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Abstract

Background: Spermatogenesis is a complex process characterized by the activation and/or repression of a
number of genes in a spatio-temporal manner. Pubertal development in males starts with the onset of the
first spermatogenesis and implies the division of primary spermatogonia and their subsequent entry into
meiosis. This study is aimed at the characterization of genes involved in the onset of puberty in European
sea bass, and constitutes the first transcriptomic approach focused on meiosis in this species.

Results: European sea bass testes collected at the onset of puberty (first successful reproduction) were
grouped in stage | (resting stage), and stage Il (proliferative stage). Transition from stage | to stage Il was
marked by an increase of 11ketotestosterone (11KT), the main fish androgen, whereas the transcriptomic
study resulted in 315 genes differentially expressed between the two stages. The onset of puberty induced 1)
an up-regulation of genes involved in cell proliferation, cell cycle and meiosis progression, 2) changes in genes related
with reproduction and growth, and 3) a down-regulation of genes included in the retinoic acid (RA) signalling pathway.
The analysis of GO-terms and biological pathways showed that cell cycle, cell division, cellular metabolic processes, and
reproduction were affected, consistent with the early events that occur during the onset of puberty. Furthermore,
changes in the expression of three RA nuclear receptors point at the importance of the RA-signalling pathway during
this period, in agreement with its role in meiosis.

Conclusion: The results contribute to boost our knowledge of the early molecular and endocrine events
that trigger pubertal development and the onset of spermatogenesis in fish. These include an increase in
11KT plasma levels and changes in the expression of several genes involved in cell proliferation, cell cycle
progression, meiosis or RA-signalling pathway. Moreover, the results can be applied to study meiosis in
this economically important fish species for Mediterranean countries, and may help to develop tools for its
sustainable aquaculture.
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Background

Puberty in fish, as in other vertebrates, comprises the
developmental process during which an immature indi-
vidual acquires for the first time the ability to undergo
sexual reproduction [1, 2]. In teleost males, puberty is
tightly regulated and implies the proliferation and div-
ision of spermatogonia (mitotic phase), their subsequent
entry into meiosis with the appearance of spermatocytes
(meiotic phase), and the final formation of the sperma-
tids and the haploid mature spermatozoa [2, 3]. A
species-specific number of genetically determined divi-
sions characterize the mitotic phase [3], whereas the
meiotic phase remains under the influence of the retin-
oic acid (RA) signalling pathway [4, 5]. Somatic Sertoli
cells are important players during spermatogenesis, exhi-
biting a high mitotic activity, particularly at the begin-
ning of each seasonal cycle [2], and are essential for the
proliferation and differentiation of germ cells [6]. Mitosis
and meiosis reveal thus as key processes for the onset of
puberty in vertebrates. Meiosis is of particular import-
ance since it implies the recombination and reduction of
the genetic material, essential to ensure the correct
formation of gametes, and therefore guarantees the
reproduction and maintenance of the species.

Spermatogenesis is marked by the functional stimula-
tion of the brain-pituitary-gonad (BPG) axis, responsible
for its neuroendocrine control [7]. The brain is the
central organ that integrates the circuits that sense the
internal and external stimuli and secretes different neu-
ropeptides that control the production of gonadotropins
from the pituitary. It is generally accepted that gonado-
tropins (follicle stimulating hormone; Fsh and luteinizing
hormone; Lh), and androgens are the main internal
stimuli for vertebrate spermatogenesis. Both gonadotro-
pins become activated by a number of factors among
which the metabolic status of the individual, in terms of
body size and visceral fat content, or the photoperiod,
are worth mentioning [1, 2, 8, 9]. llketotestosterone
(11KT) is the main androgen in fish and plays an im-
portant role in the progression of spermatogenesis [10].
It is involved in the proliferation of spermatogonia to-
wards meiosis [11] and mediates the action of several
factors produced by Sertoli cells like antimiillerian hor-
mone (Amh) and insulin-like growth factors (Igfs) at the
start of the cycle [12]. In addition, Fsh has been shown
to stimulate 11KT production in several fish species
[13-17]. In fact, Fsh receptor is present not only in Ser-
toli cells but also in Leydig cells, the somatic cells with
steroidogenic capability, as shown in Senegalese sole
[13] African catfish [14] and zebrafish [15-17].

The European sea bass (Dicentrarchus labrax) is an
important fish species for marine aquaculture that after
intense research on its reproductive function has be-
come a model for both basic and applied research. A
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number of studies focused on the endocrine control of
reproduction shed light on the process and aided to de-
velop protocols for its control in captivity (reviewed by
[1]). Increased growth rates under intensive culture re-
sulted in precocious puberty in about 20-30% of males
by the end of the first year of life [18], something that in
normal conditions occurs during the second year [19].
As in other farmed fish, precocious maturation is one of
the main drawbacks for its culture [9], resulting in im-
portant economic losses since by the time of marketing
during the second year, precocious males exhibit a smaller
size than that of normal-maturing males [20, 21]. Several
studies have shown that this problem can be partially
solved by a well-planned strategy of photoperiod control
[18, 21-23], although clearly, more work is needed to
understand why males mature precociously. Brain factors
including kisspeptins [24-27], gonadotropin-releasing
hormones (Gnrhs) [28, 29], leptin and their receptors [8]
have been characterized in this species. Regarding
pituitary gonadotropins, both Fsh and Lh receptors
have been cloned [30], and different assays are
currently available to measure Fsh and Lh levels in
plasma and pituitary [31-33]. Moreover, recombinant
European sea bass gonadotropins have been used as a
biotechnological approach in gene therapy for assisted
reproduction [34, 35]. In addition, secretion patterns
of sex steroids [36], sex steroid receptors, and several
steroidogenic enzymes [30, 37] during the seasonal
cycle have also been reported.

Despite all the previous knowledge, little is known
about the molecular machinery that triggers puberty in
European sea bass males, apart from a study reporting
the possible involvement of several genes in the early
events preceding gonadal maturation [38]. The recent
availability of several molecular resources, including a
partially annotated European sea bass genome database
[39] gave us the opportunity to study this process using
a high throughput strategy. The aim of the present work
is to compare the transcriptome from European sea bass
testes before and right at the start of puberty, and to
identify potential genes and pathways involved in the
process. This will boost our knowledge of the onset of
pubertal development from a basic perspective and will
help to implement tools for the improvement of a sus-
tainable aquaculture.

