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Abstract

Background: Gastric cancer is the fourth most common cancer and the second leading cause of cancer death
worldwide. In order to understand the genetic background, we sequenced the whole exome and the whole
genome of one microsatellite stable as well as one microsatellite unstable tumor and the matched healthy tissue
on two different NGS platforms. We here aimed to provide a comparative approach for individual clinical tumor
sequencing and annotation using different sequencing technologies and mutation calling algorithms.

Results: We applied a population-based whole genome resource as a novel pathway-based filter for interpretation
of genomic alterations from single nucleotide variations (SNV), indels, and large structural variations. In addition to a
comparison with tumor genome database resources and a filtering approach using data from the 1000 Genomes
Project, we performed pyrosequencing analysis and immunohistochemistry in a large cohort of 428 independent
gastric cancer cases.

Conclusion: We here provide an example comparing the usefulness and potential pitfalls of different technologies
for a clinical interpretation of genomic sequence data of individual gastric cancer samples. Using different filtering
approaches, we identified a multitude of novel potentially damaging mutations and could show a validated
association between a mutation in GNAS and gastric cancer.
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Background
In recent decades we witnessed major advancements in
the understanding of the epidemiology, pathology and
pathogenesis of gastric cancer (GC), which were accom-
panied by the introduction of chemotherapy for the
treatment of GC [1–3]. However, there is overwhelming
evidence from a variety of cancers that patient prognosis
and treatment responses do not only depend on tumor
stage but also on phenotypic and genotypic tumor
characteristics. The emergence of ultrahigh-throughput
sequencing [next generation sequencing (NGS)] has en-
abled researchers to acquire genome-wide insights into
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the mutational landscape of individual tumors at base-pair
resolution. A number of large scale genomic screens for
single nucleotide mutations or structural variants in se-
lected tumor genomes have been published demonstrating
the feasibility of this approach [4–9]. All data sets have
demonstrated an unforeseen complexity of the mutational
landscape and have demonstrated the extensive dynamics
behind tumor initiation and progression. However, many
of these studies have analyzed predominantly coding
variants, as they are more accessible to prediction and
interpretation. In this study we describe the genetic
architecture of two independent GC samples. We
employed paired tumor/normal tissue analysis and
combined both exome and whole genome sequence
information. The study combines single nucleotide
variation (SNV), indels as well as structural variant
analysis, integrates data from two different sequencing
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platforms and can be used as a blueprint for further
individual cancer genome analyses. We employed sev-
eral scoring systems in parallel including a new exonic
conservation score (ECS) and revealed pathways with an
unexpectedly high number of deleterious polymorphisms
and somatic mutations. Using this comprehensive strategy
we were able to identify a multitude of novel potentially
damaging mutations, which were partially validated in an
independent cohort of 482 GC patients.

Results
The study workflow is summarized in Fig. 1.

Study patients
Two patient samples were retrieved for deep sequencing
analysis.
Patient No. 1 (74-years old Caucasian woman) had

died from a moderately differentiated, highly microsatellite
Fig. 1 Study workflow
unstable, intestinal type GC of the antral mucosa (tumor
stage: pT3 pN0 (0/20) L0 V0 R0 G2).
Patient No. 2 (74-years old Caucasian woman) had

died from a moderately differentiated, microsatellite stable,
intestinal type GC of the antral mucosa (tumor stage: pT4
pN1 (2/21) L0 V0 R0 G2).

Sequencing and mapping results
The whole exome sequencing (WES, Solid) produced
between 160 and 199 million paired reads with a length
of 50/35 bp per sample, which resulted in a mean cover-
age between 41- and 66-fold. The mean library insert
size for all pairs with a distance smaller 2000 (96–98% of
all pairs) was between 184 and 286 bp. The output of
the whole genome sequencing (WGS, Illumina) con-
tained between 2.8 and 6.2 billion paired reads with a
read length of 100 bp, which resulted in a mean cover-
age of 14- to 78-fold (Fig. 2, Additional file 1: Figure S1).



Fig. 2 Workflow of whole genome and whole exome sequencing and subsequent data analysis
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The mean library insert size for all pairs with a distance
smaller 2000 (85–99% of all pairs) was between 180 and
215. Although the number of covered bases was lower in
the non-tumor sample of the second patient (WGS
data), all reported filtered variants were covered by at
least three reads in both data sets of the second patient.
It has to be noted that the coverage in the WES data of
the MSI tumor was lower than in the other data sets.
This could have led to a detection lack of some variants,
but had no influence on the reported variants and the
described mutational patterns.
The sequencing results confirmed that no viral or bac-

terial infection was present in the tumor samples.

SNV and small indel calling
Several variant caller were used and the detected SNVs
and small indels filtered by mutant allele fractions after-
wards. This methodology was applied to identify the
most robust call sets. Depending on the sequencing data
set and SNV-Caller between 41,924 and 97,771 germline
or somatic SNVs were detected in the WES and around
three million germline or somatic SNVs in the WGS
data (Fig. 2). The number of raw somatic SNVs is shown
in Additional file 2: Table S9. The union of all variants
called by at least one caller in the WES or WGS data,
which have a supporting mutant allele fraction larger 5%
in the WES and WGS data, were defined as cross plat-
form variants. All variants called by one of the applied
variant callers for one sequencing technology without
verification in the second sequencing technology were
named single technology variants. Out of the cross plat-
form variants, 202 and 76 filtered SNVs were somatic
(i.e. present only in the respective tumor sample) in the
MSI tumor of the first patient and the MSS tumor of the
second patient, respectively (Additional file 2: Table S2).
Based on the mutant allele fractions of somatic SNVs
called in the WGS data, the tumor cellularity was es-
timated to be around 30% for the MSI and 48% for
the MSS tumor sample, respectively (Additional file 1:
Figure S2).
In the WGS sequencing data, 1,234,100 germline or

