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Abstract

Background: High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently
detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe
densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically
compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and
Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays,
and performing data analysis using both manufacturer-recommended and platform-independent software. We
benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from
1000 Genomes Project whole genome sequencing data.

Results: The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between
~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4–489),
CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0–86%). We discovered strikingly
strong effects of specific array design principles on performance. For example, some SNP array designs with
the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls
that could not be validated, compared to designs with probe numbers that are sometimes an order of
magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing
data analysis parameters.

Conclusions: High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for
CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified
how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined
how each array balances these attributes. This analysis will inform appropriate array selection for future CNV
studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based
genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis
algorithms and independent experimental validation in array-based CNV detection studies.
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Background
Copy Number Variation (CNV) is a major category of hu-
man genetic variation. Most CNVs constitute normal vari-
ation and are functionally benign, while others have strong
associations with disease (e.g. [1]). The accurate detection
of CNVs is important for both biomedical research and
clinical diagnostics. In this study, following our previous
comparison of an earlier generation of arrays [2], we
assessed the genome-wide CNV detection capabilities of all
17 commercially available high-density oligonucleotide
arrays representing three different technologies: aCGH,
(five Agilent arrays), SNP genotyping arrays (ten Illumina
arrays), and combination aCGH/SNP platforms (two
Affymetrix arrays). DNA from the extensively charac-
terized genome of individual NA12878 (e.g. see 1000
Genomes Project, [3]) was hybridized to each array in
two technical replicates. CNVs were then called twice
for each replicate: first by using the respective manufac-
turer’s software for each platform, and second by using
the Nexus Copy Number software by Biodiscovery for all
platforms. Each call set was then compared to a gold
standard set of CNVs for NA12878 that was derived from
whole genome sequencing data produced by the 1000
Genomes Project. The gold standard contains only high
confidence CNVs found by extensive sequencing of
NA12878 and supported by multiple analytic principles
(e.g. paired-end, split-read, or read-depth analysis), experi-
mental validation (e.g. PCR or aCGH), or both [4].
Several technologies are now available for the unbiased

and high-resolution detection of CNVs genome-wide. Gen-
erally, these technologies are either based on microarrays
or ‘next-generation’ sequencing (NGS). Despite the expect-
ation that eventually genome variation analysis will be ac-
complished using sequencing-based platforms only, the
robust array-based methodologies are displaying a substan-
tial amount of staying power. Arrays are currently fulfilling
the near real-time needs of clinical cytogenetics and stem
cell tissue culture laboratories [5, 6], as well as the require-
ment of typical genome-wide association studies to include
thousands or even tens of thousands of samples in a cost-
effective manner (e.g. [7–12]). In fact, microarray analysis
has now replaced karyotype and FISH as the first-tier test
for chromosomal aberrations in clinical cytogenetics [13].
At the same time, whole-genome sequencing-based analysis
can easily overwhelm a typical laboratory’s workflow with
very large amounts of raw data that require massive com-
putational resources for data storage and processing as well
as highly specialized bioinformatics skills for analysis.
The currently available array designs contain probe

numbers that range from hundreds of thousands to sev-
eral million. They also represent several design strategies
such as a roughly equal genome-wide spacing of probes
versus an evenly spaced backbone of probes in combin-
ation with higher probe density in exons or regions
containing known CNVs. Here, we present an unbiased
comparison of the CNV detection capabilities of all com-
mercially available arrays including their sensitivities and
size-resolutions.
Results
Gold standard CNVs for NA12878
Our gold standard set of CNVs for the genome of
NA12878 was generated using the 1000 Genomes Project
whole genome sequencing data [4]. It consists of 2171
CNV calls (2034 deletions and 137 duplications), 2076 of
which are located on autosomes (1941 deletions and 135
duplications). The gold standard CNVs range from 50 bp
to 453,312 bp, and 41 CNVs (7 deletions and 34 duplica-
tions) are larger than 100 kb [Fig. 1]. The bins with CNVs
in the size ranges of Alu elements (301–400 bp) and
LINEs (~6 kb) are labeled [Fig. 1a]. All gold standard
CNVs ≤ 1 kb are deletions [Fig. 1b]. Most duplications
(65%) are between 10–100 kb in size [Fig. 1b]. In total,
180 autosomal gold standard CNVs (54 deletions and 126
duplications) are polymorphic in the 1000 Genomes Pro-
ject population and 33 of these (1 deletion and 32 duplica-
tions) are larger than 100 kb in size.
Genome-wide CNV detection in NA12878 by 17 different
microarray platforms
We analyzed the genome of NA12878 for CNVs using
two technical replicate hybridizations for each of the
seventeen different microarray platforms. Raw data
from each experiment was collected from hybridiza-
tions performed either directly by the manufacturer or
by manufacturer-recommended biotechnology service
providers. For each platform, the raw data was ana-
lyzed separately using both the platform-specific
manufacturer-provided software, at default settings for
the main comparison, and the platform-agnostic
Nexus software (Biodiscovery). The microarrays and
their defining features, including total probe numbers,
types of probes, probe spacing across the genome,
source of the raw data, platform-specific analysis soft-
ware, and total autosomal CNV calls using both ana-
lysis options, are summarized in Table 1. DNA from
the well-characterized HapMap and 1000 Genomes
Project individual NA10851 was used as a control in
the Agilent aCGH hybridizations.
We also hybridized the genome of NA12878 on the