Methods

Animals, rearing conditions and samplings

European sea bass hatched in April 2008 at the Ecloserie
Marine de Gravelines (EMG) in the North of France and
were grown there until 100 days post hatching (dph)
when they were transported to our aquaria facilities at
the Institute of Aquaculture Torre la Sal (IATS), a re-
search centre belonging to the Spanish National
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Research Council (CSIC) in the Spanish Mediterranean
coast. The facilities were approved for animal experi-
mentation by the Ministry of Agriculture and Fisheries
and by the Department of Fisheries from the Generalitat
Valenciana (certificate number ES120330001055). Fish
were reared in 2000 | round fiberglass tanks under nat-
ural conditions of photoperiod and temperature until
the end of the experiment. In December 2008, coincid-
ing with the first breeding season in this species, fish
were subjected to abdominal massage to check for the
presence of sperm. This allowed us to eliminate males
exhibiting precocious puberty that could interfere with
our results. These procedures were repeated every
20 days for a period of about 3 months. Prior to the start
of the second breeding season (August 2009), coinciding
with European sea bass normal puberty, a sampling pro-
cedure was designed to obtain testes covering the first
stages of spermatogenesis. Samplings (15 fish per sam-
pling point) were performed every 10 days starting in
mid-August and finishing by the end of October. At
each sampling point, fish were anesthetized with 2-
phenoxyethanol (0.2 mll™) and blood was taken from
the caudal vein for plasma sex-steroid measurements.
Fish were subsequently sacrificed by quickly severing
their spinal cord and gonads were dissected for histology
(the central part of the gonad) whereas the rest was kept
at —-80 °C for further RNA extractions needed for the
different analyses including microarray hybridizations,
validations, and tissue specific expression studies. Fish
were treated in agreement with the Spanish regulations
(Royal Decree Act 53/2013) and the European legislation
(2010/63 EU) concerning the protection of animals used
for experimental and other scientific purposes. All steps
were taken to reduce suffering of the animals.

Histological analysis

After dissection, the central part of the testes was imme-
diately fixed in 4% formaldehyde: 1% glutaraldehyde in
phosphate buffered saline (PBS; [40]). Tissues were
washed in PBS and dehydrated in an increasing series of
ethanol 70-96%. Samples were embedded in glycol
methacrilate resin (Technovit 7100; Heraeus, Kulzer,
Germany), sectioned at 3—4 pm, and stained as in [41].
The stages of testicular development and the type and
abundance of germ cells in each stage were assessed
according to [18] and [42], respectively.

Steroid analysis by enzyme immune assay (EIA)

Plasma levels of 11KT were determined by enzyme
immune assay (EIA) in 20 fish selected from each de-
velopmental stage, using the protocol by [22]. Briefly,
antibodies were used at a final concentration of
1:200,000 and the tracer (Cayman chemicals, MI,
USA) was diluted at 1:50 Ellman Units (UE)/ml (used
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at 0.1042 EU/ml). The sensitivity of the assay was
around 0.003 ng/ml (Bi/BO = 90%) and half displace-
ment (Bi/BO = 50%) occurred around 0.03 ng/ml
(slope = -1.018). The inter-assay coefficient of vari-
ation (n = 2 plates) was 1.72%.

RNA isolation and cDNA synthesis

For hybridizations and real-time validations, testes
(approx. 50—100 mg) were homogenized in Trizol (Invi-
trogen, Carlsbad, CA) using the FastPrep® Instrument
(Qbiogene, Inc., Carlsbad, CA), a tissue homogenizer
with ceramic spheres as a lysing matrix. Total RNA was
extracted from the lysate with the PureLink™ RNA mini
Kit (Invitrogen), following the manufacturer’s instruc-
tions. Briefly, RNA was phase separated, washed, and
finally eluted in DEPC water. For the tissue-distribution
study, tissues including telencephalon, hypothalamus,
cerebellum, spleen, gills, head kidney, kidney, liver, testis,
ovary, heart and gut were homogenized in a
thioglycerol-based buffer included in the Maxwell® 16
LEV simplyRNA tissue kit (Promega, Madison, WTI). The
homogenates were used for RNA isolation with the
Maxwell® 16 instrument (Promega) following the manu-
facturer’s instructions that include a DNase treatment.
Nevertheless, an additional test was done on the RNAs
to discard any possible DNA contamination. For micro-
array hybridizations RNA quality was assessed with a
Bioanalyzer 2100 (RNA 6000 Nano LabChip kit Agi-
lent, Spain) and only RNAs with RIN values higher
than 8.5 were used. For other downstream applica-
tions such as quantitative real time PCR (qPCR) or
conventional PCR (tissue expression study), RNA
quantification was done with a Nanodrop 2000c
(Thermo Scientific, Wilmington, DE) and stored at
-80 °C until further ¢cDNA synthesis. Total RNA
(3 pg) was reverse transcribed to ¢cDNA with Super-
script III (Invitrogen) and random hexamers following
the manufaturer’s instructions. Protection of RNA
from ribonucleases during cDNA synthesis was done
by including 40 units of RNAse inhibitors (RNasin,
Promega). The reaction was inactivated at 70 °C for
15 min.

Microarray hybridization and analysis

RNA labelling, hybridizations, and scanning were per-
formed at the Autonomous University of Barcelona
(UAB). Total RNA (100 ng) was amplified and Cy3-
labeled with One-Color Microarray Gene Expression
Analysis (Low Input Quick Amp Labelling kit, Agilent)
along with One-Color RNA Spikeln Kit (Agilent) follow-
ing the manufacturer’s instructions. The resulting cRNA
was purified (RNeasy mini spin columns; Qiagen), quan-
tified with a Nanodrop ND-1000 and checked with a
Bioanalyzer 2100 as previously described. Amplified
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samples (1.65 pg per sample) were hybridized to a cus-
tom oligonucleotide high-density European sea bass
microarray (Agilent 4 x 44 K design format; http://
www.agilent.com/) containing 60-mer oligonucleotides
with a linker directly spotted on glass slides using the
Agilent’s SurePrint Tecnology. Three samples from each
testicular stage, selected after histological examination
and 11KT plasma levels, were used for microarray hy-
bridizations, each of them consisting of a pool RNAs
from six males. The pools were used as biological repli-
cates and thus independent samples for microarray hy-
bridizations. In addition, and since each microarray plate
can hold up to four samples (4 x 44 design), one sample
from each stage was randomly chosen and hybridized in
both plates as a quality control to check for possible
inter-plate hybridization differences. The probes con-
tained in the microarray (GEO accession number
GPL13443) cover 13,199 unique sequences of Dicen-
trarchus labrax that include 6275 annotated transcripts,
each with 3 specific probes, and 6924 ESTs with 1
probe/target sequence. Assuming that a typical diploid
teleost genome is expected to have 26—28 thousand pro-
tein coding loci, the microarray used for the study
should cover about half of the genes of the species. Hy-
bridizations were done at 65 °C for 17 h (GE
Hybridization Kit; Agilent). Washes were conducted as
recommended by the manufacturer using Agilent’s Gene
Expression Wash Pack with stabilization and drying so-
lution and arrays were scanned with a G2505B (Agilent).
Several quality control features and spot intensities were
extracted with Agilent’s Feature Extraction software
v10.4. Finally, data were analyzed with GeneSpring soft-
ware v10.1. Percentile shift normalization was used to
adjust all spot intensities in the array (percentile tar-
get = 75). Principal Component Analysis (PCA) was
used as a quality control on samples and allowed to de-
crease the number of false positives before the statistical
analysis. Normalized data were filtered by comparison of
the standard deviation expression among groups (filter
by expression). Statistical analyses were performed on
filtered data using a t-test. Significant differences in the
transcriptomic profile between early stages of spermato-
genesis (data filtered at a fold change (FC) expression of
2) were set at p < 0.01. The corresponding study was de-
posited at the Gene Expression Omnibus (GEO-NCBI)
database under the accession number GSE47400.