somatic single technology small indels were detected in
the MSI tumor sample and 773,010 germline or somatic
single technology indels in the matching control sample
of patient 1. In the WES data of patient 1, 4425 and
4491 germline or somatic single technology small indels
were identified in the MSI tumor and control sample, re-
spectively. This resulted in 239 cross platform indels,
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which were somatic, frameshift, and novel. In the WGS
data of the second patient, 907,184 germline or somatic
single technology small indels were called in the MSS
tumor sample and 930,926 in the matching control. In
the WES data of the second patient, 4137 germline or
somatic single technology small indels were found in the
MSS tumor sample, while 4370 germline or somatic sin-
gle technology small indels were detected in the corre-
sponding control (Fig. 2). Out of this, 32 cross platform
small indels were somatic, frameshift, and novel.
Differences between sequencing technologies and SNV
calling methods
To find a valid approach to reduce the number of false-
positive and false-negative reported positions in our re-
sults, the robustness of different SNV-caller as well as
different sequencing strategies were investigated. Less
than 50% of the SNVs were called by all callers (DiBayes,
Samtools, and GATK) in the WES (Additional file 1:
Figure S15, S16 and S17). In the WGS approach, the
overlap between Samtools and GATK was between 65%
and 88% (Additional file 1: Figure S15), while Samtools
exhibited the highest amount of detected variants of
the cross platform variants. All SNVs called with Sam-
tools or DiBayes and supported by more than 5% of the
mutant allele fractions in the WES and the WGS data
were used for further analyses and defined as cross
platform variants. Quality filter steps as well as the ex-
traction of somatic variants were based on mutant al-
lele fractions. A large number of SNVs were called in
only one sequencing dataset (Additional file 1: Figure
S3). Overall, of course more SNVs were called in the
WGS than in the WES data. The percentage of somatic
SNVs were called in the WES and validated in the
WGS data was markedly higher than the number of
SNVs called in the WGS and validated in the WES data
(Additional file 1: Figure S4). External validation with py-
rosequencing of a subset of eight SNVs called in the WES
data and not supported by the WGS data failed entirely.
Six somatic SNVs called in both WES tumor samples
(Additional file 2: Table S6 + S7), which may point
clearly to specific problems in either the Solid sequen-
cing platform and/or library preparation protocol. Most
of the variants in genes listed in the COSMIC cancer
gene census list were called only in WGS or WES
(Additional file 2: Table S2 + S3), and only confirmed
by mutant allele fractions in the other. This include
non-synonymous variants in genes like PIK3CA, JAK2,
GATA3, ROS1, ARID1A, and BRAF. Only DROSHA was
detected by all methods. All reported observations
strengthen the benefit of applying a cross platform ap-
proach. Further details about the platform comparisons can
be found in the Additional file 3: supplementary results.
Mutational landscape of somatic SNVs in gastric cancer
samples
The relative contribution of the six SNV-classes (C > A,
C > G, C > T, G > A, G > C, G > T) including the flanking
bases were investigated for the somatic variants of the
tumor samples called in the WGS data (single technology
SNVs) (Fig. 3a + b). We could show an overrepresentation
of somatic C > T SNVs, especially in the context of
GpCpG and ApCpG, in the MSI tumor. In the MSS tumor
a disposition to T > G in context of a five prime cytosine
was observed. Furthermore, a decrease of T > C, especially
in context of a five prime thymine, was detected.
Regions with a high somatic single technology SNV

density, potentially representing kataegis events [10], were
visualized by rainfall-plots, in which the distances between
each somatic SNV and the previous somatic SNV were
plotted (Fig. 3c + d, Additional file 1: Figure S5). Further-
more, a sliding window approach was applied. Based on
the results reported in previous studies [11, 12], the fol-
lowing start parameters were chosen: Eight somatic SNVs
in a 160 bp window and 50 somatic SNVs in a 5000 bp
window. However, in both samples no such intragenic
somatic SNV cluster was detected. The total density of
somatic SNVs was markedly higher in the MSI GC of pa-
tient 1 compared with the MSS GC of patient 2.
In addition, somatic signatures were estimated with

the statistical method non-negative matrix factorization
(NMF) to identify common underlying patterns. Again,
single technology somatic SNVs called in the WGS data
were used as input. The first signature was dominated
by C > T base substitutions especially in the context of
A-G or G-G, while the second signature harbored mainly
C > T variants in an A-G context and T > G SNVs in a C-
T or C-C context (Additional file 1: Figure S6). The MSS
tumor was mainly influenced by the first signature, while
the second signature contributed to a large proportion of
the SNV pattern observed in the MSI tumor (Additional
file 1: Figure S7). It was clearly visible that MSI and MSS
harbor distinct somatic SNV patterns. Finally, we com-
pared the somatic SNVs of the investigated tumor samples
with the somatic variant calls from WES studies from The
Cancer Genome Atlas, which demonstrated special char-
acteristics of GC (Additional file 1: Figure S8A).
Using known mutational signatures reported in the

COSMIC database (http://cancer.sanger.ac.uk/cosmic/
signatures) we have compared the observed mutational
landscapes with known biological processes, which are
known to drive specific mutational mechanisms using the
package deconstructsigs [13]. While signature 1 (49%), 6
(13%), and 15 (38%) contributed to the mutational pattern
of the MSI tumor, the mutational pattern of the MSS tumor
was influenced by signature 1 (46%) and 17 (35%) as well as
by unknown factors. These processes include ageing/spon-
taneous deamidation (signature 1, mainly causing C > T),

http://cancer.sanger.ac.uk/cosmic/signatures
http://cancer.sanger.ac.uk/cosmic/signatures


Fig. 3 SNV patterns. a Relative contribution of the six SNV classes. b Heatmap is based on the log-transformed percentage of each SNV type with
each SNV context corrected for the frequency of the trinucleotide in the reference genome. c + d SNV density plots for MSI tumor (c) and MSS
tumor (d). Rainfall plots are based on all somatic SNVs. The x-axis shows the mutations ordered by position. The distance between each mutation
and the prior variant is plotted on the y-axis. The colors of the dots indicate the SNV-types
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DNA mismatch repair (signature 15, C > T and C > A), sig-
nature 17 (unknown, T > G), defective DNA mismatch re-
pair in MSI tumors (signature 6, C > T and C > A). The
higher levels of signature 15 (C > T and C > A) in the MSI
is consistent with this signature being observed in cases
with many indels. In the MSS patient we observed elevated
levels of signature 17 (T > G), the underlying mechanism of
which is still unclear (Additional file 1: Figure S8B).

