22.23 0.65
Memory required (GB) 16.23 42.84 10.58 66.53 109.37 30.7 42 157.75 109.37

above various lengths (500 bp, 1 kbp, 5 kbp and 50 kbp),
assembly span above various lengths (500 bp, 1 kbp, 5 kbp
and 50 kbp), N50 lengths and L50 lengths. To assess the
accuracy and specificity of each assembler, the included
synthetic metagenomes were assessed against their re-
spective constitutive reference genomes in MetaQUAST.
To assess the volume of sequencing data that was used
for each assembly, we mapped back the short fragment
sequencing reads to the constructed metagenomes. This
was performed using Bowtie 2 [35], using the sensitive
setting. Time and memory (RAM) taken to complete
assembly were calculated using an in-house bash script.

All tables and figures were drawn in R v3.4.0 or Microsoft
Excel. Figure 1 was generated using the freely-available tool
Nonpareil. Nonpareil estimates the percentage sequence
coverage of metagenomes (as a fraction of 1) using either
the forward or reverse sequence reads. These values are
then plotted using a scatter plot function. Figure 2 was gen-
erated using the heatmaply package [36], and clustered
using the /hiclust hierarchical clustering package in R. Values
were calculated as a mean over- or under-representation
relative to the average value obtained for all the assemblers
assessed here. This provided ratios of over- or under-
performance relative to the average assembly statistic (-1
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Fig. 1 Nonpareil estimates of sequence coverage (redundancy) for the 9 metagenomes studied. Metagenomes are grouped according to their
environmental niche, red colours indicate soil metagenomes, blue colours indicate aquatic metagenomes and green colours are used for human
gut metagenomes. Sequencing effort is indicated in base pairs on a log scale and the estimated coverage achieved is shown as a fraction of 1
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Fig. 2 Heatmap displaying the assembly statistics measured and computational resources used by the nine tested assemblers on the Tara Ocean
metagenome. Well performing statistics are shown in yellow, while dark blue regions indicate poor performance. Clustering of assemblers and
assembly statistics was done using an hierarchical clustering method in R (hclust)

J

to +4). Figure 3 was generated using log-transformed data
for each assembly statistic of relevance to ensure concise
representation of the data.

Data availability is provided in Additional file 1 Tables
S1 and S2. A link to each to assembler benchmarked is
provided, as are the accession numbers for all twelve
metagenomes assessed.

Results

Metagenome data and dataset complexity

Using Nonpareil, we confirmed that the soil metagen-
omes were more complex (less redundant) than the
aquatic and human guts metagenomes, which were the
least complex (highly redundant; Fig. 1) [37-39]. All the
human gut metagenomes came close to sequencing sat-
uration (with at least 75% of the diversity sequenced;

Fig. 1). The infant gut metagenome was sequenced to
above 90% estimated average coverage (~94%). However,
all the sequencing depths reached were insufficient to
describe the complete spectrum of microbial members
in the samples assessed. For example, the largest meta-
genome assessed here, the Iowa soil metagenome, only
described 48.8% of the total microbial diversity despite
the utilization of 47 Gbp of sequence data.

Estimates of the number of microbial species per gram
of soil still vary substantially, with values ranging from
2000 [40] to more than 830,000 [37]. These estimates do
not include eukaryotic microbes, which generally possess
much larger genomes and are much more difficult to
fully sequence [41]. We note the published predictions
that 2-5 Gbp of sequence data would fully capture an
entire natural microbial community [42]. Based on our
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Fig. 3 Radial plots showing assembly statistics for all metagenomes assessed as measured by the number of contigs larger than 500 bp, the total
length of the assembly, the number of contigs larger than 1 kbp, the total bases calculated using only contigs larger than 1 kbp, the largest
contigs, the N50 value and for the synthetic datasets the fraction of contigs which aligned to the reference genomes provided. Metagenomes are
labelled above the respective radial plots, where the first row represents the soils metagenomes, followed by aquatic, human gut and

synthetic metagenomes

analysis, we propose that the sequencing depth required
to provide comprehensive coverage of soil metagenomes
should be increased by an order of magnitude, to ~100
Gbp. This is a function of the extreme taxonomic het-
erogeneity of soil microbial communities, and highlights
the challenge of assembling low coverage metagenomes.