newest Illumina array, the Infinium Multi-Ethnic
Global-8 v1.0 array (commercial version of MEGA EX
array) in replicate and called CNVs using the Nexus and
Illumina CNVPartition algorithms with default settings.
No CNVs were called using either algorithm in this sam-
ple and so this array was excluded from our comparison.
These results are discussed in the Supplement.



Fig. 1 Size and nature of gold standard CNVs from sample NA12878. a. Histogram showing size distribution of NA12878 gold standard CNVs.
Bin sizes change by a factor of ten across panels. Peaks in the size range of Alu elements, in the 301–400 bp bin, and in the size range of
LINE1 elements, in the 5001–6000 bp bin, are indicated by arrows. b. Distribution of total numbers of gold standard deletions and
duplications by size. It can reasonably be expected that most CNVs smaller than 1 kb in size are not detectable by the arrays in this study
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Comparison of array CNV calls to gold standard CNVs
The genome-wide CNV calling abilities of each array
were assessed by determining the number of NA12878
gold standard CNVs it was able to detect [Fig. 2]. A
CNV called by an array is considered valid if either it
overlaps a single gold standard CNV by ≥ 50% recipro-
cally in size, or there exists a set of gold standard CNVs
such that each event has ≥ 50% overlap with the platform
CNV call, and ≥ 50% of the platform CNV overlaps with
this set of CNVs. For all arrays, there were considerable
numbers of CNV calls that did not meet these criteria.
In order to assess the validity of these remaining CNV

calls, we used two less stringent analytical criteria. We
calculated the number of CNVs that overlapped the gold
standard CNV < 50% reciprocally. This rescued some of
the platform CNV calls that did not meet the 50% recip-
rocal overlapping criteria, but not all. Our gold standard
set of CNVs is robust but incomplete i.e. there may be
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a

b

Fig. 2 CNV detection performance of each array using two different algorithms. a. Overlap of autosomal CNV calls from two different
algorithms for each array platform with gold standard CNVs. Data is shown for each of two technical replicates per array. CNV call sets
derived from the platform specific algorithm are in green, yellow, and red, and those derived from Nexus are in blue, pink, and purple. The
number of array CNV calls overlapping a gold standard CNV by 50% reciprocally in size is in green and blue, by less than 50% reciprocally
in size is in yellow and pink, and not overlapping a gold standard CNV is in red and purple. Array calls not overlapping a gold standard CNV
at all were further analyzed for sequencing-based confirmation using CNVnator generated CNV calls based on the 1000 Genomes Project
sequencing data for NA12878. The number of CNV calls not overlapping a gold standard CNV but with CNVnator support is shown as solid
red or purple bars. The number of CNV calls not overlapping a gold standard CNV and with no CNVnator support is shown as hashed red or
purple bars. b. Average rate of non-validated CNV calls for each array platform and for each algorithm. The rate of non-validated calls is
calculated as the percentage of the total number of CNVs called from an array that do not overlap a gold standard CNV and do no have
any supporting evidence from CNVnator (hashed red and purple bars in a.). Average rate of non-validated calls is based on two
technical replicates
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additional true CNVs in the NA12878 genome, many of
which may be detectable by some of the arrays, which did
not meet the stringent requirements to be included in the
gold standard. Therefore, we tested whether 1000 Genomes
Project deep sequencing data alone supported the validity
of array CNV calls that do not overlap gold standard
CNVs at all. We employed read-depth analysis using the
CNVnator algorithm [14] to generate CNV calls using
1000 Genome Project deep sequencing data (2×250 bp
paired-end sequencing to 60× coverage on Illumina
HiSeq) for NA12878 and counted how many of the
remaining platform CNV calls overlapped a CNVnator call
using the 50% reciprocal overlapping criteria described
above [Fig. 2a, Additional file 1: Table S1].
The various arrays detected vastly different total num-