Comparison with known cancer-associated SNVs
The cross platform approach was exploited to minimize
the systematic technological bias and thereby to increase
the reliability of the variant positions. 277 (271 novel)
cross platform non-synonymous exonic somatic SNVs
passed all quality filter steps in the MSI tumor and 117
(113 novel) in the MSS tumor (Additional file 1: Figure
S9). Out of these SNVs 52 cross platform novel somatic
base substitutions in the MSI tumor and seven cross
platform novel somatic variants in the MSS tumor were
classified as (i) stopgain SNV or (ii) predicted as damaging
and were either at a conserved position or in a conserved
gene (Additional file 2: Table S2 C + D). Out of these, four
genes affected by a somatic SNV in the MSI tumor [AFF3,
DROSHA, JAK2, PIK3CA (associated with GC)] and one
gene affected by a somatic SNV in the MSS tumor
(GATA3) were also listed in the cancer gene census list of
the COSMIC database and not mentioned in ExAc or ESP
(exome sequencing database, see methods).
In the sample of the MSI tumor 77 cross platform

novel somatic small indels were supported by the mu-
tant allele fractions of WES and WGS data. Out of genes
affected by a somatic small indel in the MSS tumor, six
were also listed in the cancer gene census table of the
COSMIC database including somatic frameshift indels in
BRAF, ZFHX3 (both associated with GC), MAPK1, and
ARID1A. BRAF and ARID1A were affected by cross plat-
form indels, while indels in ZFHX3 and MAPK1 were
exclusively called and covered in the WGS data. Due to
the function described in the literature and because of
being part of COSMIC’s cancer gene census list, BRAF
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was an especially interesting candidate. Interestingly, in
just one sample out of the 1000 Genomes project a
germline SNV predicted as damaging was located in
BRAF and 38 samples harbored a germline frameshift
indel in BRAF. In all 38 samples the indel was at the
same position in the last exon. In contrast, in the MSI
tumor sample a cross platform somatic frameshift indel
was found in exon 10 (18 exons total). None of the quality
filtered somatic indels of the MSS tumor sample existed in
the COSMIC’s cancer gene census list. Additionally, 186
single technology somatic indels (165 frameshift) were
called with at least two reads in the WGS at positions with
coverage smaller than 3× in the WES in the MSI tumor
and 34 (31 frameshift) in the MSS tumor (Additional file
2: Table S3). Five of the genes affected by a single technol-
ogy indel (WGS) in the MSI tumor (GNAS, HOXC13,
MAPK1, and ZFHX3) and two of the genes affected by a
single technology indel (WGS) in the MSS tumor (GNAS
and HOXD13) were also listed in the cancer gene census
list of the COSMIC database.
To detect predisposing somatic or germline alleles,

cancer-associated variants annotated in the databases
GWAS, OMIM or HGMD were compared with all som-
atic and germline variants called in the tumor samples.
In total 301 | 296 known cancer-associated SNVs (germ-
line or somatic) were detected in the tumor samples of
patient 1 (MSI) | patient 2 (MSS). However, nearly all
variants were germline in the investigated tumor sam-
ples and thus considered as potentially predisposing, but
not necessarily causative. Further details are described in
the supplement. One exceptional somatic mutation in
TP53 was noted (rs28934574, frequency in ExAc_Aggre-
gated_Populations = 0.00001647), which was exclusively
detected in the MSS tumor sample and probably rep-
resents a somatic mutation at a recurrent position
(R282W). This SNV is also associated with the Li-
Fraumeni syndrome [14, 15].
In addition, three cross platform SNVs were detected

in cancer hotspot regions reported by Chang et al. [16].
Two of them were located in GRIN2 (T100 and A50,
germline SNVs in MSS and MSI tumor) and one in
TP53 (R282, somatic SNV in MSS tumor).

Novel somatic potentially damaging SNVs and small
indels
Beside the detection of novel somatic SNVs and somatic
small indels in genes recurrently mutated in tumor
samples (described in previous section), cross platform
somatic SNVs predicted as damaging at a conserved
position were also detected in further promising candi-
dates. These include alterations in e.g. MSH4, PRDM2,
and TP53I3 in the MSI tumor as well as GATA, DOCK5,
and IGSF11 in the MSS tumor (Additional file 2: Table
S2 + S3).
The following cross platform non-synonymous som-
atic mutations were validated independently by pyrose-
quencing on a Pyromark Q24 device (QIAGEN) as third
validation step: DROSHA, MSH4, RERE, ROS1, TACC2,
and TYRO3 (data not shown).

Structural variations and large indels
To find somatic large insertions with a potential associ-
ation to GC, all unmapped reads in good quality were de
novo assembled for both tumor samples. In the MSI
tumor 14,639 contigs were formed, of which 367 had at
least one putative insert position. The quality filter
passed 75 contigs with on average 1.8 possible insert po-
sitions and a maximum length of 81 nucleotides. Eight
of these variants were exclusively present in the tumor
sample and therefore declared as somatic. The insert
length varied between 5 and 31 bp. One somatic insert
position was located in the intronic region of the gene
MGAM, which encodes the maltase-glucoamylase pro-
tein. The protein plays a role in the digestion of starch.
All other putative somatic insert positions were located
in intergenic regions. All putative insert positions with
distance smaller 100 KB to the closest gene are reported
in the Additional file 2: Table S8). For the MSS tumor
no somatic large insertions were detected.
In both tumor samples more inversions including po-

tentially germline and somatic inversions were observed
than in the matching controls. In the MSI tumor sample
3370 inversions including potentially germline and som-
atic inversions were detected, while in the MSS tumor
6125 germline or somatic variants were called. Out of
these variants 71 (48 non-overlapping) and 201 (173
non-overlapping) somatic inversions passed the quality
filter in the MSI and MSS tumor, respectively. In con-
trast, 2541/1036 germline or somatic variants were de-
tected in the control sample of patient 1/patient 2, of
which 33 (21 non-overlapping)/47 (35 non-overlapping)
met the quality criteria. In the MSI tumor 22 (17 non-
overlapping) somatic inversions affecting eight genes
were detected: DCK (intronic), SPINK14, AHCYCL2,
FAM40B, LOC642236, CCDC88C, LOC440434, and
CCDC102B. In the MSS tumor 95 (89 non-overlapping)
somatic inversions in 30 genes were identified, of which
eight were at least partially located in exonic regions:
WARS2, NASP, AKR1A1, RIMS1, EPHA5, GRID1,
KCNMA1, and SPINK14. In both patients a somatic in-
version affected the gene SPINK14.
In addition, an increased number of interchromosomal