Strategy and approaches of the current research

We defined five measures to assess the performance of
each metagenomic assembler tested; (1) ease of use and
assembler attributes, (2) quality of assemblies generated
and computational requirements, (3) influence of se-
quencing depth and coverage, (4) suitability to different
environments and (5) their performance on metagen-
omes of known composition.

1. Ease of use and assembler attributes

Many researchers entering the field of metagenomics
are inexperienced in the use of intricate bioinformatic
tools, and may lack extensive computational resources.
To assess the ease of use for inexperienced computa-
tional biologists we evaluated the availability of a web
application or graphical user interface (GUI), ease of
installation, availability and completeness of manuals,
Message Passing Interface (MPI) compatibility and pro-
gramming language.

Eight of the assemblers tested here use command-line
interfaces (CLI) and are open-source freeware (Velvet,
MetaVelvet, SPAdes, metaSPAdes, Ray Meta, IDBA-UD,
MEGAHIT and Omega). Only the commercial software
CLC Genomics Workbench (Qiagen) implements a GUI
(Additional file 1: Table S1). CLC is easily installed on
most Linux, Windows or MacOS computers, whereas all
other assemblers are limited to Unix-based operating sys-
tems. The GUI is intuitive, and users can assemble simply
by using a point-and-click interface. CLC provides sub-
stantial support (via manuals and web based tutorials) and
was the most user-friendly assembler tested here.

Unix-based assemblers are inherently more difficult to
use and must be installed or compiled from source code
using the CLI. All assemblers that are CLI-based can be
downloaded from GitHub, while some tools (SPAdes,
metaSPAdes, Ray Meta, Velvet, MetaVelvet and Omega)
provide download links from their respective parent web-
sites. All tools, barring SPAdes, metaSPAdes and IDBA-
UD, provide MPI compatibility, allowing parallelization

which reduces computational time. All tools assessed here
provide manuals or ‘readme’ files either on their websites
or GitHub repositories, although others, such as IDBA-
UD, MetaVelvet and Omega, are not comprehensive and
lack information on installation or implementation. Tools
with more complete manuals (MEGAHIT and Ray Meta)
feature extensive wiki pages and frequently asked ques-
tions. The number of citations, websites, programming
languages and MPI compatibility of all the tools assessed
are provided in Additional file 1: Table S1.

2. Benchmarking quality of assemblies generated and
computational requirements

Evaluating metagenome assembly quality is challen-
ging without the use of known reference genomes for di-
verse microbial communities. We compared assembly
quality using many standard metrics, including the total
number of contigs longer than 500 bp, 1 kbp (referred
to as long contigs throughout) and 50 kbp (referred to
as ultra-long contigs throughout), maximum contig
length, N50 length of the contigs (length of the median
contig, representing the length of the smallest contig at
which half of the assembly is represented), mapping rate
and assembly span (total length assembled using contigs
>500 bp). We used MetaQUAST to evaluate these as-
sembly quality statistics [22].

We selected the Tara Ocean metagenome [29] for a
comparison of each assembler at k-mer lengths between
50 and 61. We selected this range as the assemblers
which automatically optimize k-mer values generally set
sizes within this range. We set the other non-optimizing
assemblers to 55. Compared to the other natural meta-
genomes, the Tara Ocean metagenomic dataset is of
intermediate complexity and sequencing depth (Fig. 1,
Additional file 1: Table S2). This metagenome was se-
quenced on an Illumina HiSeq instrument, which is
currently the most widely used shotgun metagenome
sequencing technology [3]. This 5.4 Gbp metagenome
comprised more than 27 million high-quality read pairs
with a mean read pair length of 200.3 bp (Additional
file 1: Table S2).

