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associated with the effects of nutrition on
apoptosis and spermatogenesis in the adult
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Abstract

Background: The effects of nutrition on testis mass in the sexually mature male have long been known, however,
the cellular and molecular processes of the testis response to nutrition was not fully understood.

Methods: We tested whether the defects in spermatogenesis and increases in germ cell apoptosis in the testis that
are induced by under-nutrition are associated with changes in mRNA expression and pre-mRNA alternative splicing
using groups of 8 male sheep fed for a 10% increase or 10% decrease in body mass over 65 days.

Results: We identified 2,243 mRNAs, including TP53 and Claudin 11, that were differentially expressed in testis from
underfed and well-fed sheep (FDR < 0.1), and found that their expression changed in parallel with variations in
germ cell numbers, testis size, and spermatogenesis. Furthermore, pairs of 269 mRNAs and 48 miRNAs were
identified on the basis of target prediction. The regulatory effect of miRNAs on mRNA expression, in combination
with functional analysis, suggests that these miRNAs are involved in abnormal reproductive morphology, apoptosis
and male infertility. Nutrition did not affect the total number of alternative splicing events, but affected 206
alternative splicing events. A total of 159 genes, including CREM, SPATA6, and DDX4, were differentially spliced
between dietary treatments, with functions related to RNA splicing and spermatogenesis. In addition, three gene
modules were positively correlated with spermatogenesis-related phenotypic traits and negatively related to
apoptosis-related phenotypic traits. Among these gene modules, seven (CFLAR, PTPRC, F2R, MAP3K1, EPHA7Z, APP,
BCAP31) were also differentially expressed between nutritional treatments, indicating their potential as markers of
spermatogenesis or apoptosis.

Conclusions: Our findings on significant changes in mMRNAs and pre-mRNA alternative splicing under-nutrition
suggest that they may partly explain the disruption of spermatogenesis and the increase germ cell apoptosis.
However, more research is required to verify their causal effects in regulating spermatogenesis and germ cell
apoptosis.
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Background

The development of mature haploid spermatozoa from
diploid spermatogonial cells [1] can be affected by many
factors, including photoperiod, hormones, temperature
and nutrition. The effects of nutrition on testis mass in
the sexually mature male have long been known, as has
the direct relationship between testicular mass and
sperm production [2]. In addition, with change in tes-
ticular size, the efficiency of sperm production also
changes [3]. We have been investigating the cellular and
molecular processes of the testis response to nutrition,
and we have found that under-nutrition despaired
spermatogenesis in adult sheep [4, 5].

Within the testis, spermatogenesis is a strictly regulated
process, at both the transcriptional and the post-
transcriptional level [6]. In recent years, a novel mechanism
of post-transcriptional control, mediated by microRNAs
(miRNAs), has emerged as an important regulator of
spermatogenesis [6, 7]. miRNAs are small (~22 nucleotides)
endogenous RNAs that negatively regulate gene expression
by targeting the 3’untranslated region (3"UTR) [8] and/or
coding region [9] of mRNAs. We have recently found that
the expression of a number of miRNAs is affected by nutri-
tion in sexually mature male sheep, and most of the pre-
dicted targets of the differentially expressed miRNAs were
mainly involved in reproductive system development and
function [10]. However, the regulatory relationship between
these miRNAs and their corresponding mRNAs targets in
testis remains to be verified. We therefore decided to profile
mRNA expression in the testes of well-fed and underfed
male sheep using RNA-seq so we could explore the rela-
tionships between the miRNAs we had identified and their
putative targets.

In addition to the disruption of spermatogenesis,
under-nutrition of sexually mature male sheep increased
apoptosis in germ cells [10]. Our recent study has re-
vealed higher levels of expression of miR-98 in underfed
sheep than in well-fed sheep [10] and this miRNA has
been reported to play a critical role in apoptosis [11].
Since the molecular mechanisms through which miR-
NAs regulate the expression of apoptosis-related genes
are still controversial, we decided to explore these pro-
cesses further using our nutritional model.

