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Abstract

Background: Repetitive elements are now known to have relevant cellular functions, including self-complementary
sequences that form double stranded (ds) RNA. There are numerous pathways that determine the fate of endogenous
dsRNA, and misregulation of endogenous dsRNA is a driver of autoimmune disease, particularly in the brain.
Unfortunately, the alignment of high-throughput, short-read sequences to repeat elements poses a dilemma: Such
sequences may align equally well to multiple genomic locations. In order to differentiate repeat elements, current
alignment methods depend on sequence variation in the reference genome. Reads are discarded when no such
variations are present. However, RNA hyper-editing, a possible fate for dsRNA, introduces enough variation to
distinguish between repeats that are otherwise identical.

Results: To take advantage of this variation, we developed a new algorithm, RepProfile, that simultaneously aligns
reads and predicts novel variations. RepProfile accurately aligns hyper-edited reads that other methods discard. In
particular we predict hyper-editing of Drosophila melanogaster repeat elements in vivo at levels previously described
only in vitro, and provide validation by Sanger sequencing sixty-two individual cloned sequences. We find that
hyper-editing is concentrated in genes involved in cell-cell communication at the synapse, including some that are
associated with neurodegeneration. We also find that hyper-editing tends to occur in short runs.

Conclusions: Previous studies of RNA hyper-editing discarded ambiguously aligned reads, ignoring hyper-editing in
long, perfect dsRNA – the perfect substrate for hyper-editing. We provide a method that simulation and Sanger
validation show accurately predicts such RNA editing, yielding a superior picture of hyper-editing.

Keywords: RNA editing, Hyper-editing, Alignment, Repetitive element, Transposable element, dsRNA

Background
The advent of deep sequencingmethodologies has opened
up new opportunities to study non-coding RNA. Of par-
ticular interest are repetitive elements that form double-
stranded (ds) RNA when transcribed. Long, perfect
dsRNA stimulates innate immunity, regulates gene tran-
scription, and has been implicated in a variety of neu-
rological and autoimmune disorders [1, 2]. The fate of
dsRNA depends on its interaction with RNA binding
proteins. Possible fates include cleavage by dicer lead-
ing to gene silencing [3], suppression by TDP-43 related

*Correspondence: willmckerrow@gmail.com;
wilson\protect_mckerrow@brown.edu
1Division of Applied Mathematics, Brown University, 02912 Providence, RI, USA
Full list of author information is available at the end of the article

proteins [4], which have been been implicated in neurode-
generative disease [5], and hyper-editing by adenosine
deaminase acting on RNA (ADAR) enzymes.
Recent evidence suggests that ADAR inhibits RNA

interference [6] and the induction of innate immunity [7].
Both of these interactions seem to occur when ADAR
competes with other enzymes for dsRNA substrates. The
large number of I-U mispairs introduced by hyper-editing
likely destabilizes those substrates, making them unavail-
able to other dsRNA enzymes [8]. Finding the genomic
sources of hyper-edited dsRNA and describing the pat-
tern of editing therein will improve our understanding of
how ADAR functions within dsRNA pathways. It will also
reveal highly expressed long, perfect dsRNA that may be
important for other cellular pathways.
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RNA editing by ADAR enzymes was first recognized for
its exquisite specificity in modifying particular adenosine
(A) residues to inosine (I) in structured double-stranded
regions of pre-mRNAs. Because inosine is recognized
as guanosine (G) by all cellular machines, including the
ribosome, specific editing has the potential to change
the amino acids encoded by mRNA. However ADAR
enzymes have another activity on (nearly) perfect dsRNA:
Hyper-editing can convert up to 50% of adenosines to
inosine within the double-stranded region [9]. Hyper-
editing of endogenous RNAs was first reported in human
ALU elements, a class of transposable elements com-
prising about 10% of the human genome sequence and
numbering over one million copies [10]. Analyses of
hyper-editing revealed far more editing sites in repetitive
elements than the known examples of specific editing in
protein-encoding RNAs. As next-generation sequencing
has become cheaper, new studies, using new sequenc-
ing methods and analyses, have increased the number of
known editing sites and expanded our understanding of
ADAR activity [11–15].
However, the ability of these studies to find hyper-

editing in long, perfect dsRNA and to accurately estimate
the level of editing at a given hyper-edited position is
limited: They must discard reads that have no best align-
ment to a reference genome or risk widespread false
positive predictions. By its nature, long dsRNA consists
of a sequence followed by its reverse complement. This
self-complementarity ensures that a read originating from
the interior of such a molecule will align equally well on
both the forward and reverse strand. To make matters
worse, dsRNA is most likely to appear when repetitive
elements are present, forming when two copies occur
nearby but in opposite orientation or within certain self-
complementary sequences. Thus, reads originating from
within a long, perfect duplex are unlikely to have a sin-
gle best alignment. Therefore, methods that discard reads
with ambiguous alignment cannot provide a full picture
of hyper-editing. Long read sequencing technologies do
present a possible solution. However methods that can
align short hyper-edited reads to dsRNA are needed,
because short read data sets are cheap and ubiquitous.
To confront this challenge, we employed a probabilis-

tic model that iteratively aligns reads and finds novel
sequence changes, including hyper-editing and SNPs.
While hyper-editing is the focus of this application, we
also address other sequence modifications that may be
confused with hyper-edits. For this purpose we used a
three-component Dirichlet mixture model [16] to sepa-
rate SNPs, hyper-edits, and positions that only differ from
the reference by read error. We also estimate expression
levels to further refine our alignment.
Here we present RepProfile, an algorithm that employs

the expectation maximization (EM) algorithm [17] to find

the read alignments, SNPs, hyper-editing patterns, and
expression levels that are most likely under our model.
This EM algorithm alternates between averaging over hid-
den variables (in this case, the alignment) in its E-step
and estimating the hyper-editing, SNPs and expression
(henceforth called the genome profile [18]) that maxi-
mize the likelihood of those averages in its M-step. While
the alignment of a read to the reference genome may be
ambiguous, as the algorithm refines its estimate of the
genome profile, the probability of the correct alignment
can grow to a point of near certainty if enough informa-
tive positions (nucleotides that distinguish between repeat
copies) are identified, even when the genomic sequences
of repetitive elements are identical. Because the expected
alignment must be recalculated at each E-step, RepProfile
is potentially computationally intensive. Thus, RepPro-
file is built to consider one repeat family at a time. A
widespread analysis can be done by running RepProfile on
many repeats in parallel.
Several methods have been proposed that consider read

alignment and inference jointly, but none make use of
novel sequence variation to improve alignment. TEtran-
scripts [19] uses the EM algorithm to learn expression
levels in repetitive sequence. The algorithm of Wang
et al. [20] is similar, but uses Gibbs sampling instead of EM
and is designed for application to Chip-seq. The algorithm
of Parks et al. [21] considers how genomic rearrange-
ment affects read alignment. We are, as far as the authors
know, the first apply such methods to position variation,
including SNPs and hyper-editing.