Omega (2691), SPAdes (1415), Ray Meta (1329),
IDBA-UD (1166) and metaSPAdes (1124) provided
assemblies with high N50 values (> 1000 bp), while
the assemblies generated using CLC, MEGAHIT, Vel-
vet and MetaVelvet produced NS5O statistics below
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1000 bp (Fig. 2; Table 1). Overall, the assembly spans
varied considerably with SPAdes (275.9 Mbp), MEGAHIT
(210.6 Mbp), metaSPAdes (202.8 Mbp) and IDBA-UD
(179.7 Mbp) assembling the largest metagenomes. As-
sembly span was correlated with the number of reads
mapping back to the assemblies (R° = 0.83; Additional
file 1: Figure S3), with SPAdes and metaSPAdes having
the highest values (Table 1). Both IDBA-UD and MEGA-
HIT mapped back more than 50% of the sequence reads
to the assemblies. SPAdes also produced the most contigs
over 1 kbp (70711), while MEGAHIT, IDBA-UD and
metaSPAdes created fewer contigs in that size range, but
all were comparable to each other (between 48,640 and
56,243 contigs). The largest contig was assembled by
SPAdes (197 kbp), followed by metaSPAdes (142 kbp),
Omega (102 kbp) and IDBA-UD (101 kbp). These three
assemblers also produced the most ‘ultra-long’ contigs
(> 50 kbp); with 54, 37 and 2 contigs, respectively.

The computational requirements of an assembly tool
should be a major consideration when selecting an as-
sembler. We evaluated all assemblers in relation to the
time taken to assemble the Tara Ocean metagenome
(Additional file 1: Figure S2; Table 1) using the same
number of threads (n = 8; Additional file 1: Figure S2A).
Velvet, MetaVelvet and CLC assembled the metagenome
in less than an hour, while MEGAHIT and Ray Meta
were substantially slower, assembling over multiple
hours. IDBA-UD, SPAdes and metaSPAdes required
considerably more time to complete assembly, taking ap-
proximately 24 h, or more. Omega required the most
time to assemble the metagenome, taking approximately
48 h. In terms of memory requirements, SPAdes was the
most ‘memory expensive’ (157 GB of RAM), followed by
Velvet and MetaVelvet (both 109 GB), which is substan-
tially more RAM than is available on an average desktop
computer (16 GB). By contrast, MEGAHIT (11 GB) and
CLC (16 GB) were the most memory efficient assemblers
(Fig. 2; Additional file 1: Figures S2; Table 1).

Overall, SPAdes, metaSPAdes, IDBA-UD and MEGA-
HIT displayed the best performances in assembling this
metagenome of intermediate size and complexity, as
they produced very high N50 values, a high proportion
of long contigs and the widest assembly spans. While
SPAdes was the best assembler overall, MEGAHIT was
the most memory efficient, as it produced an assembly
comparable to the best performing assemblers while
using only a fraction of computational resources.

3. Benchmarking influence of sequencing depth and
coverage

Temperate soil communities are generally more diverse
than extreme counterparts (e.g., permafrost; Additional
file 1: Table S3, Figure 1) [11]. Subsequently, high levels of
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diversity within these biomes require much deeper se-
quencing effort. Differences in microorganism abundances
and strain level heterogeneity introduce complications
during metagenome assembly, resulting in increased
memory requirements and longer computational run-
times, which may challenge assemblers. The two temper-
ate soil metagenomes assessed here have vastly different
sequencing depths, thus providing us with the scope to as-
sess the influence of sequencing depth on the perform-
ance of each assembler. The Oklahoma soil metagenome
[26] had a low sequencing depth (9 Gbp) and estimated
coverage (11%), c.f. the Iowa soil metagenome [8], which
had a very high sequencing depth (47 Gbp) and 49% esti-
mated coverage (Fig. 1, Additional file 1: Table S2). We
predicted that deeper sequencing effort would be corre-
lated with an increase in metagenome coverage [34].

All assemblers successfully assembled the Oklahoma
metagenome, although SPAdes required considerably more
memory (up to 1 TB RAM, Additional file 1: Table S3).
Nevertheless, SPAdes produced the best assembly statistics
for most categories (9548 long contigs and an assembly
span of 54.3 Mbp; Additional file 1: Table S3; Figure 3).
IDBA-UD and MEGAHIT used less than 500 GB of RAM
and were comparable in performance (3828 and 3416 long
contigs, and assembly spans of 17.2 Mbp and 20.2 Mbp,
respectively; Additional file 1: Table S3; Figure 3). It is
noteworthy that while metaSPAdes was one of the best
performing assemblers for the Tara Ocean metagenome
(Fig. 2), it performed poorly here (Additional file 1:
Table S3; Figure 3), suggesting that metaSPAdes is ill-
suited to assembling low coverage metagenomes.