It has also been reported that spermatogenesis and a
large number of apoptotic factors are regulated by alter-
native pre-mRNA splicing that generates multiple tran-
script species from a common mRNA precursor and
thus raises protein diversity and allows the system to
cope with the increasingly broad spectrum of functional
and behavioural complexity [12, 13]. To date, eight types
of alternative splicing have been reported: cassette exon,
alternative 5 splice site, alternative 3" splice site, mutually
exclusive exon, coordinates cassette exons, alternative first
exon, alternative last exon and intron retention [14]. We
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therefore also tested the hypothesis that nutritional treat-
ment will induce differences in alternative splicing, and
these changes will be related to the regulation of sperm-
atogenesis and germ cell apoptosis in the testis.

Overall, this study used testicular tissue from under-
fed and well-fed sexually mature sheep to pursue four
objectives: 1) To investigate the differences of the
expression of mRNAs; 2) To evaluate the influence of
miRNAs on spermatogenesis and the expression of
apoptosis-related genes; 3) To explore the relationships
between alternative pre-mRNA splicing and spermato-
genesis and apoptosis; 4) To investigate the relation-
ships between the gene modules and spermatogenesis
and apoptosis related phenotypic traits.

Methods
The experimental protocol was approved by the Animal
Ethics Committee of the CSIRO Centre for Environment
and Life Sciences, Floreat, Western Australia (Project
No.1202).

Animals and treatments
From May to July (autumn-winter), 24 Merino male
sheep (age 24 months, body mass 65.7 + 4.7 kg, scrotal
circumference 31.8 +2.5 ¢cm) were housed in individ-
ual pens in a building with windows that allowed good
penetration of natural light at Floreat, Western
Australia. During the 3-week acclimatization period,
all sheep were fed daily with 750 g oaten chaff (8.4%
crude protein; 8.0 MJ/Kg metabolisable energy) and
200 g lupin grain (35.8% crude protein; 13.0 MJ/Kg
metabolisable energy). At the start of the treatment
period (end of May; mid-autumn), the animals were
allocated into three dietary treatment groups (high,
maintenance and low) balanced for training success to
semen collection, body mass, scrotal circumference,
temperament, poll-horn type, and sperm quality (the
percentage of live and motile sperm, sperm concentra-
tion). Animals fed their maintenance requirements
were expected to maintain constant body mass. The
high diet was designed to allow the animals to gain
10% live weight over 65 days whereas the low diet was
designed to allow 10% loss in weight. At the start of
the treatment period, individual daily allowance was
1.2 kg oaten chaff plus 0.3 kg lupin grain for the rams
in the high-diet group, 0.7 kg chaff and 0.18 kg lupin
grain for the maintenance group, and 0.51 kg chaff
and 0.13 kg lupin grain for the low-diet group. Every
week, the animals were weighed and the amount of
feed offered to each individual was adjusted to ensure
achievement of target live weight.

The data on the effects of nutritional treatments on
body mass, scrotal circumference, semen quality and
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spermatozoal quality, Sertoli cell number and quality
were published before [4, 5]. Our previous work showed
significant differences between High diet and Low diet
in terms of the above parameters, with the values for
maintenance-fed rams being generally similar to those
for the High diet. For purposes of the current study, we
decided to perform RNA-Seq only with the two extreme
groups (testis growing versus testis shrinking) to deter-
mine the factors that contribute to the huge differences
in phenotype.

Tissue Collection and preservation

After 65 days, all male sheep were killed with intraven-
ous overdose of sodium pentobarbitone, and the testes
were immediately removed, dissected and weighed.
Three samples were chosen from top, middle and bot-
tom parts of both testes (~1 cm?® for each); those from
the right testis were snap-frozen in liquid nitrogen and
stored at —80 °C for RNA isolation.

Isolation of RNA

About 1 cm? tissues from top, middle and bottom parts
of the right testes were mixed and grinded to powder in
liquid nitrogen for RNA isolation. The trizol method
was used to isolate total RNA [15] from testis samples.
The quality and quantity of the RNA were determined
by Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA) and Qubit 2.0 Fluorometer (Invitrogen,
Carlsbad, CA). Only RNA with an integrity number
(RIN) greater than 7.0 was used for further analysis.