Results
RepProfile was used to predict hyper-editing in trans-
posable elements from 2x100bp Illumina sequence reads
from whole head Drosophila melanogaster RNA. Rep-
Profile was run on each transposable element (TE) fam-
ily in parallel. This included all repeats in the UCSC
genome browser (genome.ucsc.edu) repeatmasker track
except simple repeats, low complexity repeats, rRNA and
satellites, a total of 29 megabases. Hyper-editing is not
limited to TEs, but they are a common source of dsRNA,
and RepProfile was designed to find hyper-editing in TEs.
Repeat families that are a prefix of other families were
merged. Thus, for example, PROTOP, PROTOP_A and
PROTOP_B were considered together. Similarly the LTR
and interior portions of RNA transposons were merged.
RepProfile aligned 8.3 millions reads (totaling 1.66 giga-
bases) and predicted a total of 30,185 edit sites.
In this section we focus on predictions in FB4_DM,

PROTOP and DNAREP1_DM. RepProfile predicts the
most widespread hyper-editing in FB4_DM. Hyper-
editing of PROTOP repeats was already described in [6],
and DNAREP1_DM shows how imperfect helices can be
hyper-edited. A note about each family with at least 1000

genome.ucsc.edu
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predictions can be found in the Additional file 1. A full list
of all predictions can be found in Additional file 2: Table
S3. We use simulation and clone validation to show the
accuracy of RepProfile.

Simulations support accuracy of RepProfile
RepProfile and competing methods were tested against
three different simulations of hyper-editing. In the first
reads are simulated from a hypothetical repeat family con-
sisting of 24 identical copies of a random 1kb sequence:
20 isolated copies (10 in each orientation) and 2 oppo-
sitely oriented pairs that are simulated to be hyper-edited
(one on each strand). In the second, we simulate reads
from the FB4_DM repeat, including editing only at the
sites observed in our clone data (see below). In the third
simulation, FB4_DM repeats are chosen at random to
be hyper-edited. In both FB4_DM simulations, reads are
simulated in proportion to observed expression levels.
Reads drawn from the hypothetical repeat family show

that RepProfile is able to provide accurate alignment to
highly repetitive sequence. Because the genome sequence
of these repeats are identical, no read that falls entirely
within a repeat has a unique alignment to the hypothet-
ical repeat reference. Nevertheless, RepProfile is able to
align 90% of reads that fall entirely within one of the
hyper-edited duplexes to the learned profile with map-
ping quality 30+ (estimated probability of misalignment
≤ 0.1%). 99.9% of these reads are aligned correctly, allow-
ing RepProfile to predict editing sites with high sensitivity
and PPV (Table 1).

Table 1 Sensitivity and PPV for RepProfile and competing
methods in the three different simulations

Exact Rep Sens. PPV

RepProfile 0.94 0.99

Porath 0.07 1.0

EER uniq 0.36 0.99

EER +rep 0.90 0.14

Clone

RepProfile 0.95 1.0

Porath 0.13 0.97

EER uniq 0.55 0.82

EER +rep 0.91 0.42

Random

RepProfile 0.87 0.99

Porath 0.50 0.98

EER uniq 0.70 0.98

EER +rep 0.86 0.74

Top: Simulation from 24 identical copies of a hypothetical repeat.Middle: Simulation
of editing predicted by clones. Bottom: Random hyper-editing of FB4_DM

In addition to RepProfile, we predicted edit sites using
the method of Porath et al. [12] and by finding editing
enriched regions (EERS) [15], either using all reads (+rep)
or only using reads for which at least one end aligns
uniquely (uniq). Neither of these methods uses a simi-
lar strategy to RepProfile. In particular, the Porath et al.
method considers only reads with a large number of A
to G changes. However there are few published methods
showing success predicting RNA-editing in repeats, and
the comparison shows that hyper-editing of long, perfect
dsRNA cannot be found using a simpler method. Table 1
shows sensitivity and positive predictive value (PPV) for
each method applied to each simulation. RepProfile pro-
vides the highest sensitivity in all three simulations, while
maintaining a PPV of 99% or above. RepProfile also pro-
vides accurate estimation of the editing level across all
simulations (see Fig. 1).
In the clone simulation, editing occurs at A/G informa-

tive positions. Thus hyper-edited reads can align uniquely
but incorrectly, explaining the diminished PPVwhen find-
ing EERs with unique reads. RepProfile’s diminished sen-
sitivity in the random hyper-editing simulation is due to
the fact that many simulated edit sites occur in low cov-
erage regions. As repeats accumulate mutations, unique
alignments become possible, but the repeats also tend
to lose their dsRNA structure. Because edit sites are not
limited to dsRNA in the random hyper-editing simula-
tion, more hyper-edited reads align uniquely, allowing the
competing methods to perform better.