Gene annotation and enrichment analysis

The web-based tools Genecards (http://www.genecard-
s.org), Uniprot (http://www.uniprot.org) and AmiGO 2
(amigo.http://amigo.geneontology.org) were used to as-
sign gene names, synonyms and functions to the differ-
entially expressed genes (DEGs) found after microarray
hybridizations. The annotation of the sequences was
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manually curated, improving the accuracy of the infor-
mation obtained from the microarray used for this study.
A further improvement was added implementing the
Blast2Go software [43] that enriched the number of
GO-term annotations. A list containing all genes in-
cluded in our custom-made microarray was used as a
reference set to evaluate the enrichment in GO-terms in
the subset of DEGs. The resulting data were analysed
with Fisher’s exact test with multiple testing correction
of the false discovery rate. In addition, annotated DEGs
were ascribed to functional biological pathways using the
Kyoto Encyclopaedia of Genes and Genomes (http://
www.genome.jp/kegg) and the possible altered metabolic
pathways were assessed.

Array validation by quantitative real-time PCR (qPCR)

EST sequences of the DEGs were used as a query in
Blast searches against the European sea bass genome
and GeneBank databases in order to position the se-
lected DEGs in their corresponding genes. Primers for
the amplification of the DEGs were designed in areas
covering intron-exon boundaries to check for genomic
contamination using Primer 3 (http://primer3.ut.ee).
Primers (Additional file 1) were checked by conventional
PCR and the amplified fragments sequenced to verify
their identities. qPCR analyses were performed with an
iCycler iQ™ (BioRad Labs., Inc.) using SYBR® Green
(PCR Master Mix; Applied Biosystems). PCR reactions
were run in triplicate in optically clear 96-well plates in
a final 20 pl volume containing 10 ul of 2x Sybr Green
Master mix, 10 pmol of each primer and 5 pl of diluted
c¢DNA (1:50 for the target genes or 1:500 for the refer-
ence gene). Cycling parameters included an initial de-
naturation at 95 °C for 3 min, followed by 40 cycles at
95 °C for 15 s and annealing-extension at 60-72 °C for
1 min ending with an extension at 72 °C for 1 min. A
final temperature dissociation step was done to ensure
the presence of just one product. qPCR data were col-
lected with iCycler™ iQ optical system software (v. 3.0,
BioRad). The cycle threshold (Ct) was calculated as the
average of three replicates per sample. Gene expression
analyses were conducted using the Q-Gene core module
[44]. Briefly, for each gene the amplification efficiency
(E) was calculated from the slope of the linear correl-
ation between Cts and the logarithm of the amount of
serially diluted RNA, used as a standard, following the
eq. E = 10C°1/51°P9) E values for the different genes were
within the range of 93.5-101.8%. Values were normal-
ized (normalized expression; NE) to the constitutively
expressed reference gene 185 rRNA in each sample
(n = 8 individual fish per stage and gene) according to
the eq. NE = (Eref)Ctref/(Etarget)Cttarget. 18S rRNA was
considered a good reference gene since it exhibited the
best bestkeeper index when comparing different
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developmental stages [45]. In addition, the expression of
this gene remains constant in many physiological condi-
tions such as differentiation and proliferation [46] mak-
ing it a suitable reference gene for this study.

Tissue specific expression

The expression of the selected DEGs was assessed in
different tissues including telencephalon, hypothal-
amus, cerebellum, spleen, gills, head kidney, kidney,
liver, testis, ovary, heart and gut. PCR reactions were
performed with an initial denaturation of 5 min at
94 °C, and then 34 cycles with the following charac-
teristics: denaturation at 94 °C for 30 s, annealing at
60 °C for 30 s, and extension at 72 °C for 30 s. A
final extension of 2 min at 72 °C was added at the
end of the 34 cycles.

Sequencing, cloning, and phylogenetic studies of
European sea bass cyp26a1

Based on the ESTs of the microarray, the full sequence
of European sea bass cyp26al was localized along the
genome. Specific primers were designed in 3'- and 5'-
UTR flanking regions to amplify its full-coding se-
quence. The fragment was cloned into a bacterial vector
using the pGEM T-easy cloning kit (Promega Corp.,
Madison, WI), and amplified in E. coli competent cells fol-
lowing the manufacturer’s instructions. Several colonies
were selected, grown in liquid LB and finally sequenced
with an automatic ABI 3100 Genetic Analyser (Applied
Biosystems, Foster City, CA), using the BigDye Terminator
v3.1 Cycle Sequencing Kit (Applied Biosystems). The iden-
tity of the clones was confirmed after sequencing, multiple
alignment comparisons, and phylogenetic analysis. An in
silico study of the 5’ upstream 1500 bp of the flanking pro-
moter sequence using Matlnspector and (Promo) Transfac
v.8.3 was used to identify the presence of putative binding
sites for transcription factors that could be involved in the
activation or repression of cyp26al transcription. An align-
ment of known Cyp26 proteins from vertebrates, either
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compiled from GenBank/EMBL or predicted in ENSEMBL,
was made with clustalW2. For the phylogenetic tree, the
distances were computed with the Poisson correction
method [47] and the evolutionary history was inferred
using the Neighbor-Joining method [48] after a bootstrap
test using 1000 replicates. The phylogenetic analysis was
carried out in MEGA v.4 [49].

Statistical analyses

Student’s t-test for hormonal analysis, microarray hy-
bridizations and gene expression levels was used to
reveal significant differences between stage I and stage
II. In all cases, significant differences were accepted at
p < 0.05 except for microarray hybridizations for which
differences were accepted at p < 0.01.