bers of autosomal CNVs, ranging from 4 (Illumina
HumanCoreExome and Psych arrays using Illumina ana-
lysis software) to 489 (Agilent 2×400K-CNV microarray
using Nexus analysis software) [Table 1 and Fig. 2a]. Con-
sequently, the total number of validated autosomal CNVs
for each array also varied widely. In general, among arrays
from the same manufacturer the total number of called
and validated autosomal CNVs increased with increasing
probe number but there were some notable exceptions.
Among the Agilent arrays, designs targeting known genes
or CNV regions in addition to a substantial genome-wide
‘backbone’ (1×1M-HR and 2×400K-CNV respectively) de-
tected many more CNVs than arrays with the same or an
even larger number of probes but with an even probe spa-
cing (1×1M-CGH and 2×400K-CGH) [Fig. 2a]. The widely
used but now discontinued Illumina HumanOmni1Quad
array contains ~1 million probes including dense CNV-
specific probes in common CNV regions. This array called
significantly more total and validated CNVs than most
other HumanOmni arrays containing either ~2.5 million
or > 4.7 million probes without CNV-specific probes. The
only HumanOmni array design that called more CNVs
than the legacy Omni1Quad, the HumanOmni5Exome,
when analyzed by the manufacturer-provided software,
produced a very large number of CNV calls that were not
validated using our criteria. Importantly, the CNV detec-
tion performance of each array was consistent between
replicates regardless of the algorithm used [Fig. 2a]. Tech-
nical replicates using the same algorithm produced very
similar total numbers of CNVs (standard deviation < 9 for
most arrays except Agilent 2×400K-CNV with a standard
deviation = 26 (platform specific) and 40 (Nexus)) as well
as very similar numbers of validated CNVs within each val-
idation category.

Algorithm choice and parameter settings can dramatically
affect CNV results
In some cases, the same raw data analyzed with different
algorithms resulted in considerably different numbers of
total and validated CNV calls [Table 1 and Fig. 2a]. For all
arrays except the Agilent 2×400K-CNV array, Nexus pro-
duced fewer total but as many validated calls as the plat-
form specific algorithms. Therefore, Nexus analysis
generally resulted in lower rates of non-validated calls for
the arrays in this study [Fig. 2b]. The most striking differ-
ence between employing the Nexus and platform specific
software is observed with the Illumina Omni5Exome array.
For this array Nexus called an equivalent number of auto-
somal CNVs as it did for the similarly sized Omni5Quad
array, but the platform specific algorithm called almost
eight times more. Consequently, we computed rates of
non-validated calls of 86% (platform specific algorithm)
versus 31% (Nexus) for the Omni5Exome array [Figs. 2a
and b].
Using a particular algorithm but with different param-

eter settings on the same raw data also produced notably
varied results [Additional file 2: Figure S1]. Reducing the
stringency of the parameters resulted in appreciably
more total but only marginally more validated CNVs
calls. These two phenomena have been well documented
for previous generations of arrays and our results for the
currently available arrays are consistent with the pub-
lished literature.

Size distributions of validated and non-validated array
CNVs
In general, the arrays with more probes and the CNV fo-
cused designs (Affymetrix SNP6.0, Agilent 1×1M-HR,
1×1M-CGH, and 2×400K-CNV, and Illumina Huma-
nOmni5Exome and Omni5) showed no difference in the
size distributions of the validated and non-validated
CNV calls indicating that size is not the distinguishing
factor here. However, for arrays with less probes and
even probe spacing across the genome (Affymetrix
CytoScanHD, Agilent 2×400K-CGH, Illumina Huma-
nOmni2.5Exome and smaller) the validated CNV calls
are significantly larger than the non-validated CNV calls
[Additional file 3: Figure S2].

Exome content on arrays increases number of non-
validated CNVs calls
The Illumina HumanOmni5, HumanOmni2.5, and
HumanOmniExpress each form the basis of a corre-
sponding exome-enriched design (HumanOmni5Exome,
HumanOmni2.5Exome and HumanOmniExpressExome
respectively) that contains an additional ~500,000 exome-
specific probes. We observed considerably higher rates of
autosomal non-validated calls for exome-enriched designs
compared to their non-exome-enriched versions, which
achieved some of the lowest rates of non-validated CNVs
in this study [Fig. 2b]. Non-validated rates of 86% for the
HumanOmni5Exome versus 31% for the HumanOmni5,
35% for the HumanOmni2.5Exome versus 17% for the
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HumanOmni2.5, and 62% for the HumanOmniExpressEx-
ome versus 23% for the HumanOmniExpress array were
computed when using the platform specific algorithm.
Absolute rates of non-validated calls were much lower
when using the Nexus algorithm but followed a similar
trend. However, the total CNV call rate was also lower
when using the Nexus algorithm. Conversely, for the Agi-
lent 1×1M designs, the 1×1M-HR array, which specifically
targets known genes, called substantially more autosomal
CNVs (25 using the platform comparison software and
using Nexus) than the 1×1M-CGH design yet the rates of
non-validated calls for both arrays were similar.