RepProfile predictions are validated by Sanger clones
A hyper-edited FB4_DM in the gene retinal degener-
ation A (rdgA) was chosen for validation. Not only
is this repeat not unique, it is also internally repeti-
tive, making alignment particularly challenging. rdgA is
expressed almost exclusively in the nervous system [22],
as is dADAR protein. 62 sequences were generated by
cloning RT-PCR amplicons from the sequence spanning
chrX:8,928,544-8,929,835 in the dm6 genome assembly
(available from the UCSC genome browser: genome.ucsc.
edu). The cloned sequences showed a small deletion
spanning chrX:8,928,786-8,929,278 and so the FB4_DM
reference was updated to include this deletion.
The Sanger sequences confirm the pattern of hyper-

editing predicted at this locus, with each clone displaying
a distinct pattern of edited sites. Of 322 adenosines in the
clone region, editing is observed at 280 positions (87%)
in at least 1 clone. Each clone is edited at an average
of 76.7 adenosines (24%). RepProfile predicts editing at
269 of the 280 positions edited in the clone sequences
(sensitivity = 96%). RepProfile predicts editing at an addi-
tional 11 sites, yielding a PPV of 96%. As Fig. 2a shows,
RepProfile accurately predicts editing levels. Among posi-
tions that show evidence for editing both in RepProfile

genome.ucsc.edu
genome.ucsc.edu
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Fig. 1 Agreement between simulated and predicted RNA-editing levels. Level of RNA-editing in simulation vs prediction for each position that is
either simulated or predicted to be edited. a Edits simulated from hypothetical exact repeat copies. b Simulation using edits predicted by clone
sequence. c Simulation of hyper-editing at random FB4_DM. Because this simulation reflects the varied coverage of an actual RNA-seq experiment,
many simulated edit sites are covered by few of no reads (points along x axis)
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Fig. 2 Agreement between RepProfile and clone validation. a Fraction of editing predicted by clones vs fraction predicted by RepProfile. RepProfile
and clones show good agreement in the rdgA FB4_DM element. b RNA-editing predictions aligned to RNA secondary structure as predicted by
RNAstructure [39, 40]. Positions are colored so that aligned pairs are the same color. Unpaired positions are not colored. Both methods predict
hyper-editing only in the helical portion of this repeat, consistent with the fact that ADAR is a dsRNA binding protein. c Explanation of RNA structure
coloring. A gradient from red to green to blue is stretched across the length of the sequence. Paired positions are colored according to the minimum
of their position and the position they are paired to. Unpaired position are not colored
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and in the clones, RepProfile overestimates editing by 6%,
with a standard deviation of 11%. Figure 2b provides a
site-by-site comparison of predicted and validated editing.
Using reads for which at least one end aligns uniquely,

the method of EERs [15] predicts only 31% of the cloned
edit sites. All predictions made by the EER method are
supported by the clone validation. Applying the method
of Porath et al. [12] to our data yields 17 editing sites in
this FB4_DM element, but fails to find any editing in the
cloned region. These sensitivity estimates are lower than
those estimated in simulation, indicating that there are
additional alignment challenges not included in our sim-
ulation. Similarly our Helicos single-molecule sequencing
(SMS) results [13] find 2 tier 1 and 10 tier 2 edit sites in
this element, but none in the cloned region. Rodriguez
et al. [11] and Ramaswami et al. [14] fail to predict any
editing in this FB4_DM. The lack of FB4_DM hyper-
editing in these published lists is unsurprising as they all
rely on unambiguous alignment of short reads.

FB4_DM repeats are highly hyper-edited
The FB4_DM sequence is almost entirely a perfect
inverted repeat, which has the capacity, if transcribed,
to fold back and form long, (nearly) perfect dsRNA
(see Additional file 3). Thus, transcripts containing
FB4_DM in pre-mRNA are potentially excellent ADAR
hyper-editing substrates. Indeed, RepProfile predicts fre-
quent hyper-editing of FB4_DM elements.
In addition to the element in rdgA described above,

there are four other FB4_DM that are predicted to be
hyper-edited by RepProfile with highest confidence (see
discussion). These predictions appear in the genes no-
long-nerve-cord (nolo), Pur-alpha, Maf1 and rolled (rl).
Across these five repeats (including rdgA), 1681 editing
sites are predicted. Interestingly, like rdgA, these genes are
known to be involved in proper cell-cell communication
in the nervous system, particularly in the correct func-
tion of synapses [23–26]. Two (Pur-alpha [24] and rdgA
[22]) are associated with neurodegneration. Seven more
FB4_DM (see Table 2) are predicted to be edited by Rep-
Profile at slightly lower confidence (see Discussion). This
brings the total number of predicted edit sites to 4384.
Five of these seven are also in genes that have been shown
(or are predicted) to play roles in proper neuronal main-
tenance and function [27–31]. Two examples of FB4_DM
hyper-editing are shown in Fig. 3.
There are seven additional genes containing FB4_DM

elements that are predicted to form dsRNA, but are not
predicted to be edited: CG11873, CG17600, CG42238,
kek5, kirre, Pka-R1, vtd. Only two (Pka-R1 and vtd) of
these genes are annotated with neuron-related GO terms
in flybase [32] (as of January 1, 2017). It is possible that
while these genes are edited in neurons, the edited reads
are overwhelmed by transcription in cells that do not

Table 2 FB4_DM that are predicted to be hyper-edited.
Predictions with a yes in the last column are RepProfile’s most
confident predictions

Position Gene Most confident

chr2L:21705310–21707776 nolo Yes

chr2R:1075216–1076448 rl Yes

chr2R:1521733–1522952 Maf1 Yes

chr4:560886–562920 Pur-alpha Yes

chrX:8927642–8929850 rdgA Yes

chr3L:4361048–4362834 Cip4 No

chr3L:8019759–8024110 nmo No

chr3R:1971337–1972661 Myo81F No

chr3R:21609064–21611636 inR No

chr3R:22450601–22453179 CG34376 No

chrX:11645168–11648276 Ptp10D No

chrX:2132105–2133551 ph-p No

If there is a No in the last column, RepProfile was able to align reads without
predicting hyper-editing at this repeat, but not predicting hyper-editing at these
repeats yielded a lower posterior probability

express ADAR. Alternatively, these RNA duplexes may be
targeted by another dsRNA binding protein, making them
unavailable to ADAR.

DNAREP1_DM repeats form imperfect helices that are
partially edited
While shorter (up to 500 nt) the 5,802 DNAREP1_DM
elements in the fly genome play an analogous role to that
of ALU repeat elements in the human genome. As with
ALU repeats, it is not uncommon for two DNAREP1_DM
elements to be oriented in opposite directions in the
same gene, or even to be opposite and adjacent. How-
ever DNAREP1_DM instances tend to be quite divergent,
and so these DNAREP1_DM form imperfect helices that
are edited to a lesser extent than FB4_DM. Figure 4
shows the hyper-editing and structural predictions for
two pairs of DNAREP1_DM that are adjacent and oppo-
site in orientation. Table 3 lists all the DNAREP1_DM
that are predicted to be hyper-edited. RepProfile pre-
dicts 685 edited positions in DNAREP1_DM. Many
of these genes are also relevant to the nervous
system [33–36].