Results

Sample selection: histological and hormonal classification
Sea bass testes were histologically classified according to
their stage of spermatogenesis [18, 42]. Since the study
was focussed on the onset of spermatogenesis, only tes-
tes in stage I (immature) and stage II (proliferative) were
used. Briefly, stage I, corresponded to an immature
testis, and was characterized by the presence of type A
spermatogonia located within the seminiferous lobules
(Fig. 1a). Stage II, corresponded to testis in a prolifer-
ative phase and was characterized by the presence of
type A spermatogonia, abundant cysts of type B
spermatogonia and sometimes cysts of type I sper-
matocytes (Fig. 1b). Plasma samples from males previ-
ously classified by histology as stage I (n = 20) or
stage II (n = 20) were used to check their levels of
11KT. The results showed that 11KT was a suitable
marker to discriminate between males in stage I and
stage II with significantly higher levels in the latter
than the former (Fig. 2). Based on that, testes from
18 males in stage I (11KT levels ranging between 0.35
and 0.87 ng/ml), and 18 males in stage II (11KT
levels ranging between 2.18 and 3.64 ng/ml) were

,‘,t:'.j

type | spermatocytes (encircled black asterisk)

Fig. 1 Photomicrographs of European sea bass testis durmg early stages of pubertal development. a Sexually immature testis in stage |, was
characterized by the presence of type A spermatogonia (arrowheads) located within the seminiferous lobules (b) Early recrudescent testis in stage |,
characterized by the presence of type A spermatogonia (arrowheads), abundant cysts of type B spermatogonia (white asterisks), and scarce cysts of
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Fig. 2 Box-and-whisker plots of 11 ketotestosterone (11KT) plasma
levels in European sea bass males during early stages of puberty. 11KT
levels were measured at two different stages of pubertal development:
stage |, corresponding to sexually immature testes and stage |l
corresponding to early recrudescent testes. Box represents uper and
lower quartiles and maximum and minimum observed values are
represented by whiskers. Horizontal line represents the median value
(0.99 ng/ml for stage | and 2.90 ng/ml for stage Il). The asterisk denotes
statistical differences between both groups after a student t-test

(p < 0.05); n =20 in each experimental group

selected for further RNA extractions and microarray
hybridizations. For that purpose, the RNAs from the
18 males of each testicular stage were randomly di-
vided and pooled into six groups, three corresponding
to stage I and the other three to stage II. The pools
of each stage consisted of the RNA from six different
fish of that particular stage up to 18 fish per stage.
The pools were used as biological replicates and thus
independent samples for microarray hybridizations.

Microarray hybridizations

Changes in gene expression during the onset of sperm-
atogenesis (stage I versus stage II) were assessed with a
European sea bass specific microarray previously de-
scribed and validated (GPL13443). The study identified
315 DEGs between the two spermatogenic stages
(FC > 2), among which 162 corresponded to functionally
annotated genes whereas the remaining 153 were non-
annotated sequences. When comparing their expression,
a similar number of DEGs were found to be upregulated
and downregulated (150 upregulated versus 165 down-
regulated; see Additional file 2 for a list of all DEGs and
Additional file 3 for a glossary of the genes involved in cell
proliferation, reproduction, growth and RA-signalling path-
way with particular mention in this study). A PCA showed
the spatial distribution of the microarray data and revealed
the presence of two clear clusters, one corresponding to
stage I testes and the other one to stage II testes (Additional
file 4). Component 1 explained 92.43% of the variation

Page 6 of 17

whereas component 2 was responsible for 5.13% of the
variation. In addition, a heatmap representation of the
DEGs grouped fish according to their stage of testicular de-
velopment (Fig. 3).

A Gene Ontology (GO) study of the DEGs of the
microarray resulted in a distribution among the three
main functional categories including biological processes
(Additional file 5A) with a high presence of genes in-
volved in cell division, cell cycle, cell differentiation and
cytoskeleton organization typical of the increased cell
proliferating activity during early testicular recrudes-
cence. In addition, genes involved in growth, reproduction,
metabolism and catabolism were also differentially
expressed. Regarding the molecular function (Additional
file 5B), binding, enzymatic activity, and transport were dif-
ferentially regulated. As for the cell component (Additional
file 5C), a majority of the processes appeared taking place
in the nucleus and were linked to the protein complex.
These results were supported by a GO enrichment analysis
that resulted in the identification of several DEGs in the
major functional categories undergoing changes throughout
European sea bass spermatogenesis (Table 1). Three main
subsets were apparent, one including several biological pro-
cesses focused on reproduction, cell cycle, cell division,
chromosome segregation and cellular metabolic processes;
a functional subset related to binding; and finally a cellular
component category mainly related to processes taking
place in the nucleus. The fact that cell cycle processes occur
mainly in the nucleus suggests that both subsets are mech-
anistically related and are involved in cell division and pro-
gression. The analysis of the affected biological pathways
during the onset of pubertal development (Table 2) indi-
cated that 15 of the DEGs (>2.0 FC) were involved in meta-
bolic pathways mainly related to nucleotide, amino acid
and lipid metabolism and retinol metabolism. Pathways in-
volved in cellular processes mainly cell cycle, meiosis, and
DNA replication and repair were also affected, and in-
cluded 13 DEGs. Other group of DEGs was involved in dif-
ferent signalling pathways and the last group includes
pathways related with the endocrine system.

Microarray validations

For qPCR validations of the microarray results, several
DEGs representing different categories of interest were
selected according to their relevance in reproduction.
All of them were cloned and sequenced to confirm their
identity. The relative differential expression was assessed
for 14 transcripts. Six of them (pcna, cenpi, spc25, cenpf,
trip13, cdc28), were included in a group of genes with
special relevance in cell proliferation and cell cycle pro-
gression (Fig. 4a). Five transcripts (agpl, amh, sgll,
agrp2, igfbp6) were included in the group of genes with
relevance in reproduction and growth (Fig. 4b). The
remaining three transcripts (cyp26al, rbp4, crabpl) were
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correlation). The scale bar shows Z-score values

Fig. 3 Hierarchical heat map of European sea bass annotated ESTs differentially expressed during early stages of puberty. The individual genes
are pictured horizontally showing their relative expression values across all replicates of the different stages of pubertal development (tree
replicates per stage) that are represented in each column. The colour scheme is calibrated to the log2 expression values with red representing
higher transcript abundance and green lower transcript abundance. The heatmap displays only DEGs (corresponding to 152 annotated genes)
with significantly different expression values (p < 0.01) between stage | and stage Il and a log2 fold change value greater than two (Pearson

T 1
0.05 1.56

located in the group of genes involved in the RA-
signalling pathway (Fig. 4c). In addition, and due to their
prominent role in that pathway, the expression of three
more transcripts, corresponding to RA-nuclear receptors
(rara, rxra and ppary) was studied in stage I and stage II
testis (Fig. 4c). The stage-specific expression levels were
normalized to those of the constitutively expressed 18S
rRNA gene in each sample. The qPCR results were con-
sistent and showed a good correlation with those of the
microarray data (Fig. 5). It is worth mentioning that in a
number of genes, the microarray results exhibited lower
differences between the two developmental stages than

those found from the qPCR, indicating that this particu-
lar microarray may represent an underestimate of the
extent of differential expression during European sea
bass spermatogenesis (Additional file 6).