Cytogenetic array designs balance comprehensive CNV
detection and low rates of non-validated calls to different
extents
Among the arrays specifically designed or commonly
used for cytogenetic purposes (Affymetrix CytoScan HD,
Agilent 4×180K-CGH, and Illumina CytoSNP-850), the
CytoScan HD produced the highest number of validated
CNV calls (57–67 valid calls) compared to the Agilent
4×180K CGH (13–20 valid calls) and Illumina CytoSNP-
850 (8–20 valid calls). However, the approximately three
times as many validated calls from the Affymetrix array
were accompanied by a high rate of non-validated calls.
Using the respective platform specific algorithms, the
Affymetrix array produced a rate of non-validated calls
of 71% compared to 47% for the Agilent array, and 31%
for the Illumina CytoSNP-850 array. Using the Nexus al-
gorithm, the Illumina array still produced the lowest rate
of non-validated calls of 20% versus 34% and 39% for
the Affymetrix and Agilent arrays, respectively, though
differences in the rates were less pronounced.
89% (platform specific algorithm) and 93% (Nexus) of

non-validated CNV calls from the Affymetrix CytoScanHD
array were ≤ 25 kb in size. Our results are consistent with
the advertised size range of reliable CNV detection of
25–50 kb. 100% of the non-validated calls obtained
by the Illumina CytoSNP-850 array, using both the
platform specific and Nexus algorithms, were ≤ 25 kb
in size [Additional file 3: Figure S2]. This array was
designed to maximize calls within regions that are as-
sociated with genetic disorders, including 3,262 genes
of known cytogenetic relevance, whilst minimizing
false calls, noise in the data, and the detection of
common polymorphisms. It has an average resolution
of 10–20 kb in the targeted regions and 50 kb in the
backbone. This design strategy likely explains the small
number of calls in the presumed healthy genome of
NA12878 and the relatively low rate of non-validated calls.
Our data suggests that these two arrays can be used to
reliably detect CNVs ≥ 25 kb, and that calls ≤ 25 kb in size
(and not in the targeted regions for the Illumina array)
should be either validated by orthogonal experimental
means or disregarded. 90% (Platform Specific Algorithm)
and 75% (Nexus) of non-validated calls obtained from the
Agilent 4×180K array were ≥ 25 kb in size and as large
as ~200 kb (Platform Specific Algorithm) and ~1 Mb
(Nexus). These findings reflect the reduced resolution of
this array based on its much smaller probe number and
median probe spacing of 13 kb.
Most arrays detect only one of seven gold standard
deletions larger than 100 kb
All arrays analyzed here, based on their total probe
counts and average probe spacings, are expected to call
the seven gold standard deletions that are ≥ 100 kb in
size. However, only one such deletion was detected by
most arrays using Nexus [Fig. 3]. This 122 kb deletion
on chromosome 19p2 partially overlaps two genes,
ZNF826P and ZNF737, and one microRNA, MIR-1270.
Four deletions ≥ 100 kb, two on chromosome 4 and one
each on chromosomes 6 and 8, were not found by any
aCGH platforms but were found by the other platforms.
This is because the genomes of both NA12878 and
NA10851 (i.e. the aCGH control DNA sample) have the
same copy number at these loci per the 1000 Genomes
Project. One deletion on chr3:162514471–162625647
was only called by the aCGH technologies and not by
any other platforms due to a lack of probes in this re-
gion. There are several SNPs with > 1% allele frequency
[dbSNP – UCSC genome browser] that could have
formed the basis for probes. But this region may have
been excluded from the design because there are no
known genes and the sequence appears quite repetitive.
In other cases the deletions were found by the arrays
with more probes while arrays with less probes lacked
enough coverage in these regions to make robust calls.
Additional file 4: Table S2 summarizes the detection of
these seven large deletions by each array using Nexus.
Discussion
To our knowledge, this study represents the only com-
prehensive assessment of all currently available high-
density oligonucleotide microarrays capable of genome-
wide CNV detection. By analyzing the abilities of each
array to detect a gold standard set of CNVs in the well-
characterized genome of NA12878, we showed that the
current generation of array designs encompasses power-
ful tools for CNV analysis in the human genome but still
required a careful quantitative comparative analysis for
researchers and clinicians to be able to select the appro-
priate tool for a given application. Furthermore, numer-
ous studies originally designed for SNP analysis only (i.e.
GWAS type studies) have been carried out on some of
these arrays or their predecessors, and these data could
be further analyzed for CNVs. The present work helps to



Fig. 3 Detection of a 122 kb gold standard deletion on chromosome 19p by 17 arrays. Horizontal axis shows position along chromosome 19. Vertical
axes show log R ratio of fluorescence of NA12878 DNA over fluorescence of reference DNA. Grey dots indicate probes that have not been called as part
of a CNV. Red dots indicate probes that have been called as part of a CNV. Horizontal lines indicate Nexus cutoffs for low and high copy deletions (red)
and duplications (blue). Gray dashed box indicates CNV region. Genes and segmental duplications (SegDups) are also shown. 1. Affymetrix SNP6.0, 2.
Affymetrix CytoScanHD, 3. Agilent 1×1M-CGH, 4. Agilent 1×1M-HR, 5. Agilent 2×400K-CGH, 6. Agilent 2×400K-CNV, 7. Agilent 4×180K-CGH, 8. Illumina
HumanOmni5Exome, 9. Illumina HumanOmni5, 10. Illumina HumanOmni2.5Exome, 11. Illumina HumanOmni2.5, 12. Illumina HumanOmni1Quad, 13.
Illumina HumanOmniExpressExome, 14. Illumina HumanOmniExpress, 15. Illumina CoreExome, 16. Illumina CytoSNP-850, 17. Illumina Psych Array
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contextualize the actual or potential CNV findings of
hundreds of publicly available datasets.
Our study confirms and quantifies some general ex-