Small RNA library sequencing and Identification

of miRNAs

The methodology details and outcomes for miRNAs
have been reported elsewhere [10].

Construction and sequencing of the RNA-seq library
Total RNA (1.0 pg each) from each sample was used to
construct RNA-seq libraries with a unique index using
the TruSeq mRNA Sample Preparation kit (Illumina,
San Diego, CA) according to the manufacturer’s instruc-
tion. Quantitative real time PCR (qPCR) was performed
for library quantification using the StepOnePlus™ Real-
Time PCR System (Applied Biosystems, Carlsbad, CA)
and KAPA SYBR Fast ABI Prism qPCR kit (Kapa Biosys-
tems, Woburn, MA). Individual libraries were then
pooled for sequencing at Génome Québec (Montréal,
Canada) using the HiSeq 2000 system (Illumina). Sequen-
cing was performed as 100 bp paired-end reads. All reads
were de-multiplexed according to their index sequences
with CASAVA version 1.8 (Illumina) and reads that did
not pass the Illumina chastity filter were discarded.
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Mapping and annotation of RNA-seq reads

RNA-seq reads were aligned to the ovine genome (OAR
3.1) using Tophat 2.0.10 with default parameters [16].
Each BAM file obtained from TopHat2 and the GTF file
obtained from ENSEMBL (v75.30) were used in the htseq-
count (http://www-huber.embl.de/users/anders/HTSeq/)
to determine the number of reads mapped to each gene.

Identification of differentially expressed (DE) mRNAs
Differentially expressed (DE) mRNAs were investigated
with the bioinformatics tool, edgeR that utilizes a nega-
tive binomial distribution to model sequencing data [17].
The expression of mRNAs in each library was normal-
ized to counts per million reads (CPM) with the for-
mula: CPM = (reads number/total reads number per
library) x 1,000,000. mRNAs with CPM >5 in at least
50% of the samples were subjected to DE analysis. Fold
changes were defined as ratios of arithmetic means of
CPM within each comparison group. Significant DE
mRNAs were determined by an adjusted P value (False
discovery rate, FDR<0.1) based on Benjamini and
Hochberg multiple testing correction [18] as well as fold
change > 1.5 [19].

Validation of mRNA expression using RT-qPCR

RT-qPCR was performed using SYBR Green (Fast SYBR®
Green Master Mix; Applied Biosystems) to validate mRNA
expression of six differentially expressed genes: PIWILI,
SPATA4, INHBA, FOXO03, PTEN, CYP51A1. Oligonucleo-
tide primer sequences for these genes were designed using
NCBI primer blast (http://www.ncbi.nlm.nih.gov/tools/pri-
mer-blast/index.cgi?LINK_LOC=BlastHome) and the
primer for glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was obtained from a published source (Table 1).
Total RNA (1 pg) from each sample was treated with
DNAase I (Invitrogen), and reverse-transcribed to cDNA
using SuperScript II reverse transcriptase following the
manufacturer’s protocol (Invitrogen). Fluorescence signal
was detected with StepOnePlus™ Real-Time PCR System
(Applied Biosystems). In total, each reaction contained
10 pl Fast SYBR Green Master Mix (Applied Biosystems),
1 ul of forward primer (20 pmol/pl), 1 pl of reverse primer
(20 pmol/pl), 7 pl nuclease-free water, and 1 pl cDNA tem-
plate. Samples were measured in triplicate using the follow-
ing protocol: 95 °C for 10 min for initial denaturation and
then 40 cycles of 95 °C for 20 s, followed by annealing/ex-
tension for 30 s at 60 °C. Analysis of melting curves was
used to monitor PCR product purity. Amplification of a
single PCR product was confirmed by agarose gel electro-
phoresis and DNA sequencing (data not shown). One-way
ANOVA was used to compare the groups, and P < 0.05 was
considered significant. Data are expressed as Mean + SEM.
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Table 1 Details of primers used for RT-gPCR
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Gene Abbrev. Sequence Product length (bp)

Piwi-Like RNA-Mediated Gene Silencing 1 PIWIL1 F-CTGGTTCTCTCGCTGTGTGT 90
RTTCCAAGCCCTTAGAGCAGC