Molecular cloning of European sea bass cyp26al and
phylogenetic analysis

Among the DEGs found in the microarray we focused
on ¢yp26al due to its prominent role in the RA signal-
ling pathway by maintaining the homeostasis of intracel-
lular RA levels [50] and because RA is known to be
essential for the onset of meiosis in several vertebrates
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Table 1 Gene ontology analysis of annotated transcripts significantly affected during the onset of puberty in European sea bass
testis (Fisher's exact test with multiple corrections for FDR)

GO-term FDR P-value Sample frequency Array frequency Gene names
(N =141) (N = 7681)
Biological process
G0:0007049. Cell cycle 20E-7 23E-10 36 (25.5%) 594 (7.7%) uhrf2, dmcl, nsll, ccnd?, kif2c, cenpi, thbs1, jmy,
chaf1b, psmd3, ncapg, rbbp4, sycel, ttk, sycp2,
pold3, camk2d, ndc80, aspm, rad9b, aurkb, psmb?7,
bub3, dtymk, ppefl, cenph, anlin, slbp, spc25, nup37,
mad2l1bp, ccne2, trip13, cdc28, nsmce2, cenpf
G0:0051301. Cell division 38E-2 22E3 11 (7.8%) 212 (2.8%) nup37, nsmce2, anl, aurkb, cenph, aspm, ndc80,
mad?2l1bp, bub3, ppefl, cdc28
GO0:0007059. Chromosome 21E-6  2.1E-08 12 (85%) 70 (1.0%) nup37, nsmce2, aurkb, cenph, ndc80, kif2c, madl1bp,
segregation cenpf, ttk, bub3, sycel, ncapg
G0:0006259. DNA metabolic 80E-3 6.0E-5 20 (14.2%) 401 (5.2%) uhrf2, dmcl, cacybp, jmy, chaf1b, pcna, ncapg,
process rbbp4, pold3, rfc3, rad9b, cry2, smarcc2, asf1b, fenl,
trip13, ruvbl2, nt5e, mcm3, nsmce2
G0:0010467. Gene expression 20E-7 26E-10 4 (2.8%) 1658 (21.6%) uhrf2, thbs1, eed, asfib
G0:0000003. Reproduction 23E-2 49E-04 14 (9.9%) 266 (3.5%) tgfbr1, adamts1, cenpi, bub3, sycel, ihh, sycp2,
dmcl, hsf2bp, amh, trip13, sdfia, ttk, fosla
G0:0044237. Cellular metabolic 21E-3 12E-5 47 (33.3%) 3993 (52%) uhrf2, dmcl, rab6a, hck, cacybp, thbs1, jmy,
process chaf1b, pcna, psmd3, ncapg, cry2, gpd1, cad,
rbbp4, nmel, ttk, pold3, camk2d, rfc3, lox, srsf7,
rad9ob, eed, ifitm2, fenl, smarcc2, asf1b, nme3,
aurkb, shmt1, cpst3, atpévOel, dtymk, nsmce2,
ppefl, u2arf3s, slbp, trip13, Inx1, fkbp8, nnt,
ruvbl2, tgfbri, nt5e, ubr7, mecm3
GO0:0050794. Regulation of cellular  1.1E-2  87E-5 29 (20.6%) 2774 (36.1%) bncl, ihh, agrp2, rabéa, thbs1, c-fosla, psmd3,
process g2laq1, amh, ect2, cad, trip13, camk2d, ndc80,
rad9b, stat3, cry2, sdfia, ppefl, depdcib, crabp],
isg2012, lbr, ap2s1, cyp26al,fkbp8, tfrc, adamts1,
tgfori
Molecular function
G0:0043169. Cation binding 24E3 14E5 8 (57%) 1434 (18.7%) ihh, mgp, thbs1, cad, tppp3, ppef1, slc25a25,
anxa2
G0:0043167. lon binding 24E-3 15E5 8 (5.7%) 1443 (18.8%) ihh, mgp, thbs1, cad, tppp3, ppefl, slc25a25,
anxa2
G0:0046872. Metal ion binding 32E-3 21E5 8 (5.7%) 1414 (18.4%) ihh, mgp, thbs1, cad, tppp3, ppefl, slc25a25,
anxa2
Cellular component
G0:0005634. Nucleus 48E-2 47E-4 55 (39.0%) 2002 (26.1%) bnc1, apeh, uhrf2, dmcl, ihh, ccnd2, cacybp, cenpi,
jmy, c-fosla, chaf1b, pcna, trhb, sh3bgri3, rbbp4,
sycel, sycp2, pold3, camk2d, rfc3, ndc80, aspm, lox,
srsf7, radob, eed, stat3, cry2, smarcc2, asf1b, smox,
aurkb, shmt1, cpst3, lbr, psmb7, b9d2, bub3, gfit,
fenl, assi, ppefl, u2af35, cenph, chracl, slbp, nup37,
cenpf, mad2l1bp, ccne2, trip13, isg2012, ruvbl2, mem3,
cdc28
G0:0005694. Chromosome 39E-7 6.0E-10 25 (17.7%) 302 (3.9%) uhrf2, dmcl, nsll, kif2¢c, cenpi, pcna, ncapg, rbbp4,
sycel, pold3, rfc3, ndc80, rad9b, eed, asf1b, aurkb,
bub3, u2arf3s, spc25, nup37, mad2l1bp, ruvbl2, mem3,
nsmce2, cenpf
G0:0000228. Nuclear chromosome  3.5E-4 1.6E-6 11 (7.8%) 89 (1.1%) dmcl, pcna, rbbp4, sycel, pold3, ndc80, rad9b, eed,
aurkb, ruvbl2, mem3
G0:0016020. Membrane 20E-7 27E-10 14 (9.9%) 2545 (33.1%) bncl, ihh, thbs1, dsg2, cad, camk2d, slco2al,

ppefl, rims1, ap2si, tfrc, tgfbr1, nt5e, synpo

Genes in bold type correspond to downregulated genes in the microarray whereas up regulated genes appear in normal type
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Table 2 Affected KEGG pathways at the onset of European sea
bass puberty

Pathway name Genes involved

Metabolic pathways

- Nucleotide metabolism nme3, pold3, cad, tyms, nt5e, dtymk
- Retinol metabolism cyp26al
- Lipid metabolism pnpla2, gpdi, agrp2, ptges

odcl, pycr2, smox, assl, cad, shmtl,
pah

- Amino acid metabolism

Cellular processes

- Cell cycle bub3, mecm3, pcna, ttk, ccnd?2,
mad2l1bp, cdc28, aurkb, ndc80,
spc25

- Meiosis mcm3, cdc28, dmcl, mad212, sycp2,

sycel, cenph, cenpi, cenpf, ndc80,
spc25
- DNA replication and repair mcma3, pold3, fenl, pcna, rfc3
- Focal adhesion actb, ccnd2, thbs1
Genetic information processing
- FoxO signalling pathway tgfor1, stat3, plk4, ccnd?
- Hippo signalling pathway ambh, tgfbr1, ccnd?, actb
stat3, socs3, ccnd?
ambh, tgfbr1, thbs1

gpdl, cdc28, tgforil

- Jak-STAT signalling pathway
- TGF beta signalling pathway
- MAPK signalling pathway

- TNF signalling pathway socs3

- Toll-like receptor signalling ctsk

pathway
- Wnt signalling pathway cacybp, ccnd?