pectations and also reveals some unexpected findings
that could prove valuable in designing array-based CNV-
discovery studies. In general, more powerful arrays can
be designed using more probes. But array design strategy
proved to be a potentially at least as important feature
than probe number for CNV detection. Deviating from
the simplest design strategy of even probe spacing along
the genome can yield both beneficial and detrimental
consequences. Increasing probe densities in known CNV
regions of the genome, in combination with a sufficient
genome-wide backbone of probes, generally leads to
more detection power. However, if the backbone cover-
age is not sufficient or regions such as gene deserts are
devoid of probes, the design may not detect even some
relatively large CNVs. Large CNVs in gene deserts may
still be biologically relevant, for example they may be
potentially associated with molecular and phenotypic ef-
fects that could be transmitted by changes in chromatin
conformation. Therefore, it would be suboptimal to de-
sign a discovery study using tools that would make it dif-
ficult to detect such CNVs.
Unexpectedly, we found that the additional exome

content on Illumina Omni arrays had no clear benefit
for CNV discovery. We observed a dramatic increase in
non-validated CNV calls without a corresponding gain
in validated calls compared to the same array designs
without the exome content. Though the unwanted ef-
fects of the exome-probes could be somewhat amelio-
rated by computational means, the use of arrays with
this specific exome content for CNV discovery should
be cautiously considered. Also, this observation illus-
trates why the use of two or more independent analysis
algorithms and combining their results is strongly rec-
ommended. However, we should not draw the general
conclusion that all gene-specific content leads to high
rates of unvalidated calls. For example, the gene-
targeting design of the Agilent 1x1M-HR design com-
pared to that of the 1×1M-CGH design with more
evenly spaced probes led to increased CNV detection
with no change to the rate of non-validated calls.
The use of various algorithms, software packages, and

parameter settings for the analysis of the same data is a
topic of considerable importance for array-based CNV
detection. For example, previous work has shown that
there is more variability in CNV calls from different al-
gorithms using the same raw data than from the same
algorithm using raw data from different labs [15]. Our
results are consistent with this finding since we showed
cases with strikingly different results from using
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different algorithms on the same raw data. Nevertheless,
the overall performance trends we observed across the
various arrays were independent of the analysis algo-
rithm and this provides more validation for our
approach. Furthermore, our data confirmed the previ-
ously observed phenomenon that, just as using differ-
ent algorithms, parameter-tuning using a single
algorithm can also produce dramatically different
CNV results based on the same raw data. A compre-
hensive comparison of the numerous software pack-
ages available for CNV analysis of the arrays discussed
here was beyond the scope of our study. Thus, we
would recommend a similar comparative analysis if re-
searchers are considering using an algorithm that was
not analyzed here.
The arrays in this study can be classified as either

cyto-designs for the confident detection of large aberra-
tions, or high-powered arrays including high-resolution
aCGH and high-density SNP arrays, that offer more
comprehensive discovery of CNV across a wider range
of sizes but with the caveat that additional caution is to
be applied in the interpretation of the findings. Cyto-
designs are generally sufficient for cytogenetics studies
or clinical practice but are likely to miss medium-sized
or smaller but still potentially functionally relevant
CNVs. Thus for association or discovery studies, high-
powered arrays should be used and augmented with sub-
stantial orthogonal experimental validation when using
arrays with high false discovery rates especially in small
size ranges.
Our gold standard, derived from whole genome se-

quencing data, is a high-confidence set of CNVs for
NA12878 based on the state of the art. Additional
high-confidence CNVs, particularly duplications, will
continue to be defined for this genome. For example
there is currently an effort by the National Institute of
Standards and Technology to create a standard map of
copy number variation by integrating CNVs found in
the genome of NA12878 based on numerous data from
the 1000 Genomes Project, the Illumina Platinum Ge-
nomes, Complete Genomics, BioNano, and microar-
rays. However, we expect that additions to the gold
standard will not fundamentally alter the results of this
study regarding the power of the various array designs
for detecting CNVs.
Given the many factors and scenarios that re-

searchers will be facing when deciding which array to
choose, it is not appropriate for us to determine a ‘win-
ning’ platform or array design. In some scenarios the
data may have been created already while in others the
essential instrumentation for a given platform (e.g.
platform-specific robotics or scanner) may already be
present at an institution. Then there will be studies
with relatively small sample size where choosing a
more densely tiled and more expensive array design
will be feasible, while for other studies it will be advan-
tageous to choose a more affordable array to be able to
analyze a larger cohort. There are many combinations
of these factors and scenarios, and we expect that our
present analysis will contribute to successful study de-
signs. In this context it is important to emphasize the
following additional factors for such studies. Whenever
possible it is advisable to analyze array data with more
than one algorithm in parallel and to give higher
weight to CNVs that are located in the overlap of re-
sults. Experimental validation of CNV calls with or-
thogonal methods such as qPCR, ddPCR, FISH or, if
possible, whole-genome sequencing of a subset of sam-
ples is of very high importance. Such validation is es-
sential before reporting novel CNVs. And, it should
still be strongly considered when the findings consist
of previously reported CNVs called anew by only a sin-
gle algorithm, or are of a medium or small size.