Alignments to PROTOP show hyper-editing of the
previously described Hoppel killer element
The most probable solution found by RepProfile includes
38 hyper-edited PROTOP, PROTOP_A and PROTOP_B
elements containing a total of 4326 edit sites. Here
we focus on the five most confident predictions (see
Discussion). All five are pairs of PROTOP(A/B) that are
adjacent but opposite in orientation (see Table 4). These
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Fig. 3 RepProfile predictions for two FB4_DM. Alignment of RepProfile predictions to RNAstructure [39, 40] secondary structure predictions.
Secondary structure is colored as in Fig. 2b/c. a An FB4_DM element in the gene nolo. b An FB4_DM element in the gene rolled (rl)

repeats contain a total of 973 predicted edit sites, 697 of
which are in the Hoppel killer (Hok) element [6].
Our previous work [6] demonstrated that dADAR pro-

teins, as well as other dsRNA-binding proteins, localize to
the Hok element in vivo, but using SMS we only found
a small number of editing sites in Hok [13]. However
with RepProfile we are able to predict drastically more
editing – a result that is more in line with the strong
evidence of ADAR activity at this locus. Figure 5 shows
predicted editing for Hok. Hok contains three highly sim-
ilar PROTOP_A elements, so there may be structural
conformations other than the one illustrated in Fig. 5.

ADAR edits in short runs
FB4_DM sequences contain long strings of consecutive
adenosines, sometimes more than ten adenosines long.

We analyzed the hyper-editing of consecutive adenosines
on a read-by-read basis to understand how ADAR edits
long, perfect dsRNA. When analyzing runs of edited
adenosines that are followed by another base, we do not
not know whether the run would have continued had
there been more adenosines to edit. Thus we have (a dis-
crete version of) the lifespan estimation from censored
data problem analyzed by Kaplan and Meyer [37]. Runs of
edited adenosines that are followed by a base that is not
adenosine are considered to be censored, as the run may
have continued were there more adenosines to edit. The
hazard function,

P(run length = n|run length ≥ n)

≈ #n long, uncensored
(#n long, uncensored) + (# > n long)
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Fig. 4 RepProfile predictions for two DNAREP1_DM. Alignment of RepProfile predictions to RNAstructure [39, 40] secondary structure predictions.
Secondary structure is colored as in Fig. 2b/c. a A complementary pair of DNAREP1_DM elements in the gene CG17684. b A complementary pair of
DNAREP1_DM elements in the gene Myo-81f
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Table 3 DNAREP1_DM that are predicted to be hyper-edited

Position Gene dsRNA

chr2L:22996546–22999081 Intergenic Adjacent +/-

chr2R:1305412–1314667 Intergenic Unknown

chr2R:2245576–2248758 CG17684 Adjacent +/-

chr2R:3107642–3109943 dpr21 Same gene +/-

chr2R:4900040–4902165 CG44102 Same gene +/-

chr2R:6823192–6825246 Intergenic Unknown

chr3L:23034337–23037599 nrm Adjacent +/-

chr3L:24175963–24178195 Snap25 Same gene +/-

chr3L:24183640–24186213 Snap25 Same gene +/-

chr3L:24224373–24226438 snap25 Same gene +/-

chr3L:25653710–25655922 CG45782 Same gene +/-

chr3R:1453181–1455383 Myo81F Same gene +/-

chr3R:1593187–1595257 Myo81F Same gene +/-

chr3R:1627526–1629596 Myo81F Same gene +/-

chr3R:647512–650915 Myo81F Adjacent +/-

chr3R:888752–890953 Myo81F Same gene +/-

chr4:1147092–1149608 CG32017 Adjacent +/-

chr4:859109–861284 CG11148 Same gene +/-

chrX:142931–144983 tyn Same gene +/-

Adjacent +/- indicates that there is a DNAREP1_DM within 2kb that is in the
opposite orientation. Same gene +/- indicates that there is a DNAREP1_DM in the
same gene that is in the opposite orientation. Unknown means that neither of these
two conditions apply

is shown in Fig. 6. Short runs are less likely to end than
would be predicted from context alone. However as the
run gets longer the probability that the run will end
increases. This is consistent with the theory that as ADAR
edits, it disrupts the dsRNA structure, introducing I-U
mispairs and making future editing less likely.

Short helices are rarely edited; the longest helices are
edited most
To measure the affect of dsRNA structure on editing, we
measure the length of helices in the five most confident

Table 4 PROTOP(A/B) that are predicted to be hyper-edited at
the highest confidence

Position Gene dsRNA

chr3L:28002423–28003664 CG17514 Adjacent +/-

chr3R:2420941–2423648 Myo81F Adjacent +/-

chr3R:3788494–3789401 Intergenic Adjacent +/-

chr4:1257060–1260307 cadps Adjacent +/-

chr3L:24327899–24328803 nvd Adjacent +/-

Adjacent +/- indicates that there is a PROTOP(A/B) within 2kb that is in the opposite
orientation. Same gene +/- indicates that there is a PROTOP(A/B) in the same gene
that is in the opposite orientation. Unknown means that neither of these two
conditions apply
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Hok. Alignment of RepProfile predictions for Hok to the RNAstructure
[39, 40] secondary structure prediction. Secondary structure is colored
as in Fig. 2b/c

FB4_DM hyper-editing predictions (Table 2) and the five
adjacent +/- DNAREP1_DM repeats that are predicted to
be hyper-edited (Table 3). Helices are allowed to include
bulges of up to two bases on one or both sides of the helix,
as small bulges have been shown not to interrupt hyper-
editing [38]. Structure predictions are by RNAstructure
[39, 40].
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depth at least 25 will not be edited in a particular read. The estimates
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We find that editing is rare in short helices and that it is
most frequent in long helices. RepProfile predicts editing
at only 13% of adenosines in helices that are fewer than 18
basepairs long, but at 80% of adenosines in helices that are
longer than 64 basepairs. This is consistent with evidence
that ADAR does not bind to helices shorter than 15–20
basepairs and is most efficient when editing helices longer
than 100 basepairs [9]. Figure 7 shows editing binned by
helix size.
In the 819 basepair rdgA FB4_DM helix (the longest in

this analysis), 84.1% of adenosine positions are predicted
to be edited, but in individual transcripts only 27.7% of
adenosines are edited on average. This editing of 27.7%
of adenosines is less than the 50 − 60% seen in vitro [9].
This difference could be because the editing reaction is
not allowed to complete in vivo, because transcripts are
sequenced before they are fully edited, or because some
copies are sequenced from cells with low levels of ADAR.