Spermatogenesis Associated 4 SPATA4 F:CTCTCGATCACCATCCTGCC 106
R.CTCAATGCACTCATGCTCGC

Inhibin beta A INHBA FAGGTGGTGGATGCTCGAAAG 125
R.GGTCTCCTGACACTGCTCAC

Forkhead box O3 FOXO03 FATGGCAACCAGACACTCCAG 97
R.CTGGCCTGAGACATCAAGGG

Phosphatase and tensin homolog PTEN F:CGGCCGTTCCGAGGATT 99
R.CTGGATGGTTGCAGCGACT

Cytochrome P450, Family 51, Subfamily A, Polypeptide 1 CYP51A1 FTACCTACCTGCTGGGGAGTG 107
RTCCCAAACACAGGTGTCGTC

Glyceraldehyde-3-phosphate dehydrogenase GAPDH F:CTGCTGACGCTCCCATGTTTGT 150

RTAAGTCCCTCCACGATGCCAAA

Construction of miRNA-mRNA regulatory relationships
The results for miRNAs were all obtained from a previous
study using the same samples [10]. The predicted regula-
tory relationships between differentially expressed miR-
NAs and differentially expressed mRNAs were identified
on the basis of two criteria as suggested by previous stud-
ies [20, 21]: negative correlation and computational target
prediction. Genes targeted by miRNAs were predicted by
TargetScan Release 6.0 (http://www.targetscan.org/)
and miRanda (http://www.microrna.org/microrna/
home.do). Target genes predicted by both TargetScan
(default parameters) and miRanda (total score > 145,
total energy < —10 kcal/mol) were used for further ana-
lysis [22]. Pairwise Pearson correlation coefficient (R)
was computed for each miRNA and their predicted
target genes, and multiple testing corrections were
done by calculating FDR. Significant miRNA-mRNA
pairs were defined as R < -0.9 and FDR <0.1.

Functional analysis for DE mRNAs

The identities of the DE mRNAs in the miRNA-mRNA
regulatory relationships were uploaded into IPA software
(Ingenuity Systems, www.ingenuity.com) to detect the
top functions. A threshold of P < 0.01 was applied to en-
rich significant biological functions. The IPA regulation
z-score algorithm was used to predict the direction of
change for a given function (increase or decrease), with a
z-score > 2 suggesting a significant increase whereas a z-
score < -2 suggesting a significant decrease. The GO
terms were defined and the KEGG pathways were
enriched using Database for Annotation, Visualization and
Integrated Discovery (DAVID, http://david.abcc.ncifcrf.-
gov) [23]. For each analysis, the functional annotation
clustering option was used and significant GO terms and

KEGG pathways were declared at P<0.05 and molecule
number > 2.

Identification and annotation of alternative splicing (AS)
events

TopHat2 was used to predict the splice junctions (op-
tions: —a 19, —g 1, —-max-intron-length 17325, and
—min-intron-length 81). A total of 15 million reads
were randomly selected from each sample for analysis
to make sure that the comparison was at the same
level [14]. JuncBASE was used to annotate all AS
events (cassette exons, alternative 5" splice site, alter-
native 3’ splice site, mutually exclusive exons, coord-
inate cassette exons, alternative first exons, alternative
last exons, and intron retention) and calculate the Per-
centage Spliced Index (PSI) [24]. Splicing analysis was
performed for events that had at least 20 reads and the
PSI differences (APSI) are higher than 10% [25].

The relationship between gene modules with sheep
phenotypic traits

A weighted gene co-expression network was constructed
for all samples using the WGCNA package in R to ana-
lyse the expressed mRNAs (CPM > 1 in at least 8 sam-
ples) [26]. Briefly, a matrix of pairwise correlations
between all pairs of genes across all samples was con-
structed. An adjacency matrix was then calculated, using
the correlation matrix of the expression sets, and trans-
formed into a topological overlap matrix that was then
used to derive a distance matrix of hierarchical cluster-
ing. Finally, the mRNAs were assigned into different
modules based on hierarchical clustering. Modules with
eigengenes (defined as the first principal component of
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each module and considered as a representative of the
gene expression profiles in that module) that were highly
correlated were then merged. All these steps were per-
formed using the ‘blockwiseModules’ function in the
WGCNA package, using the major parameters described
previously [27]. The correlations were calculated for the
relationships between module eigengenes and phenotypes
(testis weight, sperm number per testis, tubule diameter,
seminiferous epithelium volume, change of scrotal circum-
ference, apoptotic cells/tubule; Additional file 1: Table S1).