Conclusions
Microarray-based analysis of copy number variation is
a powerful tool for genome analysis. The current gen-
eration of available arrays has further enhanced this
power and ensured that this technology will remain
useful for years to come. However, the successful de-
ployment of this technology for a given application is
critically dependent on the selection of an appropriate
platform and array design. Our results indicate that to
maximize the validity of CNV detection by these ar-
rays, the use of more than one CNV calling algorithm
during data analysis and appropriate extensive experi-
mental validation with orthogonal techniques should
be considered. Our study represents a widely applicable
resource highlighting the benefits and limitations of
the various arrays for others who are utilizing these for
CNV analysis in the context of large-scale association
studies, genome-characterization, or clinical cytogenet-
ics applications.

Methods
Sample selection
The genomes analyzed in this study were selected from
the 1000 Genomes Project [3] and previously from the
International HapMap Project [16]. The test sample,
NA12878, was selected due to extensive prior
characterization of its genomic variation by the 1000
Genomes Project, ultra-high resolution array Com-
parative Genome Hybridization [17], and its use as a
standard for the study of human genome variation by
the National Institute of Standards and Technology’s
Genome in a Bottle project [18]. NA12878 is a Utah
resident of European Ancestry (CEU) and is the
daughter in one of the two trios sequenced at high
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coverage in the 1000 Genomes Pilot Project. The con-
trol sample NA10851 was also chosen because of ex-
tensive genomic characterization including its use as
the control in ultra-high resolution aCGH and as a
1000 Genomes Project low coverage sample [3, 17].
NA10851 is a male of European Ancestry from Utah
(CEU). Genomic DNA for these samples as well as ap-
propriate approval for this study was obtained from
the Coriell Institute for Medical Research.
NA12878 Gold Standard CNVs
The gold standard CNVs utilized in this study were a
subset of those CNVs released by the 1000 Genomes
Project from 8-fold coverage Illumina paired-end
population-scale sequencing data (available at
1000genomes.org) and analysis of the genomes of
2,504 individuals [4]. CNV discovery was conducted
using the following tools: Delly, VariationHunter,
BreakDancer, CNVnator, GenomeStrip, Pindel, and
SSF. CNVs were merged by taking into account the
confidence intervals around estimated boundaries.
The merged set was genotyped across the entire popu-
lation by GenomeStrip and filtered to remove redun-
dancy and low quality sites based on genotype
information. Genotypes were then updated though the
integrated imputation of all variants (CNVs, SNPs,
indels, etc.) with the MNV tool. The resulting geno-
types were estimated to have a very low 3.1% false
positive rate. Array-based experimental validation of
CNV calls and PCR-based validation of CNV break-
points were carried out by different contributors to
the 1000 Genomes Project. CNVs genotyped as exist-
ing in NA12878 and not within 1000 Genomes Project
described regions of VDJ recombination were selected
to comprise our NA12878 gold standard CNV call set
[Additional file 5: Spreadsheet 1].
A gold standard set of CNVs was similarly generated

for the genome of NA10851, the aCGH control gen-
ome used in this study. 876 CNVs are common to the
genomes of both NA12878 and NA10851 and are
therefore are not expected to be detectable by aCGH
platforms in this study.
Additionally, we generated an unfiltered CNV call set

for NA12878 using1000 Genome Project deep sequencing
data (2×250 bp paired-end sequencing to 60× coverage on
Illumina HiSeq available at ftp://ftp-trace.ncbi.nih.gov/
1000genomes/ftp/phase3/data/NA12878/high_coverage_
alignment) and read-depth analysis by the CNVnator
algorithm [14]. This set contained 4293 total CNV calls
and 4047 autosomal CNV calls [Additional file 5: Spread-
sheet 1]. Of these CNVnator calls, 609 total and 587 auto-
somal calls overlapped a gold standard call by 50%
reciprocally. A further 137 autosomal CNVnator calls
overlapped a gold standard call by less than 50%
reciprocally.

Generation of NA12878 CNV call sets
For each array design raw data from two technical replicate
experiments using NA12878 DNA were obtained directly
from the manufacturer or a manufacturer-recommended
service provider and analyzed independently. Two CNV
call sets were generated for each array design; one based
on the manufacturer recommended platform specific soft-
ware and another based on the platform agnostic software
Nexus Copy Number 7.5 (BioDiscovery, Hawthorne CA
90250, U.S.A.) [Additional file 5: Spreadsheet 1]. The de-
tails of each analysis are described below. All chromosomal
coordinates for the resulting CNV calls are based on hg19.