The nucleotide context of our predictions reflects known
ADAR preferences
We investigated the effect of preceding and following
bases on the fraction of editing at an adenosine (A) posi-
tion. We consider only positions that are in the five most
confident FB4_DM predictions and are also at least 25
bases away from the nearest unpaired position – a total of
865 adenosines. Figure 8 shows the fraction of editing for
sites in each three-base context.
The preceding base has a strong effect on the fraction

of editing. Predicted edit sites following T are edited in
the highest fraction of reads (mean = 0.35). Sites following

A are slightly less likely to be edited (mean = 0.29). Sites
following C are much less likely to be edited (mean =
0.08) and sites following G are rarely edited (mean =
0.03.) Each pairwise comparison has t-test BHY [41] FDR
less than 0.003. Consistent with evidence that ADAR
edits in runs, this 5’ preference affects the following base:
Adenosines preceded by AA or TA are edited more often
than adenosines preceded by CA or GA (pairwise FDRs all
less than 0.015.)
The following base has a smaller effect on the fraction of

editing. Adenosines followed by G are edited most often
(mean=0.35), followed by A (mean=0.26), C (mean = 0.24)
and T (mean = 0.21.) However the only statistically sig-
nificant result is that adenosines followed by G are more
likely to be edited (p value = 0.0018.) Our results for 3’
and 5’ base preferences agree with those found in previous
studies [42–45].

Run time per RepProfile step scales with the number of
candidate alignments; the number of steps depends on the
amount of editing
For most repeats, calculating the probability of each can-
didate alignment in each E step forms a bottleneck. Thus
the time to complete a single EM step scales with the
number of candidate alignments (Fig. 9a). This makes
run time difficult to predict a priori as the number of
candidate alignments depends not only on the number
of reads, but also on the number of candidate align-
ments per read. For example, there are five times as many
reads that align to DNAREP1_DM repeats as there are
reads that align to FW_DM repeats. However predicting
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hyper-editing in DNAREP1_DM takes less than half as
long per step, because FW_DM repeats are much more
similar to one another than are DNAREP1_DM repeats.
Alignment probabilities are calculated independently,
making the E step highly parallelizable. For FB4_DM, a
single EM step takes 1353, 664, 365, 215, and 131 seconds
on 1, 2, 4, 8, and 16 cores, respectively.
While EM usually converges in a small number of

steps, as it runs, RepProfile suggests new initial con-
ditions to explore alternate hyper-editing solutions. At
minimum one initial condition is tried for each hyper-
edited repeat (Fig. 9b). However RepProfile will continue
trying new initial conditions if a more likely solution
is found with a different set of hyper-edited repeats.
Most TEs (about 80%) run in 30 minutes or less on 8
cores, but six TEs required run times of a day or more
(Additional file 2: Table S2, Fig. 9c). The most computa-
tionally intensive repeat, PROTOP(A/B), required about 4

days of run time with 815 steps. Running RepProfile on all
TEs required a total of 16 node-days at 8 cores per node.

Summary
RepProfile provides accurate RNA hyper-editing predic-
tions that are validated both by simulated data and by
individual sequence clones. Our analysis reveals hyper-
editing that is not – indeed we argue cannot be – found
by other methods. In particular, we highlight the hyper-
editing of long, perfect dsRNA formed by FB4_DM ele-
ments – a repeat whose relevance to hyper-editing was not
previously known – in the introns of genes with synaptic
function.We also estimate the level of editing – something
that other methods do not do. In addition to finding many
hyper-editing events in long, perfect dsRNA, our results
show that ADAR often edits a run of adjacent adenosines;
that editing is rare in helices less than 20 base pairs long
but becomes more frequent as helix length increases; and
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that, consistent with previous findings, adenosines are
more likely to be edited if they follow A or T than if they
follow C or G.

Discussion
The successes of RepProfile, both in simulation and val-
idation, show that short reads can predict RNA editing
even when standard alignment techniques cannot pro-
duce confident alignments. Even if repeats are locally
identical, they are likely to form different RNA secondary
structures in the context of different transcripts, leading
to unique editing patterns. Additionally there may be cell-
specific factors that further differentiate hyper-editing
patterns. Thus, when endogenous dsRNAs are “marked"
by ADAR modification with a unique editing pattern,
RepProfile can distinguish between identical repeats.
As far as the authors know, RepProfile is the only tool

capable of using RNAseq data to accurately find RNA
hyper-editing (or position variation in general) within
sequences that form long, perfect dsRNA. RepProfile
reveals RNA duplexes with hundreds of edited positions,
where other methods, reliant on unambiguous alignment
to single reference genome, find few or No sites. Because
almost all RNAseq analysis methods rely on unambigu-
ous alignment to a reference genome, it is likely that many
studies have missed valuable insights regarding dsRNA.
This is especially important for RNA hyper-editing as
hyper-editing only occurs in dsRNA.While previous stud-
ies have been able to describe hyper-editing events, their
descriptions are limited to dsRNA molecules that con-
tain sufficient imperfections (bulges) for unambiguous
alignment.
The major challenge for EM applications, such as Rep-

Profile, is that EM is only guaranteed to find a local
maximum, which may or may not be the global maxi-
mum. Thus, EM must be run with a variety of initial
conditions in order to be confident that the global max
has indeed been found. When applying RepProfile to real
RNAseq reads, we often find several maxima, leading
to the distinction between highly confident and regular
hyper-editing predictions. The highly confident predic-
tions are repeats that are predicted to be hyper-edited in
all maxima. Highly confident predictions tend to occur
when RepProfile can align paired reads such that one
end is aligned to the hyper-edited repeat and the other is
aligned outside the repeat. For FB4_DM, coverage of the
flanking sequence is 13 times higher for highly confident
predictions (vs 4 times higher for the repeat itself ). As the
flanking sequence tends to bemore unique than the repeat
itself, it is difficult to be sure which repeat is hyper-edited
without these flanking reads. The failure to align reads
outside the repeat could be due to repetitiveness in the
flanking sequence, inaccuracies in the reference, or simply
because of low coverage.