translocations including potentially germline and som-
atic interchromosomal translocations was found in the
tumor samples. The program Breakdancer detected
29,068 (60 filtered in 37 regions) germline or somatic in-
terchromosomal translocations in the MSI tumor and
1513 (26/24) germline interchromosomal translocations
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in the matching control of patient 1. Out of these, 27
breakpoint pairs in 18 regions with 14 affected genes
were somatic. Affected genes include SF3A3, DCAF6,
ANKRD30BL, SENP5, PDE4D, CENPH, ACOT13,
PHACTR2, CACNA2D1, ABCB1, CTNNA3, C10orf54,
CDH23, and BAZ2A. The MSS tumor sample of patient
2 harbored 72,444 (137/74) interchromosomal transloca-
tions including potentially germline and somatic inter-
chromosomal translocations, while in the corresponding
non-tumor sample 12,162 (61/45) variants were called.
Sixty three breakpoint-pairs in 42 regions with 14 af-
fected genes were somatic (Additional file 2: Table S4):
SRRM1, GUSBP1, MCC, CMYA5, MBOAT1, IMMP2L,
CNTNAP2, MLL3, PCMTD1, LOC642236, TNC, CDC27,
NDUFA13, and SLC6A16. Several breakpoints indicating
somatic interchromosomal translocations were located in
the gene MLL3.
Next, deletions larger than five basepairs were investi-

gated. The following numbers of variants including poten-
tially germline and somatic variants were detected by the
program Pindel (all (filtered)): 191,076 (12,173) in the MSI
tumor and 92,643 (8892) in the matching control of the
first patient, 122,651 (14,224) in the MSS tumor and
106,420 (8096) in the corresponding non-tumor sample of
the second patient. Out of 1739 somatic deletions in the
MSI tumor of the first patient 343 were located in intra-
genic regions. Interestingly, out of the somatic deletions
over 97% were located on chromosome five, six or seven.
The average length of the somatic deletions was 123 bp.
In the MSS tumor of the second patient 78 deletions with
an average length of 62 bp in 30 gene loci were somatic.
Fig. 4 Circos plots of all somatic, quality filtered large structural variants of the
order from outer to inner rings: genomic position, coverage (black), del
coverage histogram was based on a sliding window, with window size
coverage histogram was set to 100
All above stated intragenic somatic deletions were located
in intronic regions.
The program Pindel detected 1652 (72 filtered/4

non-overlapping filtered) tandem duplications including
potentially germline and somatic tandem duplications in
the MSI tumor and 1548 (53/2) germline tandem duplica-
tions in the matching control sample of the first patient.
In the second patient 1199 (69/1) tandem duplications
including potentially germline and somatic tandem
duplications were called in the MSS tumor and 1488
(74/3) germline tandem duplications in the corresponding
non-tumor sample. However, all filtered somatic tandem
duplications were intergenic.
All quality filtered, somatic inversions, interchromo-

somal translocations, tandem duplications and large de-
letions structural variations are shown in Fig. 4. All
filtered somatic intragenic structural variants are shown
in Additional file 2: Table S4.
Due to their function described in the literature the

most interesting candidates affected by an exonic located
somatic structural variant were MCC (translocation, pa-
tient 2), MLL3 (translocation, patient 2), DCK (inversion,
patient 1), PDE4D (translocation and deletion, patient
1), and PARK2 (deletion, patient 1).

Pathway analyses
For each patient a network was generated using all genes
affected by cross platform somatic exonic SNVs, which
were a stopgain mutation, or non-synonymous, predicted
as damaging or were at a conserved position or in a con-
served gene (for definition see Methods). The connections
MSI (a) and MSS (b) tumor samples, of patient 1 and 2, respectively. In
etions (grey), inversions (green), and translocations (center). The
150,000 and step size 75,000. The maximum axis limit of the



Table 1 Clinico-pathological patient characteristics of the
gastric cancer validation cohort

Patient characteristics

Patients [n] 482

Age [years] [mean ± SD] 67.9 ± 11.1

median 68

Gender Men [n (%)] 297 (61.6)

Women [n (%)] 185 (38.4)

Follow-up data Alive [n (%)] 131 (28.1)

Dead [n (%)] 335 (71.9)

Localization Proximal [n (%)] 149 (30.9)

Distal [n (%)] 333 (69.1)

pT-category pT1a [n (%)] 13 (2.7)

pT1b [n (%)] 49 (10.2)

pT2 [n (%)] 56 (11.6)

pT3 [n (%)] 190 (39.4)

pT4a [n (%)] 134 (27.8)

pT4b [n (%)] 40 (8.3)

pN-category pN0 [n (%)] 138 (28.8)

pN1 [n (%)] 67 (14.0)

pN2 [n (%)] 85 (17.7)

pN3/a/b [n (%)] 189 (39.5)

UICC Stage (7th ed.) IA [n (%)] 49 (10.4)

IB [n (%)] 32 (6.8)

IIA [n (%)] 58 (12.3)
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were based on medium stringency according to the
STRING database [17]. For the MSI tumor of the first pa-
tient, somatic variants formed two networks (Additional
file 1: Figure S10 A): (i) The larger one was enriched for
genes involved in the response to an external stimulus
(p = 0.0018), cell communication (p = 0.024), and positive
regulation of metabolic process (p = 0.038) (Additional
file 1: Figure S11A). (ii) In contrast, the smaller network
harboured genes associated with chromatin organization
(p = 0.00026) and modification (p = 0.00009), positive
regulation of biosynthetic processes (p = 0.016), and gene
expression (p = 0.012) as well as cell motility (p = 0.0033),
and cell migration (p = 0.0022) (Additional file 1: Figure
S11B). No larger network was detected for the MSS tumor
of the second patient (Additional file 1: Figure S10 B).
Additionally, we investigated processes affected by a

high load of germline and somatic variants which followed
the described criteria as we hypothesized that (rare) germ-
line and somatic mutations together would contribute to
malignant transformation. In this approach we corrected
for the overall germline spectrum of such variants in
all 1092 individuals of the 1000 Genomes project. Nine
enriched GO terms were shared between patient 1 (MSI
tumor) and 2 (MSS tumor) including the functional inter-
esting terms ‘nuclear migration along microfilament’,
‘negative regulation of transposition’, ‘negative regulation
of viral reproduction’, and ‘DNA cytosine deamination’
(see Additional file 3: Supplementary Results and
Additional file 1: Figure S12 and S13).
IIB [n (%)] 47 (9.9)