- PI3K-Akt signalling pathway ccnd2, thbs1

- CAMP signalling pathway adcyapl, amh
- Hedgehog signalling pathway  ccnd2, ihh
- Rap1 signalling pathway actb, thbs1

Endocrine system

- Prolactin signalling pathway stat3, socs3, ccnd?

- Renin secretion aqpl

- Thyroid hormone signalling actb

pathway

Downregulated genes appear in bold type whereas upregulated genes appear
in normal type

[51-54]. The cDNA isolated for European sea bass
¢yp26al contained an ORF 1178 bp long, was flanked by
a 500 bp 3'UTR region and was deposited in the Gen-
Bank under the accession number KJ187657. The de-
duced amino acid sequence encodes a protein 488
amino acid long with a theoretical PI of 9.04 and a cal-
culated molecular weight of 55.495 kDa. A Genbank
search resulted in the identification of several full-length
sequences for Cyp26 proteins in teleosts and tetrapods,
including amphibians, reptiles, birds and mammals. The
phylogenetic analysis showed that the European sea bass
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protein was evolutionarily closer to CYP26A1 proteins,
while it was more distant from other CYP26B1 and
CYP26C1 proteins (Fig. 6 and Additional file 7 for acces-
sion numbers). The consensus tree had three main
branches, one containing all A1 sequences, another one
including B1 sequences and the remaining with C1 se-
quences. Sea bass sequence clustered together in the Al
group further supporting its identity. Comparisons of
the deduced amino acid sequence with other full-length
Cyp26al in different fish revealed that the highest hom-
ology was shared with stickleback (94.4%) and the lowest
with zebrafish (82.4%). These slight differences among
fish support that Cyp26al in teleosts is quite highly con-
served. A study of the 5" flanking sequence (1500 bp up-
stream of the first ATG) of the cyp26al gene showed
the presence of binding sites for different transcription
factors among which it is worth mentioning RA-nuclear
receptors (Rxr, Rar, and Ppar), steroid receptors, and
several elements involved in cell cycle regulation (Add-
itional file 8).

Tissue specific expression

The expression of the selected DEGs and the three extra
genes in different tissues was assessed by conventional
PCR (Fig. 7). Among the cell proliferation genes, pcna
and spc25 were ubiquitously expressed whereas cenpi
expression was mainly restricted to gonads, with highest
levels in ovary. Regarding the genes involved in
reproduction and growth, agpl was expressed at similar
levels in all the tissues studied. sgll expression was found
in all tissues but with higher levels in pituitary, cerebel-
lum, kidney and testis. The expression of amh was high-
est in gonads and undetectable in telencephalon and
pituitary whereas igfbp6 expression was restricted to the
gills, liver, testis and gut. Finally, the genes involved in
RA-signalling pathway were expressed at similar levels
in all tissues except cyp26al that showed highest expres-
sion in gonads and crabpl that was mostly expressed in
head kidney and at lower levels in dorsal kidney, gills
and testis.

Discussion

The present study contributed to identify differences in
gene expression during the early stages of pubertal de-
velopment in European sea bass males using a custom-
made microarray. However, and despite the fact that the
differences observed at the transcriptome and the steroid
level are related to puberty (first successful
reproduction), it is possible that similar changes could
be found in successive reproductive seasons since they
mark the transition between quiescence and the start of
gametogenesis. The use of long oligo-based microarrays
has been shown to have a higher sensitivity for detection
but a lower specificity [55] and therefore could have a
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Fig. 4 qPCR results for genes differentially expressed in the microarray
during the onset of puberty in the European sea bass. Genes were
selected according to their relevance in different reproductive events.
a Genes involved in cell proliferation and cell cycle progression;
proliferating cell nuclear antigen (pcna), centromere protein | (cenpi),
spindle pole body component 25 (spc25), centromere protein f (cenpf),
thyroid hormone receptor interactor 13 (trip13), and cdc28
protein kinase (cdc28). b Genes involved in reproduction and
growth; antimdllerian hormone (amh), aquaporin 1 (agpl),
secretogranin Il (sgll), agouti-related protein 2 (agrp2), insulin-like
growth factor binding protein 6 (igfbp6). ¢ Genes involved in the
RA signalling pathway: RA-metabolizing enzyme cytochrome P450
26al (cyp26al), retinol binding protein 4 (rbp4), RA-binding protein
(crabp1). This group also includes three RA-nuclear receptors, RA recep-
tor alpha (rara), retinoid X receptor alpha (rxra), peroxisome
proliferator-activated receptor gamma (ppary) due to their relevance in
this pathway. The stage-specific expression levels were normalized to
those of the constitutively expressed 18S rRNA gene in each sample.
Expression data are shown as mean normalized expression + SEM. Y-
axis is represented in logarithmic scale for easier visualization. For each
gene, bars on the left (blue) correspond to stage | testes and bars on
the right (red) to stage Il testes

Log2 Relative fold change (qPCR)

r=0.88, N =14, P<0.001
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Fig. 5 Correlation between microarray and gPCR results. Fold change
(FQ) induction values of the different gene transcripts are plotted as
log2 values of the relative fold change. The X-axis represent microarray
data whereas the Y axis corresponds to gPCR data. The regression line
and the corresponding r coefficient are also represented. For gene
symbols and complete gene names see caption of Fig. 4