While repeatedly realigning reads allows for accurate
predictions of hyper-editing in repetitive elements, it
is time consuming. Thus RepProfile only considers one
repeat family at a time. As each repeat can be con-
sidered in parallel, it is possible to use RepProfile to
predict Drosophila melanogaster hyper-editing genome-
wide. Even so, for prevalent, highly repetitive repeats
such as PROTOP(A/B), RepProfile can take days to run.
In a larger genome, such as the human genome, there
may be repeats that are even more computationally chal-
lenging. Thus improvements may be necessary when
applying RepProfile to a large genome. Such improve-
ments could be made by creating new c extensions or
by selectively updating alignment probabilities. RepPro-
file is written entirely in Python (with heavy computation
done by numpy) and does not check whether the profile
has changed significantly before recalculating alignment
probability at each step.
Our analysis provides insight into how ADAR edits at

the molecular level. We find that ADAR is more likely to
edit adjacent adenosines, but is less likely to extend long
runs of editing. This indicates that ADAR edits proces-
sively, but that as it edits it destabilizes the helix, causing
the enzyme to detach. The finding that short bulges do
not interrupt RNA-editing [38] explains why ADAR activ-
ity does not slow until the editing run lengthens. Our data
confirms the results of in vitro experiments showing that
ADAR does not readily bind to short helices and that long
dsRNA is required for maximum editing efficiency [9].
We also confirm the highly replicated result that ADAR
has a strong 5’ preference for A or U over G or C, but
weak 3’ preferences [42–45]. Good agreement with these
results provides further evidence that RepProfile gives an
accurate picture of RNA hyper-editing.
The predictions made by RepProfile point to the pos-

sibility that hyper-edited TEs play a functional rule – a
question that deserves further investigation. Most of our
predictions, indeed all of our most confident FB4_DM
predictions, are in highly-conserved genes with synap-
tic functions in both invertebrates and vertebrates. This
similarity of function is not likely to arise by random
transposable element (TE) insertion, providing evidence
for the domesticated use of TEs to regulate neuronal gene
expression. Of course this is merely an observed correla-
tion and it possible that some property of neuronal genes
coincidentally facilitates hyper-editing of TEs. Our results
provide a baseline picture of hyper-editing in these genes.
These sites can now serve as targets for future studies
investigating how hyper-editing is controlled and how it
affects gene regulation.
While we have used RepProfile to predict hyper-editing,

it also uses SNPs and expression levels to differentiate
between repeats. In addition to the hyper-editing applica-
tion described here, we envision that RepProfile is capable
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of finding unreported SNPs in repetitive sequence and of
reconstructing the sequences of novel transposable ele-
ment insertions. Indeed any sequencing experiment relies
on an accurate alignment, and our results show that Rep-
Profile can provide high quality alignment to repeats. The
need for higher quality alignments may be especially great
in differential expression experiments where failing to
account for variation can lead to biased results [46]. Thus,
RepProfile has the potential to improve a wide range of
RNAseq experiments.

Conclusion
It is often not possible to unambiguously align a sin-
gle read, considered in isolation, to a repetitive reference
genome. As a result, most analysis pipelines only con-
sider unique regions of the genome, failing to provide
any results about long, perfect dsRNA. Not only is such
dsRNA the prime target for ADAR, proper regulation of
dsRNA, in which ADAR plays a crucial role, is necessary
for normal neuronal function. RepProfile provides accu-
rate hyper-editing predictions in dsRNA, showing that, in
the case of RNA editing at least, unambiguous alignment
(to a reference genome) is not necessary for accurate infer-
ence. By building a complete probabilistic model that not
only considers the information that aligned reads provide
about hyper-editing, but also the information that hyper-
editing provides about those read alignments, we are able
to provide a more complete and more accurate picture
of how ADAR edits endogenous dsRNA. We find that
ADAR edits in short runs, and we observe themost hyper-
editing in FB4_DM repeats that are in the introns of genes
with synaptic functions, two of which are associated with
neurogeneration, hinting at a regulatory role for hyper-
editing. Previous studies of RNA editing in Drosophila
melanogaster have failed to identify hyper-editing in this
repeat, showing that a method, such as RepProfile, that
accurately aligns short reads to dsRNA is necessary to
begin teasing apart dsRNA pathways, and to understand
the regulatory role of ADAR.

Methods
RepProfile Algorithm
Glossary of Random Variables:

• R = R1, . . . ,Rm is the set of m Read sequences.
• A = A1, . . . ,Am is the Alignment of each read.
• X = X1, . . . ,Xr is the relative eXpression of each

repeat, where r is the total number of repeats.
• G = G1, . . . ,Gn is the Genome profile (probability of

A/C/G/T sequenced) at each position in each repeat,
where n is the total number of positions.

• H = H1, . . . ,Hr are the Hyper parameters,
representing underlying sources of variation in G
(hyper-editing in our applictation).

• T = T1, . . . ,Tn are the variation Types of each
position such as SNPs or edited positions.

• U(A,R) = U1, . . . ,Un are the number of A, C, G, T
aligned at each position.

• V (A,R) = V1, . . . ,Vr are the number of reads
aligned to each repeat.