Results

High Quality RNA-seq data were obtained from all samples

More than 350 million sequenced paired-end reads were
obtained from 16 libraries, of which an average of 76%
could be mapped to OAR3.1 (http://www.livestockgen-
omics.csiro.au/). The genomics region of reads, the
RNA-seq 3'/5" bias and the sequencing depth were ana-
lysed to evaluate the quality of the RNA-seq data.
Around 50% of the reads were derived from exonic re-
gions, while around 20% were derived from intergenic or
intronic regions (Fig. 1a and b). In general, the coverage
of reads along each transcript revealed no obvious 3'/5°
bias (Fig. 1c). As can be seen in Fig. 1d, the number of
transcripts detected increased as the number of the
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sequencing reads increased. Finally, analysis of the se-
quencing coverage along each chromosome showed ex-
tensive transcriptional activity for the entire genome
(Additional file 2: Figure S1).

Profile of mRNAs in sheep testis

An average of 13,980,416 (SD =2,930,788) reads from
high diet and 11,014,809 (SD =2,524,631) from low
diet were mapped to Ensembl gene annotation data-
base (P<0.05). A total of 13,859 genes were detected
in testicular tissue from the low diet group, compared
to 14,561 from the high diet group. In total, 11,748
genes were expressed in all 16 animals. The most
abundant transcript (~2% of total reads) was from the
7SK gene, a small nuclear RNA involved in pre-mRNA
splicing and processing. Functional analysis with DA-
VID software revealed that the most highly expressed
3,000 genes were mainly related to cell cycles, protein
catabolic processes, and spermatogenesis (Table 2).
Only genes (14,385) that were expressed in at least 8
libraries were used for further analysis.

Effects of nutrition on mRNA expression
In total, 2,243 mRNAs were found to be differentially
expressed (DE) when comparing underfed with well-fed
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Table 2 The 15 functions most commonly related to the most
highly expressed 3000 genes (as determined by DAVID software).
P value indicates the relevance of the function (lower value
means greater relevance)

Term Count P-Value
cell cycle 232 549E-35
cell cycle process 185  243E-33
modification-dependent macromolecule catabolic 177 243E-28
process

modification-dependent protein catabolic process 177 243E-28
proteolysis involved in cellular protein catabolic 181 1.05E-27
process

cellular protein catabolic process 181 2.03E-27
protein catabolic process 184  497E-27
M phase 121 7.18E-27
intracellular transport 190 1.39E-26
male gamete generation 114 1.30E-25
spermatogenesis 114 1.30E-25
cellular macromolecule catabolic process 200 3.66E-25
cell cycle phase 135 3.62E-24
macromolecule catabolic process 208  451E-24
sexual reproduction 144 526E-24

male sheep (Additional file 3: Table S2), of which 1,081
were expressed more in underfed than well-fed sheep
(eg, TP53 and Claudin 11) and 1,162 were expressed less
in underfed than well-fed sheep (eg, CYP5IAI and
SPATA4). IPA analysis revealed that the functions of
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most of the DE mRNAs are related to quantity of germ
cells, testis size, quantity of Sertoli cells, and quantity of
connective tissue cells (Fig. 2). We considered genes that
were related to more than one function may be more
important, such as FOXO3, PTEN, CYP51A1, INHBA
and SPATA4. Therefore, they were selected for further
RT-qPCR validation analysis. Further functional analysis
using DAVID, produced largely the same outcome, indicat-
ing that most common functions of DE mRNAs to be in
the cell cycle (n=116), spermatid development (n=16),
spermatogenesis (n =48), and DNA replication (n=18)
(Additional file 4: Table S3). Importantly, one gene, PIWILI
(MIWI), were associated with all of these functions.