IIIA [n (%)] 55 (11.6)

IIIB [n (%)] 83 (17.5)

IIIC [n (%)] 66 (14.0)

IV [n (%)] 83 (17.5)

Stage according to I [n (%)] 49 (10.2)

Kiel proposal II [n (%)] 84 (17.5)

IIIA [n (%)] 49 (10.2)

IIIB [n (%)] 153 (31.9)

IV [n (%)] 145 (30.2)

Resected lymph nodes [mean ± SD] 19.2 ± 8.2

median [n] 18

Positive lymph nodes [mean ± SD] 6.4 ± 7.4

median [n] 3

Lymph node ratio (LNR) median [n] 0.2

Tumor grade G1 / G2 [n (%)] 111 (23.7)

G3 / G4 [n (%)] 357 (76.3)

Resection margin (R-status) R0 [n (%)] 403 (88.2)

R1/R2 [n (%)] 54 (11.8)
Identification of genes putatively involved in gastric
cancer biology
We next analyzed potentially damaging somatic SNVs,
which were localized in a hotspot-region, defined as a
recurrently targeted domain in a gene. Three genes were
identified, which are known to carry hotspot-mutations
in various types of cancer, i.e. BRAF, PIK3CA and GNAS.
Our own previous investigations on BRAF and PIK3CA
demonstrated that a mutation in codon 600 of BRAF
was not found in any of 482 GC patients (Table 1) [18].
Mutations in exon 9 and 20 of PIK3CA were found 1.9%
and 2.5% of the patients with GC [18]. Interestingly, the
PIK3CA exon 20 mutations had been more common in
MSI GCs [18]. Little data were available for GNAS in
GC, and therefore, we screened primary tumors of 482
GC patients for the occurrence of somatic mutations in
the mutational hotspot region of GNAS, i.e. codon 201
in exon 8 and codon 227 in exon 9. Only seven (1.4%)
GCs harbored a mutation (Additional file 2: Table S5).
GCs with GNAS mutation were exclusively of male gen-
der with an intestinal (4 case), diffuse (2) and unclassi-
fied type (1) of GC. The presence of a GNAS-mutation
did not correlate with microsatellite status (Additional
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file 2: Table S5). No patient with a GNAS-mutation har-
bored a PIK3CA (exon 9 and 20)-mutation.

Immunohistochemical analysis of GNAS-expression in
gastric cancer
Next, we studied the expression of GNAS by immuno-
histochemistry using tissue microarrays (Fig. 5). A mem-
branous and/or cytoplasmatic immunostaining of tumor
cells was found in 41 patients. The expression of GNAS
correlated significantly with tumor grade, being more
prevalent in well- and moderately differentiated GCs.
No correlation was found with the GNAS-genotype
(wildtype vs. mutated), the microsatellite status or the
mucin-phenotype.

Discussion
Until few years ago, oncologic treatment of cancer largely
depended on the anatomic tumor site. However, with the
advancements of targeted therapy it became increasingly
evident that cancers of the same anatomic origin show
Fig. 5 Histology of gastric carcinomas with GNAS-mutations (patients No. 3
GNAS showed different phenotypes (a-g). GNAS was detected by immunohis
and weak cytoplasmic staining. H&E-staining (a-e); anti-GNAS-immunostaining
great variability in their response rates to chemotherapies
necessitating a more in depth phenotypic/genotypic classi-
fication. Although this has led to major improvements in
lung and colon cancer, it is still in its infancies in GC. Sev-
eral strategies have been exploited by e.g. the cancer con-
sortia ICGC (International Cancer Consortium) as well as
TCGA (The Cancer Genome Atlas) to fill this gap and
shed further light on the genetics of GC.

Selection of applied sequencing and variant detection
strategies
This study set out to compare different sequencing tools,
both from the technology side (Illumina sequencing by
synthesis vs. sequencing by ligation, whole genome vs.
whole exome) as well as from the bioinformatics per-
spective in a small set of two GC samples. The analysis
clearly demonstrates the major pitfalls that have to be
overcome before such in depth sequencing analysis will
become clinical reality. Starting from available clinical
material, such analyses will often be associated with
–6 and 9). Seven different gastric cancers with mutations in exon 8 of
tochemistry in 41 gastric cancer specimens and showed membranous
(f). Original magnifications 200×
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problems of DNA quality (e.g. due to tumor necrosis),
different sequencing depth and problems of comparabil-
ity of bioinformatical pipelines. As a relevant example,
which has also been extensively described by other
groups in other cancer types [19, 20], we here show that
the employed SNV-callers led to different results and
were characterized by particular strengths and weak-
nesses in our selected GC cases. We decided to use the
caller, which was able to detect the highest amount of
variants, for the first round of SNV calls (Samtools or
DiBayes) to receive the highest possible number variants,
as we had the possibility to validate variants with a sec-
ond sequencing technology in our study. The union of
called variants validated by the other technology were
then used for further analyses. Our study also indicates
problematic recurrent false positive signals in both tumor
samples derived from sequencing-by-ligation whole exome
data, a technology that since the inception of the present
study has nearly completely vanished from the market. Al-
though we cannot distinguish between the exact amount
of problems introduced by the technology (SOLiD) or by
the performance of the enrichment, other studies have
also reported a higher false-positive rate in WES than in
WGS [21]. Also in our hands, several validation attempts
for variants exclusively detected in the WES data failed.
We show that - given all the limitations of the study - the
combination of two sequencing data sets delivers reliable
results even in a scenario where only relatively low cover-
age data is available. In a clinical setting, however, besides
precision, also cost effectiveness and duration of analyses
play a major role. Thus, ideally WGS as a single technol-
ogy encompassing the entire variant spectrum has to be
applied, which covers actionable recurrent SNVs (e.g.
within p53), but also potential structural variants such as
gene fusions or amplifications. In reality, even the most
sophisticated high-resolution WGS still has a way to go to
reach that aim. Until then targeted analyses will clearly
have their place in a molecular pathology setting.
How do our results compare to other larger studies?