The massive Iowa soil metagenome could not be as-
sembled by either SPAdes or IDBA-UD using our avail-
able computing resources (1 TB of RAM). This is in
agreement with the methodology described by the au-
thors who generated this dataset, who digitally normal-
ized and partitioned the Iowa metagenome to allow for
assembly using Velvet [8]. Remarkably, MEGAHIT and
CLC assembled the Iowa metagenome using less than
500 GB of RAM. MEGAHIT performed best across
most categories tested (assembly span of 1036.5 Mbp,
largest contig of 104,841 bp, and 277,623 long contigs;
Fig. 3), while CLC produced the third-best assembly (as-
sembly span of 432.7 Mbp, largest contig of 70,207 and
114,196 long contigs), using less than 64GB of memory.
MetaSPAdes performed comparably to MEGAHIT but
had much higher computational resource requirements
to assembly the Iowa soil metagenome, using up to 1 TB
of RAM (assembly span of 873.8 Mbp, largest contig of
188,499 bp, and 225,046 long contigs).

Overall, we found that sequencing depth greatly in-
fluenced the performance of the assemblers, although
the most memory-efficient tools, MEGAHIT and CLC,
performed well irrespective of sequencing coverage.
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SPAdes and IDBA-UD produced good assemblies for the
Oklahoma soil metagenome, but were extremely expen-
sive in terms of memory and failed to assemble the Iowa
soil metagenome. We found that metaSPAdes produced
a better assembly for the Iowa soil metagenome than the
Oklahoma dataset. MetaSPAdes performed optimally for
the assembly of the high-coverage metagenome, but was
less efficient in the assembly of the low-coverage
metagenome.

4. Benchmarking suitability to various environments

Environmental samples are widely dissimilar in micro-
bial community complexity and have distinct taxonomic
compositions. In this study, we assembled metagenomes
from three environmental biomes of different phylotypic
complexities. Overall, SPAdes, MEGAHIT, IDBA-UD
and metaSPAdes assembled most of the metagenomes well,
according to the parameters we evaluated (Additional file 1:
Tables S3-S5). SPAdes consistently provided the lar-
gest contigs and the widest assembly spans. MEGA-
HIT demanded far fewer computational resources, and
yet produced similar assemblies to metaSPAdes and
IDBA-UD. CLC provided assemblies of moderate to high
quality, was the easiest to use and performed particularly
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well on large metagenomes. Together, these results indi-
cate that no single assembler performs best across all
sequencing platforms and datasets.

5. Benchmarking on synthetic metagenomes

As previously indicated, assessing metagenome assem-
bler performance is complicated due to the unknown
composition of environmental microbial communities.
To overcome this challenge, we included three synthetic
metagenomes of known composition to assess the error
rates (such as number of indels, misassemblies, and am-
biguous bases) generated by each assembler. These three
metagenomes represented three discreet complexities
(low, medium and high; Additional file 1: Figure S1), in
order to challenge the assemblers with the unique prop-
erties of each dataset.

Our analysis show that more complex metagenomes
led to higher error rates in the resultant assemblies
(Fig. 4). Notably, SPAdes produced the most misassem-
blies (643, 4928 and 77,264 for the assemblies of low,
medium and high complexity synthetic metagenomes,
respectively) and the highest unaligned lengths (46 kbp,
891 kbp and 19 Mbp, respectively). IDBA-UD produced
a high number of misassemblies while Omega consistently
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produced the most mismatches in all synthetic datasets
(more than 1500 mismatches per 100 kbp for all synthetic
metagenomes). CLC and Ray Meta consistently produced
more than 100 ambiguous bases (N’s) per 100 kbp in each
of the generated synthetic assemblies. Finally, CLC also in-
corporated the most indels per 100 kbp in all complexity
classes (more than double the number of indels produced
by any other assembler).

How to select a metagenome assembler

Bioinformatics projects can be limited by memory
(RAM) requirements. SPAdes, metaSPAdes, IDBA-UD,
Velvet and MetaVelvet all have large memory require-
ments during the assembly of massive datasets. MEGA-
HIT, Omega and CLC are extremely memory efficient,
as they required less than 500 GB of RAM to assemble
the massive Iowa soil metagenome. MEGAHIT, for
example, generates succinct de Bruijn graphs to achieve
efficient memory usage [20].