The hierarchy in Fig. 10 generates a probability distri-
bution across read sequences. Repeat expression levels,
modeled on the left side, combine with nucleotide varia-
tions, modeled on the right, to generate read sequences.
We can use EM to maximize the joint probability, which
as the two are proportional, also maximizes the posterior
distribution conditioned on the observed read sequences.
To streamline the computation, only potential alignments
suggested by a standard aligner are considered.
The model of nucleotide changes begins with a repeat

genome consisting of all copies (repeat elements) of a par-
ticular repeat in an organism’s reference genome. Each
repeat element, k, is in one of several states, Hk . In our
analysis of hyper-editing, the states are: hyper-edited on
the forward strand, hyper-edited on the reverse strand and
not hyper-edited (Fig. 11a). Similarly, each genomic posi-
tion, i, within each repeat is in one of several states, Ti. In
our hyper-editing model, the states are: edited, SNP and
neither (Fig. 11b). The probability of a particular position
being in a particular state depends on the repeat state,
Hk(i). For instance an adenosine can only be in the edit
state, if it is in a repeat that is hyper-edited on the forward
strand. Conditioned on the state, Ti, we model Gi(x), the
probability of nucleotide x, at position i, using a Dirich-
let distribution – a distribution of distributions over the
four-letter nucleotide alphabet {A,C,G,T} (Fig. 11c). Thus,
Gi(x) is sampled from a mixture of Dirichlets, with Ti

Fig. 10 Bayesian network for RepProfile probability distribution.
Directed graph describing the probability distribution used by
RepProfile as a Bayesian network. Reads, R, depend on the profile, G,
and the alignment, A. The profile depends on the position types, T
(e.g. edited position), which depend on the repeat types H (e.g.
hyper-edited repeat.) The alignment A depends on expression levels, X
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a c

b d

Fig. 11 Cartoon description of RepProfile probability distribution. a There are many repeat copies in the genome. Each has some probability of
being hyper-edited. H tells us which are hyper-edited and which are not. bWithin each repeat, each position has a chance of being a SNP and each
A in a hyper-edited repeat has a chance of being edited. T indicates which positions are SNPs and which are edited. c Any base can be sequenced at
any position. G gives the distribution over A/C/G/T at each position. d Each repeat has a probability of generating the next read (defined by X), and
A is the specific aligned position for the read. The read bases, R, are drawn from the corresponding distributions in G

being the mixture component. See the Additional file 4 for
the exact parameter values that define P(H ,T ,G).
In parallel, a distribution across genomic positions, X,

defines the probability of sequencing a read that starts
at a particular position. X is assumed to be constant
across positions in a single repeat element. Thus, X can
be thought of as defining the relative expression level
of each repeat element. Alignments, A1,A2, . . . ,Am, are
drawn from X (Fig. 11d). Insertions and deletions are
inserted according to an affine gap probability. Given a set
of aligned positions,Aj, and distributions over nucleotides
at those positions, GAj , the probability of a read sequence,
Rj, is the product across read letters of the probability
of those read letters:

∏
GAj(Rj). The assumption here is

that, conditioned on the profile, the read sequence at
each position is independent. This assumption is contra-
dicted by our own observation that ADAR edits in short
runs. However assuming this independence is necessary
for efficient computation, and our simulation and valida-
tion shows that this assumption does not prevent accurate
estimation. Distinguishing repeats that are hyper-edited
from those that are not (H) allows us to preserve the key
dependence: that edit sites tend to localize.
After conducting an RNAseq experiment, we observe

a read set R. If we assume that R is drawn from the
distribution described above then we can use EM to esti-
mate X,H ,T and G by maximizing P(X,H ,T ,G,R) ∝
P(X,H ,T ,G|R), and treating the alignment, A, as a hidden
variable.

If we reparameterize A and R to new random variables:
U that counts the number of A/C/G/T aligned each posi-
tion and V that counts the number of reads aligned to
each repeat, P(A,R|G,X) becomes an exponential family
distribution:

P(A,R|G,X) ∝ h(A)
∏

k
XVk(A)

k

n∏

i=1

∏

x∈{a,c,g,t}
Gi(x)U

x
i (A,R)

= h(A) exp[ (U ,V ) · (logG, logX)]

where Ux
i (A,R) is the number of nucleotide x aligned to

position i, Vk(A) is the number of reads aligned to repeat
k and h(A) are indel probabilities. To perform an EM
update, we need to calculate the following quantity:

G(t+1),T (t+1),H(t+1),X(t+1)

= argmax
G,T ,H ,X

E [logP(A,X,H ,T ,G,R)|R,G(t),H(t),X(t)]

As Dirichlet distributions are conjugate to the exponen-
tial family above, the maximization can be completed as
follows. First we consider terms depending on X:

argmax
X:

∑
X=1

(αX−1+EA[V ] )·logX = αX − 1 + EA[V ]
∑

αX − 1 + EA[V ]

where αX are the Dirichlet parameters and EA is expecta-
tion over A conditioned on (R,G(t),H(t),X(t)).
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Next, for fixed T we can maximize over G:

argmax
G:

∑
Gi=1

(αT − 1 + EA[U] ) · logG

= αT − 1 + EA[U]
∑

αT − 1 + EA[U]
= ĜT

Then we can maximize T for a given H :

argmax
T

logP(T |H)−logZT+(αT−1+EA[U] )·log ĜT

where ZT is the Dirichlet normalization constant for
f (G|T). Finally, we can find the optimal value ofH for each
repeat and then work backwards to get T and G. More
details can be found in the Additional file 4.
It remains to calculate EA[U] and EA[V ], which is done

by summing the counts for each individual alignment:

EA[U] =
∑

j
EAj [U(Aj)]

=
∑

j

∑

Aj

P
(
Aj|Rj,G(t),X(t)

)
U(Aj)

EA[V ] =
∑

j
EAj [V (Aj)]

=
∑

j

∑

Aj

P
(
Aj|Rj,G(t),X(t)

)
V (Aj)

However it is not computationally feasible to sum over
all possible alignments Aj for all reads j by brute force. In
Hidden Markov Models, the forward and backward sum
algorithm is usually used to achieve computational feasi-
bility. However it is still O(mnq) for a repeat genome of
length n and a dataset of m reads of length q. Thus it is
still not feasible when reads number in the hundreds of
millions. Fortunately for most bases at most positions, the
probability of that base at that position will be small. Thus
most of the possible alignments will have probability near
0. We can approximate the sum over alignments by con-
sidering only a small number of candidate alignments. In
the case of hyper-editing, we allow candidate reads to have
any number of A to G mismatches but only four other
mismatches.
While each step of EM is guaranteed to produce a larger

value of P(G(t),H(t),T (t),X(t)|R), the process is not guar-
anteed to converge to the global maximum. In some cases,
EM gets stuck at a local maximum. In many applica-
tions, EM is run many times with many different initial
conditions. The solution that gives the largest value of
P(R,G,H ,T ,X) is taken. As RepProfile runs, it creates
new initial conditions by removing hyper-editing from
each repeat one at a time. EM is run again for each new
initial condition and the solution with the best likelihood
is chosen. Trying initial conditions with fewer hyper-
edited repeats balances the fact that expected counts tend

to spread variation across repeats in early EM steps and
allows us to settle on a set of highly confident predictions.