reduced ability to discriminate between similar tran-
scripts produced by the same locus, paralogs or similar
members of large gene families. To circumvent this
problem, we cloned the full-length sequence of several
selected DEGs and then validated the results with qPCR
obtaining a good correlation between both methods. In
addition, the study revealed the complete sequences of
some transcripts for the first time in the European sea
bass, adding contrasted information to the microarray
that was based on EST sequences. However, for other
DEGs that were not annotated in the microarray, we
could not find any match to reveal their identities in any
of the databases searched including Genebank, Ensembl,
and Uniprot. The different stages of spermatogenesis
(stage I and stage II) used for the study were classified
by histology and their corresponding 11KT levels were
further confirmed by EIA, demonstrating that the in-
crease of circulating 11KT marks the initiation of puber-
tal development. A similar result was found in other
teleosts including eel [56], goldfish [57], zebrafish [16] or
trout [58] and 11KT measured from the mucus of carps
was suitable to differentiate males from females [59, 60].
However, no correlation between 11KT and gonad develop-
mental stage in either male or female carp could be found
[59]. Our results open the possibility to explore the use of
11KT as a non-lethal marker for the onset of puberty in this
species helping to manage the fish farms stocks to separate
precocious from non-precocious European sea bass males.
The transcriptome response revealed that cell prolifer-
ation, cell cycle and meiosis progression were pathways
preferentially affected during the onset of male puberty.
The spindle assembly checkpoint (SAC) is a control
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Fig. 6 Phylogenetic tree of Cyp26 family proteins. The tree was constructed using the Neighbor-Joining method. The bootstrap consensus tree
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Ensembl accession numbers of the sequences used to generate the tree appear listed in Additional file 7

lamprey B1

mechanism of dividing cells that ensures the correct seg-
regation of chromosomes by blocking cell cycle progres-
sion until kinetochores are properly connected to the
spindle [61]. In our study, several genes coding for SAC

proteins (bub3) and SAC protein regulators (mad2l1bp
and rtk), were upregulated in stage II testes as well as
other important kinetochore-associated transcripts such
as ndc80, spc25, aurkb and cdc28 (Additional file 2).
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Fig. 7 Tissue distribution of European sea bass transcripts involved
in different biological processes during sea bass early puberty.
Biological processes include: cell proliferation and cell cycle
progression (pcna, cenpi, spc25, cenpf, trip13, and cdc28);
reproduction (agp1, amh, sgll, agrp2, and igfbp6; RA signalling
pathway (cyp26al, rbp4, crabpl, rara, rxra, and ppary). The expression
was detected by RT-PCR in different tissues including telencephalon
(T1), pituitary (Pt), cerebellum (Ce), spleen (Sp), gills (Gi), head kidney
(Hk), liver (Li), posterior kidney (Ki), testis (Te), ovary (Ov), heart (Ht),
and gut (Gu). 18S ribosomal RNA (r18S) was used as a positive in-
ternal control to check for the integrity of the cDNA template. For
complete gene names see caption of Fig. 4

ndc80 and spc25 code for essential proteins of the
Ndc80 complex, needed for SAC activity [62] while
aurkb (aurora kinase b) controls kinetochore orienta-
tion during meiosis [63]. Defects in cdc28 function
result in delays in the exit from mitosis and in mei-
osis impairment among others [64]. Transcripts cod-
ing for centromere proteins like cenph, cenpi or
cenpf, were also upregulated. In the case of cenpi, in
addition to its role in centromere formation, it is in-
volved in the response of gonadal tissues to Fsh [65].
The upregulation of cenpi in stage II coincides with the
initiation of the gradual increase in Fsh plasma levels in
European sea bass during early spermatogenesis [1, 33].
This is in line with the role of Fsh inducing germ cell pro-
liferation and marks the onset of spermatogenesis through
the activation of spermatogenesis-related genes [34]. Sev-
eral transcripts like sycp2 and sycel, coding for proteins of
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the synaptonemal complex and trip13, required for the
completion of meiosis [66], were upregulated in stage II
testes. Moreover, pcna, essential for DNA replication and
a molecular marker of dividing cells [67], also increased
during the onset of spermatogenesis in agreement with
the active mitosis of spermatogonia typical of this period
[18]. The role of pcna in the proliferation of germ cells
has been described in several teleosts and is currently used
in a number of fish species as a marker of spermatogenesis
progression [2]. All these results are supported by the ana-
lysis of affected biological pathways (Table 2) that showed
higher expression of genes involved in cellular processes,
particularly those involved in cell cycle, meiosis and DNA
replication and repair. In addition, several signalling path-
ways involved in testicular development such as Wnt,
MAPK, hedgehog and TGF beta signalling pathways [68]
were altered during early puberty in European sea bass.
Altogether, the upregulation of the above mentioned
genes is indicative of an active period of mitosis, reflect
the need for a tight control of the correct division of the
cells, and constitutes an indicator for the progression of
meiosis typical of this stage.