Our results indicate that although many assemblers
perform comparably, their applicability is defined by the
research question at hand. SPAdes, for example, gener-
ated good assemblies with the most long and ultra-long
contigs for most datasets. These are ideal characteristics
for genome-centric studies, which require the binning of
draft genomes from community sequence data [43]. By
contrast, metaSPAdes considers read coverage during
assembly, making it more applicable for microbial com-
munity profiling [17]. While SPAdes and metaSPAdes
produced the best assemblies in general, MEGAHIT per-
formed comparably and emerged as a rapid and memory
efficient alternative assembler.

However, it should be noted that SPAdes and IDBA-
UD generate high numbers of misassemblies and contigs
that do not align to the reference genomes. Other as-
semblers such as Omega, CLC and Ray Meta each have
unique error profiles, which should be considered in
light of the research questions asked. For example, when
assessing strain level genomic variations (SNP’s), assem-
blers that generate high numbers of indels and mis-
matches should be avoided. In addition, while SPAdes
generates many mismatches, if the aim is to extract
single genomes from a metagenome, manual curation of
the newly re-constructed draft genomes will identify and
correct such misassemblies.

In conclusion, we argue that when selecting an assem-
bler, the primary consideration should be the research
question. Selecting an appropriate assembler is essential
to make full use of metagenomic sequence dataset. The
primary objectives of the project, whether gene- or
genome-centric, for example, should dictate the choice
of assembler. We suggest that a secondary consideration
should be the computational resources available to the
researcher. Some assemblers are very memory efficient,
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while others sacrifice computational resources for im-
proved assembly quality. Finally, as most assemblers use
a CLI (and are more flexible than those constrained by a
GUI), the GUI-based CLC platform is an excellent alter-
native if bioinformatic skill level is a consideration.

Other analyses

In additional analyses (Fig. 3), we compared the per-
formance of each assembler on a low diversity soil meta-
genome (Additional file 1: Table S3), other aquatic
metagenomes (Additional file 1: Table S4) and human
gut microbiomes (Additional file 1: Table S5).

Discussion
Over the last decade, high throughput sequencing has
revolutionised the field of microbial ecology [44].
Amplicon-based technologies have allowed for near-
complete classification of whole microbial communities,
including populations of bacteria, archaea and fungi
[45]. The emergence of two key platforms for analysing
amplicon sequencing data, mothur [46] and QIIME [47],
has allowed for methodological standards to be set,
which enables robust comparisons between studies [48].
While whole community shotgun metagenome se-
quencing has facilitated the in-depth description of mi-
crobial communities from diverse environments, such as
the human gut [49] and acid mine drainage systems [50],
no standards exist with regard to assembly platforms or
their use. While numerous reviews on strategies to analyse
metagenomic data have been published [51], there are
currently no standard assembly procedures implemented
to enable thorough comparative analyses between pro-
jects. Numerous pipelines for processing metagenomic
sequence data are available. These typically integrate
existing tools into a single workflow for rapid, standard-
ized analysis (e.g, MG-RAST, MetAMOS, and IMG/M)
[52-54]. However, few of these pipelines are as widely
used as mothur or QIIME in barcoding studies. This is
partly because integrated metagenome analysis tools, such
as MetAMOS, do not achieve the flexibility afforded by
using each tool individually (e.g., using separate tools for
assembly, binning and taxonomic assignment).
Consequently, investigators can analyse unassembled
reads [11], optimize their assembly parameters or even
develop their own tools to assemble their data prior to
further analysis [55]. However, within the scope of meta-
genome assembly, essential details are often omitted
when describing methods [56]. This leads to methodo-
logical discrepancies, and severely limits the possibility
of making routine, robust comparisons between studies.
This issue was recently highlighted by ] Vollmers, S
Wiegand and A-K Kaster [21] and WW Greenwald, N
Klitgord, V Seguritan, S Yooseph, JC Venter, C Garner,
KE Nelson and W Li [57] who reported that the
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taxonomic diversity patterns of microbial communities
differed substantially, depending on the assembler used.
While some recent studies have applied single cell se-
quencing [58] or chromosome capture [59] approaches
to enhance metagenome assembly, these techniques
remain inaccessible to most researchers. We provide an
evaluation of commonly-used assemblers on standard
shotgun sequenced metagenomes.