Affymetrix arrays
Raw data from hybridizations carried out on the Affyme-
trix SNP 6.0 and CytoScan HD arrays was obtained in
the form of.cel files from published data (first replicate
of SNP 6.0), from Affymetrix public data (second repli-
cate of SNP6.0), and from Affymetrix (Santa Clara, CA
95051, U.S.A.) using NA12878 DNA. The platform spe-
cific software CNV call set for the first replicate of the
SNP 6.0 array was obtained from published data [19].
The second replicate of the SNP 6.0 array was only ana-
lyzed using Nexus software as per the Affymetrix recom-
mendation for analysis of this array. The platform
specific software CNV call sets for the CytoScan HD
array were obtained using the ChAS software (Affyme-
trix Inc. Santa Clara, CA 95051, U.S.A.) with default set-
tings against a reference composed of a female and male
HapMap sample (NA10847 and NA10851 respectively).
The Nexus call sets were generated using the SNP-

FASST2 Segmentation Algorithm. The significance
threshold for segmentation was set at 10−9 also requiring
a minimum of three probes per segment and a max-
imum probe spacing of 1000 kb between adjacent probes
before breaking a segment. The log ratio thresholds for
single copy gain and single copy loss were set at 0.2 and
−0.2, respectively. The log ratio thresholds for two or
more copy gain and homozygous loss were set at 0.7
and −1.1 respectively. The Homozygous Frequency
Threshold was set to 0.9. The Homozygous Value
Threshold was set to 0.8. The Heterozygous Imbalance
Threshold was set to 0.4. The minimum LOH length
was set at 1 kb and minimum SNP probe density, at 0
probes/Mb. The final CNV call sets were generated by
filtering the total set of predicted genomic aberrations
for each array in the Nexus software and exporting the
CNVs. This was done because Nexus reports LOH and
Allelic Imbalance separately from losses and gains. Thus,
LOH regions that are also copy number loss, allelic im-
balance regions that are also copy number events, LOH

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase3/data/NA12878/high_coverage_alignment
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase3/data/NA12878/high_coverage_alignment
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase3/data/NA12878/high_coverage_alignment
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regions that are not covered by copy number events,
and allelic imbalance regions that are not covered by
copy number events were removed.

Agilent arrays
Raw data from aCGH experiments carried out on the
Agilent 1×1M-CGH, 1×1M-High Resolution, 2×400K-
CNV, 2×400K-CGH, and 4×180K-CGH arrays using
NA12878 as the test DNA and NA10851 as the control
DNA were obtained from service providers in the form
of feature extraction files.
The platform specific software CNV call sets were ob-

tained by generating Interval Based Reports in the Agi-
lent Genomic Workbench 7.0.4.0 software package
(Agilent Technologies, Santa Clara CA 95051, U.S.A.)
using default settings.
The Nexus call sets were generated using the FASST2

Segmentation Algorithm. The significance threshold for
segmentation was set at 10−7, 10−6, 10-5 for the 1×1M,
2×400K and 4×180K arrays respectively, also requiring a
minimum of 3 probes per segment and a maximum
probe spacing of 1000 kb between adjacent probes be-
fore breaking a segment. The log ratio thresholds for
single copy gain and single copy loss were set at 0.2 and
−0.2, respectively. The log ratio thresholds for two or
more copy gain and homozygous loss were set at 0.8
and −1.1 respectively. The final call sets were exported
as text files from the software.

Illumina arrays
Raw data from experiments carried out on the Huma-
nOmni5Exome v1, HumanOmni5-4v1, HumanOmni25Ex-
ome 1, HumanOmni25-8v1-1, HumanOmniExpressExome
1.2, HumanOmniExpress-24v1-0, HumanCoreExome v1.1,
CytoSNP-850 k, and PsychArray using NA12878 DNA
were obtained from Illumina Inc. (San Diego CA 92122,
U.S.A.) in the form of.idat files.
The platform specific software CNV calls were ob-

tained using the CNVpartition 3.2.0 algorithm with de-
fault settings in the Genome Studio 2011.1 software
package (Illumina, San Diego CA 92122, U.S.A.). The
Illumina-supplied analysis files used in Genome Studio
are specified in Additional file 6: Table S3 for each array.
Genomic regions flagged as having loss of heterozygosity
and copy number of two, were removed from the final
list of CNV calls from CNVpartition output.
Final reports were also generated in Genome Studio