A second group of DEGs includes those implicated
in reproduction and growth. Amh is involved in go-
nadal development and steroidogenesis in vertebrates
and induces the regression of millerian ducts in
mammals during male embryogenesis [69]. Although
fish do not have miillerian ducts, amh homologues
have been identified in several teleosts [70], suggest-
ing evolutionary conserved functions for this gene.
The role of Amh as a meiosis inhibiting factor was
first shown in eels [71] and recently in zebrafish [16],
induced by the increase of circulating 11KT that
blocked amh expression facilitating spermatogenesis
completion. In teleosts, amh has a key role in early
testicular maturation with highest levels in pre-
spermatogenic testis and lowest during spawning [72].
In European sea bass, administration of recombinant
Fsh induced spermatogonial proliferation and differen-
tiation into spermatocytes, due to the increase of
11KT levels and the concomitant suppression of amh
expression [34]. Moreover, amh mRNA and protein
expression was detected in Sertoli cells of prepubertal
European sea bass, and the signal decreased during
spermatogenesis [73]. Our results showed a decrease
of amh levels during early spermatogenesis in agree-
ment with its role as an inhibitor of spermatogenesis
progression. This is supported by the increase of
pcna, cenpi and 11KT levels in the same testicular
stage. Likewise, a downregulation of amh during the
reproductive cycle has been found in the testicular
transcriptome of rainbow trout [12] and in precocious
Atlantic salmon [74], further demonstrating that the
inhibitory effect of Amh of the onset of puberty can
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be extended to all fish species so far studied. In
addition, the study of the biological pathways affected
during the onset of puberty, also show the import-
ance of amh in several signalling pathways including
those of TGF beta, hippo and cAMP [68]. Few stud-
ies are available for sg/l in fish, apart from those in
goldfish [75-77]. Sgll is widely distributed in
secretory granules of neurons and endocrine cells [78]
and is the precursor of secretoneurin, a bioactive
neuropeptide capable to induce Lh secretion [75, 77].
Our results show low sgll expression by the onset of
spermatogenesis, in agreement with the low Lh levels
found at this stage in the European sea bass [1, 30].
It would be very interesting to determine whether
sgll, and therefore secretoneurin, also increase during
later stages of spermatogenesis, coinciding with the
surge of Lh, to experimentally test this hypothesis.
Pioneering studies in sea bream point at the relevance
of aquaporin 1 (aqpl) in fish reproduction due to its
role in water intake during oocyte hydration prior to
spawning [79] and in the activation of sperm motility
during the last stages of spermatogenesis [80, 81].
Our results show low agpl levels during early sperm-
atogenesis, in agreement with its prominent role in
sperm maturation during the last stages of spermato-
genesis. Agrp2 (agouti-related protein 2) is an orexi-
genic peptide with a key role in the regulation of
energy balance in mammals [82] and fish [83]. In this
regard, our study shows that the lipid metabolism
pathway where agrp2 was included was affected dur-
ing the early stages of pubertal development further
supporting its role in energy balance. A direct link
between leptin, the most powerful orexigenic neuro-
peptide in fish [84], and the AGRP system has been
suggested in European sea bass males [8]. Moreover,
abundant Agrp expression was found in mouse
pachytene-spermatocytes and immunohistochemistry
revealed that Agrp co-localized with Scp3, a meiotic-
specific protein of the synaptonemal complex [85].
Although agrp2 has been characterized in European
sea bass testis [86], this is the first time its involve-
ment in spermatogenesis is suggested, possibly due to
the specific energy requirements during spermatogen-
esis and the decrease in food intake. This is in agree-
ment with the downregulation of agrp2 in European
sea bass brain after long-term fasting [86] and its de-
crease in testis during early spermatogenesis (present
study), and link the appetite and growth system with
reproduction [87]. Moreover, a transcriptomic study
of trout testis revealed that Fsh administration in-
duced the increase of igfbp6 [88]. This strong Fsh-
induced upregulation was present during early sperm-
atogenesis, including germ cell proliferation and
meiosis, and was associated to the effect of the Igf-
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signalling pathway on spermatogenesis progression
[89]. Our results also show a clear upregulation of
igfbp6, coinciding with the first stages of pubertal de-
velopment and the increase of 11KT plasma levels.
The last group of DEGs is associated with the RA-
signalling pathway. RA has been proposed as a meiosis
inducing factor in tetrapods including mammals [51],
birds [52], amphibians [53] and fish [4, 5, 54, 90]. Two
transcripts coding for binding proteins, one in charge of
retinol transport (rbp4) through the blood stream and
another one (crabpl) in charge of the translocation of
RA to the nucleus of the target cells [91] were differen-
tially expressed in European sea bass transcriptome. In
addition, cyp26al, responsible for the degradation of
intracellular RA and essential for the maintenance of RA
homeostasis [50], was affected. The decrease of cyp26al
in stage II is associated with a decrease in the transloca-
tion and transport of RA brought about by the downreg-
ulation of rbp4 and crabpl, in order to maintain the
homeostasis of RA that otherwise, and at high levels can
be toxic for the cell [92]. In addition, retinol metabolism
was one of the affected metabolic pathways found in the
present study. It seems thus plausible that in European
sea bass, the suppression of RA degradation and the
concomitant increase in the availability of RA could be
partially responsible for triggering the onset of meiosis.
In zebrafish testes, cyp26al was expressed in germ cells
entering meiosis, while in females, a downregulation was
found in oocytes during meiosis resumption [54]. Like-
wise, in medaka, RA was found to act directly on Sertoli
cells, Leydig cells, and pre-meiotic germ cells with a de-
crease of c¢yp26al expression by the time of meiosis re-
sumption, whereas in ovaries, RA-transcriptional activity
is highest in meiotic oocytes [5]. In addition, in vivo
Fsh-injection to pre-spermatogenic zebrafish males in-
duced the onset of spermatogenesis and resulted in
changes of several enzymes involved in the RA-
signalling pathway, including a decrease in cyp26al ex-
pression, although no effect was found after ex vivo cul-
ture of pre-spermatogenic testes with Fsh [17].
Moreover, the administration of an inhibitor of RA syn-
thesis in combination with a deficient diet of vitamin A
(a precursor of RA) to adult zebrafish also induced a
downregulation of cyp26al, most likely to increase intra-
cellular RA levels, although spermatogenesis was still
disrupted, and fertility compromised [93]. The above
mentioned studies suggest that a decrease in cyp26 ex-
pression is associated with the onset of spermatogenesis
and the initiation of meiosis and prompted us to clone
and obtain the full length of its cDNA. The alignment of
the deduced protein sequence with other Cyp26 proteins
available from other vertebrates confirmed its identity as
Cyp26al revealing slight differences in homology among
teleosts, further supporting their high conservation due
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to its pivotal role controlling RA levels. The tree shows
the presence of a common ancestor cyp26 protein,
strengthening the hypothesis of an independent functio-
nalization of its coding gene prior to the two rounds of
genome duplication in vertebrates [54]. Moreover, the
study of the promoter showed the presence of binding
sites for cell cycle regulators and for RA nuclear recep-
tors including Ppar, Rxr and Rar, and also DR1 and DR5
sites (RA-responsive elements) indicating the role of RA,
via the interaction with its nuclear receptors, in the
regulation of cyp26al transcription in the European sea
bass. A similar result has been shown for the cyp26al
promoter in zebrafish [94, 95] and medaka [5], although
the development of functional studies is clearly needed
to confirm the capability of RA to induce the regulation
of cyp26al in the European sea bass. To gain more
insight on the importance of the RA-signalling pathway in
meiosis we studied the expression of several nuclear re-
ceptors involved in RA binding including rara, raxra, and
ppary. The receptors appeared ubiquitously expressed and
at similar levels in all the tissues studied, reflecting the
general actions and the importance of RA in numerous
biological processes throughout evolution [96] and its in-
volvement in the proliferation and differentiation of many
cell types [97].

Conclusion

To the best of our knowledge, this is the first transcrip-
tomic study focussed on the early stages of puberty, and
aimed at the identification of molecular and endocrine
signals triggering the start of the initial spermatogenic
wave in European sea bass. Increases in androgen
plasma levels, particularly 11KT, mark the transition be-
tween testicular stage I and stage II. This opens the pos-
sibility to explore the use of 11KT in the management of
European sea bass stocks in aquaculture farms to separ-
ate precocious from non-precocious males. The study
improved the annotation of different genes of the micro-
array and helped to increase the knowledge of several
mechanisms and biological pathways involved in early
stages of puberty. Altogether, the study shows that the
onset of spermatogenesis is characterized by the activa-
tion of genes involved in cell cycle progression and div-
ision including mitosis and meiosis. The differential
expression of several components of the RA-signalling
pathway suggests their important role in the onset of
meiosis. This work lays the foundation for an in-depth
study of the RA-signalling signalling pathway and its role
in the onset of meiosis in fish. A future increase in the
sequencing of the European sea bass gonad transcrip-
tome and the use of RNA-seq technologies will help to
shed light on the molecular pathways involved in rele-
vant aspects of the reproductive process of this econom-
ically important species and will aid to develop
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comparative studies on gonadal differentiation and mat-
uration in teleosts.
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