Drosophila stocks
Drosophila strains were raised at a constant 25°C, on
standard molasses food, and under 12 h day/night cycles.

Cloning and RNA editing analysis
To examine RNA-editing, total RNA was extracted from
heads and thoraxes (20 per sample) of 1- to 2-day-oldmale
Drosophila. RNA extractions were performed using TRI-
zol reagent (Invitrogen). Total RNA was transcribed into
cDNA using M-MLV Reverse Transcriptase from Promeg
a using an rdgA specific primer: RDGD-RT3 5′-GATTAA
TAGCATCGCACTCGAAGTAATCCC-3′. Edited cDNAs
were amplified via PCR using target-specific primers:
RDGINT-F2 5′-GTATGTATGTTTATCAACACCCTCC-
3′ and RDGD-R3 5′-GACTTCATTCCAACGCTGTCGTT
CTG-3′. The PCR product was purified using the Wiz-
ard®SVGel and PCRClean-Up System from Promega (cat-
alog number: A9282) from 1.5% agarose gel electrophore-
sis. Subsequently, 4 μL of PCR product was cloned into
One Shot®TOP10 Chemically Competent E. coli cells
using Zero Blunt®TOPO®PCRCloning Kit from Invitrogen
(catalog number: K2800J10), according to manufacturer’s
guidelines. A total of 50 μL solution containing the trans-
formed cells were plated on kanamycin+agar plates. Plates
were incubated overnight at 37 °C. Colonies picked from
the plate were grown in kanamycin+ LB media overnight
at 37 °C shaker at 200 RPM. DNA was isolated from 600
μL of culture media using PureYield™Plasmid Miniprep
System, according to manufacturer’s guidelines. Finally, 2
μL of isolated DNA was used for the sequencing reaction
using BigDye®to obtain chromatograms for analysis.

LoxP RNA 100BP paired-end sequencing
Total RNA, extracted by the above procedure, was sent
to Genewiz for the preparation and deep sequencing of
100bp paired-end libraries. No polyA selection was pre-
formed, but otherwise library prep and sequencing was
done according to standard Genewiz methods.

Generation of candidate alignments
The script used to process reads and generate candi-
date alignments can be found at https://github.com/
wmckerrow/RepProfile/blob/master/utilities/make_candi
date_alignments_genomic.sh. First, T’s in antisense reads
are replaced with C. A’s in sense reads are replaced
with G. Similarly, two masked genomic references are
created by replacing A with G in one and T with C in
the other. Two bam alignments are generated by using
bwa aln (version 0.7.12) [47] to align masked reads to
each of the masked references and subsequently merged
into a single alignment. Reads for which some part of

https://github.com/wmckerrow/RepProfile/blob/master/utilities/make_candidate_alignments_genomic.sh
https://github.com/wmckerrow/RepProfile/blob/master/utilities/make_candidate_alignments_genomic.sh
https://github.com/wmckerrow/RepProfile/blob/master/utilities/make_candidate_alignments_genomic.sh
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at least one of the read ends overlaps sequence labeled
as the repeat of interest (FB4_DM, DNAREP1_DM or
PROTOP/PROTOP_A/PROTOP_B) in the repeatmasker
database (as downloaded from the UCSC table browser:
genome.ucsc.edu, dm6 version) are extracted. Reads with
mean base quality less than 30 were excluded. A repeat
genome is generated from positions that are in or within
1kb of sequence labeled as the target repeat.
The repeat reads are aligned to the repeat genome, using

the same masking procedure, this time retaining up to
10,000 secondary alignments with at most 4 mismatches
(after masking.) The resulting combined bam file is sorted
by read name and parsed by RepProfile.

Simulation
The hypothetical repeat family was generated as fol-
lows: A random 1kb sequence was generated and copied
24 times – 12 in each orientation. For 10 copies in
each direction, a 1kb of random flanking sequence
was added to each end. The other four copies were
paired to form two RNA duplexes. 1 kb of random
sequence was added to each end of each duplex. For
the other two simulations, the FB4_DM repeat reference
was used.
In the first simulation, using the hypothetical repeat,

both duplexes but none of the isolated repeats are simu-
lated to be hyper-edited. One duplex is edited on the plus
strand, and one on theminus strand. In the second simula-
tion, using FB4_DM, only the cloned region was simulated
to be hyper-edited. In the third simulation, again using
FB4_DM, each of 13 editable FB4_DM had a 0.3 chance
of being hyper-edited. This simulation was repeated 20
times and results were pooled. All the editable FB4_DM
are in highly-expressed genes and greater than 1500 bases
long. Hyper-editing is simulated in the direction of gene
transcription.
In the first and third simulations (excluding the clone

simulation), the simulated profile was generated as fol-
lows:Within each hyper-edited repeat, each editable posi-
tion has a 0.5 chance of being edited. For each edited
position, p is chosen uniformly between 0.001 and 0.997.
To generate the profile at an edited position, the edited
base G(C) is given probability p, the reference base A(T)
is given probability 0.998 − p, and the other two bases
are given probability 0.001. Each position in any repeat
has a 0.01 chance of being a SNP. For each SNP posi-
tion, p is chosen uniformly between 0.001 and 0.997 and a
non-reference base, x, is chosen uniformly at random. To
generate the profile at SNP positions, base x is given prob-
ability p, the reference base is given probability 0.998 − p,
and the other two bases are given probability 0.001. For
other positions, including all flanking sequence, the refer-
ence base has probability 0.997 and the other three bases
have probability 0.001.

For the clone simulation, outside of the cloned region,
the profile matched the reference genome, with each other
base having probability 0.001 of appearing by simulated
read error. Inside the cloned region, the profile was esti-
mated from the clones.
For the hypothetical repeat family, half of the isolated

repeats are transcribed in each direction. For the FB4_DM
simulations, reads are drawn in proportion to exon cover-
age. FB4_DM not in genes are sampled at a low level.
For the FB4_DM simulation, 200,000 reads are drawn.

For the hypothetical repeat simulation, 50,000 reads are
drawn.
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choosing to focus on FB4_DM, DNAREP1_DM and PROTOP. (PDF 133 kb)
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