In a comprehensive molecular characterization of 295
primary gastric adenocarcinomas as part of the TCGA
project a high mutation frequency in PIK3CA (42%) in
MSI tumors was reported [22]. Also in the MSI tumor
investigated in our study, PIK3CA was mutated by a
somatic SNV. In addition, TCGA described that TP53 is
often affected in chromosomal unstable tumors, which is
also in line with our findings (somatic SNP rs28934574).
Furthermore, frequent amplifications of cell cycle media-
tors (CCNE1, CCND1 and CDK6) were found in the
TCGA project [22]. Interestingly, in the MSI tumor sam-
ple we detected a somatic large deletion in cyclin
CCND3, which is also involved in G1-S phase progres-
sion. Additionally, variants in this gene are significantly
associated with survival after diagnosis of breast cancer
and with ovarian cancer [23–25]. Recurrent alterations
and mutations were also reported in JAK2 and ARID1A
in the study of the TCGA [22]. However, these were
found in non-hypermutated, MSS and EBV-positive
tumor types, respectively, while in our study somatic
variants in these genes were detected in the MSS tumor.
Zang et al. [26] carried out exome sequencing on

tumor samples of 15 GC patients (11 intestinal, three
diffuse and one mixed type according to Laurén). They
sequenced ≈8.8 gigabase for each sample and found on
average 50 somatic nonsynonymous mutations. Similar
to our own cohort, the GC mutation spectrum was
dominated by C > T transitions. Zang et al. [26] vali-
dated two novel putative tumor suppressor genes (FAT4
and ARID1A). A FAT4-mutation occurred in approx. 5%
of the GCs. An ARID1A gene mutation was present in
8% of the GC patients. Inactivating mutations are more
prevalent in MSI GCs. A somatic frameshift indel in
ARID1A was also found in the MSI tumor sample.
ARID1A is involved in chromatin-remodeling and has
an antiproliferative effect. Dulak et al. [27] used a differ-
ent approach. They sought copy number aberrations by
high-density genomic profiling in 486 gastrointestinal
adenocarcinomas of different anatomical origin. They
identified 64 regions of significant recurrent amplifica-
tion and deletion [27]. Somatic copy-number alterations
(SCNA) found in GC included amplification of EPHB3,
and GATA4. Significantly deleted focal SCNAs in GC
were, amongst others, in PDE4D and PARK2. The men-
tioned genes were also affected by somatic alterations in
the investigated MSI tumor sample: EPHB3 (somatic
nonframeshift deletion), GATA4 (somatic nonframeshift
deletion), PDE4D (somatic interchromosomal transloca-
tion, large deletion), and PARK2 (somatic large deletion).
The genomic variations found by Dulak et al. were com-
mon and distinct to various adenocarcinomas of differ-
ent anatomical origin in the gut. These findings support
the cancer association of the somatic large deletions in
the genes PDE4D and PARK2 found in the MSI tumor
sample. Recently, whole-genome sequencing and com-
prehensive molecular profiling of 100 tumor-normal
pairs of GC identified subtype-specific genetic and epi-
genetic alterations with unique mutational signatures
[28]. Mutated genes reported in this study include,
amongst others, TP53, ARID1A, IRS2, and SUPT3H,
which were all also altered by somatic variants in our
study. In addition, Wang et al. suggested a previously
unexpected heterogeneity of GC [28], which was also
observed in our results.
Thus, even starting from fewer patients compared to

the study by Wang et al. [28], few gene mutations merit
further attention. Patient No. 2 (MSS tumor) harbored
somatic SNVs in GATA3, while Dulak et al. [27] found
gene amplification of GATA4 and GATA6. Transcription



Esser et al. BMC Genomics  (2017) 18:517 Page 11 of 15
factors of the GATA family are essential regulators of
the specification and differentiation of numerous tissues.
They all share two highly conserved zinc fingers of the
C2H2 type that mediate not only DNA binding but also
the great majority of protein interactions [29]. GATA
factors coordinate cellular maturation with proliferation
arrest and cell survival. GATA4 and GATA6 are expressed
differentially in normal and neoplastic gastrointestinal mu-
cosa [30]. GATA3 is involved in breast cancer progression
and metastasis [29]. So far, GATA3 has not been linked
with GC biology.
Patient No. 2 (MSS tumor) also showed a somatic mu-

tation in ROS1. ROS1 is one of the 58 different tyrosine
kinase receptors encoded in the human genome and
evolutionary related to ALK1. ROS1 rearrangement was
discovered in glioblastoma, non-small-cell lung cancer,
cholangiocarcinoma and also recently in GC [31, 32].
However, ROS1-rearrangement is rare in GC (<5%) [32].
This observation is in line with the findings made by
Deng et al. [33]. While, as a group, alterations in genes
coding for receptor tyrosine kinases (i.e. FGFR2, EGFR,
ERBB2, MET and ROS1) are common in GC, alterations
of individual members rarely seem to exceed 10%.
Patient No. 1 (MSI tumor) harbored a somatic muta-

tion in MSH4 lending support to the hypothesis that this
gene may be involved in the pathogenesis of MSI of GC.
MSH4 encodes a member of the DNA mismatch repair
mutS family, which plays a role in meiotic and mitotic
DNA double strand break (DSB) repair and DNA dam-
age responses in human cells [34]. Until now, a link be-
tween MSH4-mutation and GC biology is unknown.
Viral replication is usually inhibited before any damage