In our comparative analyses of the most popular as-
sembly platforms, SPAdes produced the most long con-
tigs, independent of the metagenome origin. However,
this assembler introduced a large number of misassem-
blies in high complexity datasets. SPAdes is ideal for
genome-centric research questions that require long and
ultra-long contigs, such as those that aim to bin and re-
construct single genomes from shotgun metagenomes
[16]. By contrast, MEGAHIT and metaSPAdes provided
very large assembly spans and consider sequence cover-
age during assembly, reducing the number of misassem-
blies generated. IDBA-UD also produced large assembly
spans and a high number of contigs, but at the cost of
generating misassemblies for complex datasets. These
tools are thus more appropriate for research questions
related to taxonomic profiling of natural microbial com-
munities, for functionally annotating microbial commu-
nities, for the analysis of population scale dynamics or
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for comparison of microbial communities across biomes
[17, 20]. By analysing metagenomes of known compos-
ition and complexity, we found that each assembler
tested here generated a unique error profile (e.g., IDBA-
UD produces many misassemblies, CLC produces many
indels and Omega produces many mismatches). As men-
tioned above, this excluded some assemblers from spe-
cific research objectives (e.g., using CLC for variant
calling). This reiterates the fact that the research ques-
tion should be the primary consideration when selecting
the appropriate assembler, and that these assembler-
specific drawbacks should also be considered.

Overall, MEGAHIT produced some of the best assem-
blies throughout this study, while only using a fraction of
the computational resources required by other assemblers.
We strongly recommend MEGAHIT for researchers who
do not have access to large computational resources. Fi-
nally, the CLC assembler is ideal for researchers who lack
a depth of bioinformatic knowledge, or who prefer to use
a GUI and are willing to invest in software which is easier
to use. CLC is easy to install, has an intuitive interface and
provides a compromise in which assembly quality may be
sacrificed for ease of use. Strikingly, the most widely
cited assembler assessed here (Velvet cited 5974
times; Additional file 1: Table S1) did not perform
well across most metagenomes, while scarcely cited
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platforms (MEGAHIT, metaSPAdes cited 114 and 18
times, respectively; Additional file 1: Table S1) performed
well across most statistics assessed here.

Conclusions

No assembler tested here consistently provided superior as-
semblies across the different metagenomes. Consequently,
we propose a viable methodology for the selection of an ap-
propriate assembler, dictated by (1) the scientific research
question posed, then by (2) the computational resources
available, and (3) the bioinformatics skill level of the re-
searcher (Fig. 5). In light of the above proposed framework,
we urge researchers to carefully consider the assembler
used (as well as the entire bioinformatics pipeline followed)
while specifically bearing in mind their research question
and what feature of the dataset they want accentuated.

Additional files

Additional file 1: Table S1. Attributes of de novo assemblers used in
this study. Included in this table are the versions of each assembler used
in this study, along with the release date of each version. We provide a
link to each assemblers’ website accompanied by its reference and
number of citations. We gauge ease of use by providing the
programming language and MPI compatibility of each tool as well as
assessing the completeness of each tools’ available documentation.
Table S2. Characteristics of the metagenomic datasets used in this study.
Three metagenomes from three distinct environments (Soil, Aquatic and
Human gut) were selected, and we provide accession numbers,
sequencing platforms used and basic sequence characteristics (pre- and
post-filtering) of each metagenome. Table S3. Assembly statistics for the
assembled aquatic metagenomes. Table S4. Assembly statistics for the
assembled soil metagenomes. Table S5. Assembly statistics for the as-
sembled human gut metagenomes. Table S6. Assembly statistics for the
synthetic metagenomes. Figure S1. Nonpareil estimates of sequence
coverage (redundancy) for the 3 synthetic metagenomes studied. Figure
S2. Computational requirements for the Tara Ocean metagenome. A)
Total assembly span proportional to wall time required. B) Total assembly
span in relation to peak memory usage. Figure S3. Correlation between
assembly span and mapping rate. The exponential trendline indicates a
very strong positive correlation between the amount of data utilized and
the size of the generated assembly (R? = 0.83). (DOCX 357 kb)
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