RT-qPCR validation of differentially expressed genes

Six mRNAs were selected from the DE mRNAs and the
RT-qPCR results were consistent with the sequencing
data for all of them. For example, both the sequencing
data and the RT-qPCR results showed that PIWIL1 was
expressed at a lower level in underfed males than in
well-fed males (Additional file 5: Figure S2). In addition,
the expression of INHBA was down regulated in well-fed
male sheep (Additional file 5: Figure S2).

The relationship between gene modules with sheep
phenotypic traits

A total of 15 modules were obtained using WGCNA
analysis, of which three (Modules 7, 9 and 10) were of
interest because the relationships were strong (correl-
ation coefficient >+ 0.5; P<0.01). These modules were
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Fig. 2 The 20 functions most commonly related to the differentially expressed mRNAs in testis from underfed and well-fed male sheep, as
determined by IPA software. P value indicates the relevance of the function (lower value means greater relevance)
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negatively correlated with testis weight, tubule diameter,
seminiferous epithelium volume and change in scrotal
circumference, and positively correlated with apoptotic
cells/tubule. Among the 15 modules, only Module 11
was correlated with sperm number per testis (r=0.56,
P =0.02; Fig. 3).

Functional analysis for the genes in Modules 7, 9 and 10

Functional analysis suggested that genes in Modules 7
and 9 were associated with both spermatogenesis and
apoptosis, but genes in Module 10 were only related to
apoptosis. Specifically, in Module 7, 35 genes were re-
lated to spermatogenesis whereas 46 genes were associ-
ated with apoptosis. Six genes (NFKBILI, XRCCS,
ERCCI1, APP, BCAP31, RRAGA) were related to both
spermatogenesis and apoptosis. For Module 9, eight
genes (RXFPI, ITCH, ITGBI, XHD, TAF7L, WNT2,
SPINI, LNPEP) were associated with spermatogenesis,
whereas 16 genes (CFLAR, TAF9B, CCK, VAV3, NR3CI,
CDHI13, CROP, CDKNIB, PTPRC, ATP7A, RTNS3,
HSPDI, ITM2B, F2R, MAP3KI1, RAD21I) were associated
with apoptosis, but no genes were common to spermato-
genesis and apoptosis. For Module 10, four genes
(EPHA?7, SCIN, NGFRAPI1 and MAP3K?7) were related to
apoptosis. Interestingly, of all the genes mentioned
above, seven (APP, BCAP31, CFLAR, PTPRC, F2R,
MAP3KIand EPHA?) were differentially expressed between
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nutritional treatments, indicating their pivotal roles in
reproduction or apoptosis.

miRNA-mRNA regulatory relationships

Putative miRNA-mRNA pairs were identified on the basis
of target prediction and the negative regulatory effect of
miRNAs on the expression levels of their target genes. A
total of 940 miRNA-mRNA pairs (48 miRNAs, 269
mRNAs) were identified (Additional file 6: Table S4).
Among these pairs, oar-novel-miR-33 and oar-novel-
miR-31 paired with the highest number of mRNAs:
oar-novel-miR-33 paired with 68 mRNAs and oar-
novel-miR-31 paired with 52 mRNAs (Additional file 7:
Figure S3). IPA analysis indicated that the mRNAs in
the negative pairs were mainly involved with
organization of cytoplasm, cell morphology, abnormal
morphology of the reproductive system, cell death and
male infertility (Fig. 4a). In addition, these mRNAs were
also involved in 76 signalling pathways, of which Sertoli
cell-Sertoli cell junction signalling, germ cell-Sertoli cell
junction signalling, androgen signalling, and apoptosis
signalling were among the 15 most relevant (Fig. 4b).
FOXO3 and PTEN were related to more than 8 func-
tions out of 15 most common functions, we assumed
these two genes may be crucial for testes function,
therefore, they were selected for RT-qPCR validation.
The expression of FOXO3 was higher in well-fed sheep
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Fig. 3 The relationships between gene modules and phenotypic traits in the testis of mature sheep. The y-axis shows the 15 gene modules
constructed by weighted gene co-expression network analysis (WGCNA). The x-axis shows the phenotypic traits: P1 indicates testis weight (g);
P2 indicates sperm number per testis; P3 indicates diameter of seminiferous tubule; P4 indicates volume of seminiferous epithelium (x 10'? pm3); P5
indicates change of scrotal circumference; P6 indicates apoptotic germ cells/tubule. In each cell of the table, the upper value shows the coefficient of
correlation (r) between gene module and phenotypic trait, while the lower value indicates the statistical probability. Red to blue colouration of the cells
indicates the transition from positive to negative correlation, as indicated by the colour bar
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Fig. 4 The 15 functions (a) and the 15 signalling pathways (b) most commonly related to the mRNAs in miRNA-mRNA regulatory relationships in
sheep testis, as determined by IPA software. P value indicates the relevance of the function (lower value means greater relevance)