is caused. However, tumor cells have a higher suscepti-
bility to viruses, which might be for example due to de-
fects in the antiviral innate immune response or defects
in the p53 pathway. The pathways involved in oncolysis
may reflect mechanisms of tumorigenesis and may un-
cover causes of malignant disease [35]. This is in line
with the results of our study, in which an enrichment of
variants was observed for genes involved in the negative
regulation of the viral reproduction. Furthermore, the
GO-term ‘negative regulation of transposition’ was more
often affected than expected. Also previous studies have
shown a link between transposition and cancer develop-
ment [36]. Often mobile elements get activated by the
cell malignization process, which promotes increased
mutation and recombination rates in the genome [37].
Both traits were also observed in the tumor samples of
our study. Additionally, an enrichment of variants were
observed for the term “DNA cytosine deamination”,
which probably caused the increased number of somatic
C > T base substitutions in the MSI tumor. The latter
was also reported by Greenman et al. [6] and Nagarajan
et al. [38]. Furthermore, in both tumor types an increased
number of somatic C > A SNVs was observed, which were
likely caused by reactive oxygen and nitrogen species
(ROS and RNS) [39]. In contrast to the MSI tumor, som-
atic T > G substitutions occurred with a higher frequency
in the MSS tumor of patient 2 than in the controls. This
characteristics was also reported by Wang et al. [21] as
well as the TCGA consortium [22] and could indicate that
this tumor type is caused by another carcinogen or a lower
activity of the error-prone polymerase η [40].
Finally, we also found a somatic indel in GNAS, which

is located on chromosome 20q13.3 and encodes the G-
protein alpha subunit. G-proteins are a family of
guanine-nucleotide-binding proteins that are important
for signal transduction of activated G-protein coupled
receptors (GPCR). GPCR-signaling is under tight tem-
poral and spatial control and these receptors exhibit
different conformational states, which activate variable
intracellular signaling pathways [41]. G-proteins them-
selves can be activated independently of GPCRs, e.g. by
receptor tyrosine kinases or even mutations. 4.2% of all
tumor sequences deposited today show activating mu-
tations in GNAS [41]. In fact, GNAS is considered to
be one of the most frequently mutated G-proteins in
human tumors [41]. Particularly hotspot mutations in
GNAS (R201 and Q227) disrupt GTPase activity and
lead to constitutive activity and persistent signaling.
Given the high prevalence of GNAS-mutations in human
tumors, we further explored GNAS by pyrosequencing in a
large GC patient cohort and found hotspot-mutations only
in 1.4% of the patients (see Additional file 4: Supplementary
Materials and Methods). Thus, hotspot-mutations of GNAS
are infrequent in GC. However, a male preponderance was
interesting to note. Recently, it was suggested that GNAS-
mutations are common in pyloric gland adenomas of the
stomach and duodenal mucosa [42] and may thus also spe-
cify a particular phenotype of GC. However, the GNAS-mu-
tant GCs of our cohort showed no specific phenotype.
More interestingly, immunodetection also did not correlate
with phenotype or even the presence of the gene-mutation
and thus cannot serve as screening tool.

Conclusions
We show here in a multiple-tool comparative approach
in clinical samples that different NGS approaches will
identify a large variety and number of genetic alterations
in GC. Validation studies usually provide prevalences
ranging from 1 to 15%. Our results are in line with these
recent findings and present a benchmark strategy of
individual tumor genome analysis combining both, WES
and WGS information with two different NGS platforms,
used population-based whole genome resources as a novel
pathway-based filter, and integrated SNV as well as struc-
tural variant analyses. Using this comprehensive strategy
we identified a multitude of novel somatic potentially
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damaging mutations and show that MSS and MSI GCs
have markedly different numbers of somatic and germline
mutations, which is in line with observations made by
Wang et al. [28]. This further underlines a specific hall-
mark of GC, i.e. the large variety of different genetic al-
terations leading to significant tumor heterogeneity.
Importantly, our data also point to distinct mutational
processes, which are responsible for the different muta-
tional landscapes of the individual tumors. It is thus
tempting to speculate that the identification of such
signatures by cancer genome sequencing could reflect a
potential future biomarker for therapy stratification.
Compared with colorectal cancer, no characteristic
“carcinogenesis-pathway” has been discovered for GC,
as yet. Our study clearly underlines the value of individual
genome sequencing to depict the multidimensional aber-
rations in GC, but also demonstrates challenges (e.g. func-
tional annotation in the light of high genomic diversity of
the cancer type, sample heterogeneity and clinically reli-
able, quick turn round times) must be solved before
genome-driven therapy stratification will become clinical
reality.

Methods
Full details about the applied methods are provided in the
Additional file 4: Supplementary Materials and Methods.
Furthermore, an overview of the applied workflow is pro-
vided in Figs. 1 and 2.

Tissue samples
From the archive of the Institute of Pathology, University
Hospital Kiel, we retrieved tissue samples from two female
patients who had died from an intestinal type of GC, which
differed by their microsatellite status (see Additional files 3
and 4). Samples from the primary tumor and correspond-
ing non-neoplastic gastric mucosa had been collected
immediately after surgery, were fresh frozen in liquid
nitrogen and stored at −80 °C until use. Genomic DNA
was extracted after tissue homogenization with the
QIAamp DNA mini kit (Qiagen, Hilden, Germany) fol-
lowing the manufacturer’s instructions. The patients
had given written informed consent to prospective tis-
sue sampling of excess tissue material, which was no
longer needed for diagnostic or therapeutic purposes.
The project was approved by the local ethics committee
of the University Hospital in Kiel, Germany (reference
numbers AZ 140/99 and D 453/10). All patient data
were pseudonymized before study inclusion.