for use in Nexus CNV calling. The Nexus call sets were
generated using the SNP-FASST2 Segmentation Algo-
rithm. The significance threshold for segmentation was
set at 10−10 for the Omni5, 10−9 for the Omni5Exome,
Omni2.5Exome, and Omni2.5, 10−8 for the Omni1, and
10−6 for all other arrays, also requiring a minimum of 3
probes per segment and a maximum probe spacing of
1000 kb between adjacent probes before breaking a seg-
ment. The log ratio thresholds for single copy gain and
single copy loss were set at 0.2 and −0.2, respectively.
The log ratio thresholds for two or more copy gain and
homozygous loss were set at 0.7 and −1.1 respectively.
The Homozygous Frequency Threshold was set to 0.9.
The Homozygous Value Threshold was set to 0.8. The
Heterozygous Imbalance Threshold was set to 0.4. The
minimum LOH length was set at 1 kb and the minimum
SNP probe density at 0 probes/Mb. The final CNV call
sets were produced by invoking two separate filtering
schemes on the total set of predicted copy number aber-
rations for each array in the Nexus software, exporting
the CNVs of each individual filtering scheme, and con-
catenating the two resulting CNV lists. This was done to
ensure that only CNVs that were supported by both log
ratio and B allele frequency evidence were included. In
the first filtering scheme the following were removed:
LOH regions that are also copy number loss, losses not
covered by an allelic event, allelic imbalance regions that
are also copy number events, LOH regions that are not
covered by copy number events, allelic imbalance re-
gions that are not covered by copy number events, and
gains not covered by an allelic event. In the second fil-
tering scheme the following were removed: LOH regions
that are also copy number loss, allelic imbalance regions
that are also copy number events, one copy loss, LOH
regions that are not covered by copy number events, al-
lelic imbalance regions that are not covered by copy
number events, and one copy gains.

Analysis of Illumina Infinium Multi-Ethnic Global-8 v1.0 array
Using our standard procedure, i.e. analysis with both the
Nexus and CNVPartition algorithms, on data obtained
from the Illumina Infinium Multi-Ethnic Global-8 v1.0
array (MEGA-EX), no CNVs were called in the genome
of NA12878. This 1.7 million SNP array is designed to
provide insights from diverse populations by powerfully
detecting common and rare variants across the 5 most
commonly studied subpopulations including African,
Admixed American, East Asian, European, and South
Asian. Using the QuantiSNP algorithm, 11 and 16 high
confidence CNVs (Max Log BF > 10) were called in two
replicates. Of these 4 and 5 CNVs respectively met the
50% reciprocal overlapping criteria with a gold standard
CNV. This limited performance of the Multi-Ethnic Glo-
bal array for CNV calling on the genome of the model
European sample, NA12878, may be due to the number
and distribution of contiguously informative SNPs on
this array for European samples. We found that 12% of
all SNPs on this array were found to be heterozygous in
NA12878 compared to 19% and 21% of the SNPs on the
similarly-sized Illumina HumanOmni2.5 and HumanOm-
ni1Quad arrays. In any case, we did not pursue a deeper
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analysis of the performance of the Multi-Ethnic Global
array for CNV calling in in this study. It is possible that al-
ternative software solutions could be found to achieve
more increased CNV detection with this array.

Additional files

Additional file 1: Table S1. Overlap of CNV calls from two different
algorithms for each array platform with gold standard and CNVnator CNVs.
Summarizes the number of overlapping CNV calls from two different
algorithms for each array platform with gold standard and CNVnator CNVs
using the various overlap criteria. (XLSX 15.1 kb)

Additional file 2: Figure S1. Effects of tuning parameters in Nexus
software on overlap of autosomal CNV calls with gold standard CNVs for a
select set of arrays. Overlap data is shown for CNV call sets of two technical
replicates for the Affymetrix CytoScan HD, Agilent 2×400 K and 4×180 K, and
Illumina HumanOmni1Quad, HumanOmni2.5, HumanOmni2.5Exome and
HumanOmni5Exome arrays using at least two different parameter settings.
The number of array CNV calls that overlap a gold standard CNV by 50%
reciprocally in size is shown in blue. The number of array CNV calls that
overlap a gold standard CNV by less than 50% reciprocally in size is shown
in pink. The number of array CNV calls that do not overlap a gold standard
CNV is shown in purple. Array calls that do not overlap a gold standard CNV
at all were further analyzed as either having or not having sequencing-based
confirmation using CNVnator-generated CNV calls based on the 1000
Genomes Project sequencing data for NA12878. The number of CNV calls
not overlapping a gold standard CNV but with CNVnator support is shown
as purple bars. The number of CNV calls not overlapping a gold standard
CNV and with no CNVnator support is shown as hashed purple bars. The
parameters of the Nexus algorithm are relaxed from left to right for each
array. The significance threshold (SigThresh) and log R ratio (LRR) settings are
specified under each pair of bars. (TIFF 26369 kb)

Additional file 3: Figure S2. Cumulative frequencies of sizes of
validated and non-validated CNV calls using platform specific algorithm.
Cumulative frequencies of the sizes of validated CNVs are shown in red.
Cumulative frequencies of sizes of non-validated CNVs are shown in
green. CNV size is plotted on a log scale. Plots are shown for all arrays
with more than 50 validated CNVs called using the platform specific algo-
rithm. P-values were computed using a Mann–Whitney U test that cor-
rects for ties and uses a continuity correction. The p-values correspond to
a one-sided hypothesis. (PDF 88 kb)

Additional file 4: Table S2. Array detection of gold standard
deletions > 100 kb in size. Summarizes the detection of the seven gold
standard CNVs > 100 kb by the different arrays including the number of
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methods. (XLSX 339 kb)
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cluster files for each array that were used in Genome Studio analysis.
These files were downloaded from http://support.illumina.com/array/
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