Library preparation and sequencing
Enrichment of the whole exome was performed with the
Agilent Sure Select Target Enrichment Human All Exon
v2 kit. After the ePCR with the Solid PCR Kit sequencing
was done with a Solid paired 50/35 v4 run. Libraries for
the whole genome sequencing were created with the Illu-
mina TruSeq DNA sample prep kit. After cluster gener-
ation on the cBot with the TruSeq PE Cluster Kit (v2.5 for
samples of patient 1 (microsatellite unstable (MSI) tumor
(TU) + non-tumor (NT)) and patient 2 (microsatellite
stable (MSS) TU) and v3 for the NT-sample the sequen-
cing was performed with the TruSeq SBS Kit (200 cycles,
paired end modus) on the Illumina HiSeq 2000. SNVs in
the genes DROSHA, MSH4, RERE, ROS1, TACC2, and
TYRO3 were additionally verified by pyrosequencing on a
Pyromark Q24 device (QIAGEN). Primers are shown in
Additional file 2: Table S1. Furthermore, the hotspot mu-
tation in GNAS was investigated using the same technol-
ogy in a large cohort of 482 GC patients (Table 1).
Bioinformatics analysis
Mapping
Illumina WGS (whole genome sequencing) sequences
were mapped against the human genome reference hg19
with BWA v0.5.9 [43], while the Solid WES (whole exome
sequencing) reads were aligned with Bioscope v1.2.1
(Applied Biosystems™). Reads with the same starting
point defined as duplicates were marked with the Picard tool
MarkDuplicates.jar v1.41 (http://broadinstitute.github.io/pic-
ard/) and removed from further analyses.
Please note that there are differences in the coverage

distribution, which we handled with adapted filter steps.
This might be also necessary in clinical samples.
SNVs and small indels
SNV-calling was performed with GATK v1.3 [17], DiBayes
(bioscope v1.2.1), and Samtools v0.1.16 [44] in the WES
and with Samtools as well as GATK in the WGS data.
Small indels were called with DiBayes in the WES and
Samtools in the WGS mappings. A detailed description of
the filter pipeline, the applied parameters as well as a com-
parison between the different technologies and SNV caller
are described in the Additional file 4: Supplementary Ma-
terials and Methods. Annovar [45] (version Jun 2011) was
used for the annotation of SNVs and small indels. SNVs,
which were not annotated in dbSNP build 132, were clas-
sified as novel. The databases OMIM (Online Mendelian
Inheritance in Man, McKusick-Nathans Institute of Gen-
etic Medicine, Johns Hopkins University (Baltimore, MD),
http://omim.org/), HGMD (Human Gene Mutation Data-
base) [46] and GWAS (Genome-wide association studies)
were checked for known cancer associated SNVs. Signa-
tures of the SNV patterns were investigated with the R
package SomaticSignatures [47]. The influence of signa-
tures annotated in COSMIC to the observed mutational
patterns were calculated with the R package deconstruct-
Sigs [13].

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://omim.org/
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Definition of the exonic gene conservation score
We defined an additional indicator for potentially clinic-
ally relevant exonic small variants: The exonic gene con-
servation score (ECS) was calculated for the exonic
regions of each gene using all coding non-synonymous
variants (germline and somatic) of 1092 samples from
the 1000 Genomes project. Therefore, all variants were
annotated with the program Annovar [45]. The ECS was
defined as the mutation rate within the exonic regions of
the gene divided by the average mutation rate over all
exonic regions:

< # variants in gene > � < total length of exonic regions >
< length of exonic regions of the gene > � < avg: total # exonic variants > � < # samples >

Thus, the smaller the ECS, the higher is the conserva-
tion of the exonic region of the gene. Genes with
ECS < 0.01 were defined as conserved.

Large structural variations
Large deletions, inversions, tandem duplications, and in-
terchromosomal translocations were called with Break-
dancer (v1.2) [48]. Sensitivity and specificity of the first
three structural variant types listed above were increased
by using Pindel (v0.2.3) [49]. In order to find large inser-
tions all unmapped reads with a quality score larger than
20 at 80 or more positions were assembled with velvet
v1.2.06 [50] in the tumor samples. The resulting contigs
were aligned with BLAT v.34 to the human reference to
find putative insert sites. All unmapped reads of the cor-
responding control samples were mapped against the
contigs of the tumor sample. Contigs, which were cov-
ered at 90% or more positions, were defined as germline
variant and therefore excluded from the analysis. All
structural variants were filtered with help of split reads
and the paired end information. To identify split reads
with parts mapping to different chromosomes or with a
large gap between them, all unmapped reads with a
quality score greater or equal than 35 at 95 or more po-
sitions were aligned against the human reference using
the program BLAT. Exclusively reads with maximum two
alignment parts and a sum of at least 92 mapped bases
were considered for further analyses. The applied filter
parameter are described more detailed in the Additional
file 4: supplementary methods. The algorithm for the de-
tection of large insertion is displayed in Additional file 1:
Figure S14. The visualization of the large structural varia-
tions was performed with Circos v0.62 [51].

Pathway analysis
For pathway analysis, germline SNVs of 1092 samples out
of the 1000 Genomes project were annotated with Annovar
v7. For each pathway a statistic was created with the num-
ber of affected genes as well as the number of SNVs. Only
SNVs, which were predicted to be damaging to protein
function, were used. Next, the number of affected genes/
SNVs per pathway was compared between the tumor sam-
ples and the maximum count in the samples of the 1000
Genomes project. To ensure comparability between the
samples investigated in this study and the 1000 Genomes
project, exclusively SNVs called with GATK were used for
that study. The analysis was performed for all terms anno-
tated in GO [52].

Test for bacterial or viral infection
To test for bacterial or viral infection, from each tumor
sample over 20,000 unmapped reads with more than 95
bases having a quality score larger 35 were blasted
against the NCBI nucleotide collection database nt. Fur-
thermore, all reads with a quality score larger than 20 at
80 or more positions were assembled with velvet v1.2.06
and the resulting contigs blasted against nt.

Additional files

Additional file 1: Figure S1- Figure S20. (PDF 2.74 mb)

Additional file 2: Table S1- Table S9. (PDF 364 kb)

Additional file 3: Supplemental results [52] (Additional file 1: Figure S1,
Fig. 2, Additional file 1: Figure S15, Fig. 2, Additional file 1: Figure S15,
Additional file 1: Figure S16, Additional file 1: Figure S17, Additional file 1:
Figure S18, Additional file 1: Figure S19, Additional file 4: Methods,
Additional file 1: Figure S20, Additional file 1: Figure S20 A + B, Additional
file 1: Figure S20 C + D, Additional file 1: Figure S12 and Additional file 1:
Figure S13). (DOCX 30 kb)

Additional file 4: Supplemental Materials and methods [18, 53–59]
(Table 1, Additional file 2: Table S2C-F and S3, Additional file 2: Tables
S3A and S3B). (DOCX 35 kb)
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