than underfed sheep, while PTEN expression was lower
in well-fed than underfed sheep.

Identification of alternative splicing events

We initially obtained 940,607 junctions from the 16
RNA-seq libraries with the Tophat2 software. Totally,
6376 alternative splicing events (APSI>10% in at least
one library and at least 20 reads mapped) were identified
from these junctions (Additional file 8: Table S5).
Among these alternative splicing events, 4,820 (75.6%)
were previously annotated as known alternative splicing
events in the Ensembl Database, which can be mapped
to 2288 unique genes. Eight types of alternative splicing
events were identified, including 1,131 cassette exons,
645 alternative 5" splice sites, 578 alternative 3’ splice
sites, 17 mutually exclusive exons, 86 coordinate cassette

exons, 578 alternative first exons, 247 alternative last
exons, and 2,810 intron retentions.

Effects of nutrition on alternative splicing

We found 2551 + 189 (Mean + SEM) alternative splicing
events in the High Diet group and 2455 + 126 alternative
splicing events in the Low Diet group (not significant).
There was no difference as for the total number of each
type of alternative splicing event between two groups
(Fig. 5). PSI values from each diet group were used to
test the differentially spliced genes between treatments,
resulting 206 differentially spliced isoforms (21 alterna-
tive 3" splice sites, 23 alternative 5° splice sites, 34
alternative first exon, 17 alternative last exon, 86 cas-
sette, 7 coordinate cassette exon, 8 intron retention
events, P<0.05, Wilcoxon test). These differentially
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Fig. 5 The counts of each type of alternative splicing event in testicular tissues from underfed and well-fed male sheep. Values = Mean + SEM
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spliced isoforms were mapped to 159 known unique
genes, and DAVID functional analysis revealed the
most common functions of these genes were related to
RNA splicing and spermatogenesis (Fig. 6).

Discussion
This study appears to be the first to profile the whole
transcriptome in sheep testis, to construct the regulatory

-lg(p value)
0 1 2 3 4 5 6

RNA splicing

spermatogenesis

multicellular organismal development

mRNA splicing, via spliceosome

RNA processing

RNA secondary structure unwinding

Fig. 6 The top functions most commonly related to differential
alternative splicing events in testis from sheep fed a high diet or a
low diet. P value indicates the relevance of the function (lower
value means greater relevance)

relationships between miRNAs and mRNAs in testis, to
explore the relationships between pre-mRNA alternative
splicing and testis function, and to link the gene mod-
ules with phenotypic traits related to spermatogenesis
and apoptosis. In the context of an experimental model
of reversible testis growth in the sexually mature male,
we have been able to identify mRNAs that are associated
with testis function and, more importantly, apoptosis in
germ cells. These findings strongly support the hypoth-
esis that the decline in spermatogenesis and increase in
germ cell apoptosis induced by under-nutrition in the
sexually mature male sheep are, at least, partially due to
changes in mRNA expression and pre-mRNA alternative
splicing.

We found over 2,000 mRNAs that were differentially
expressed between treatments, with over 1,000 mRNAs,
including TP53 and Claudin 11, that were more highly
expressed in underfed than in well-fed sheep. This result
supports our previous observations based on qPCR [5].
A high level of TP53 indicates more cells going through
apoptosis [28], and this result is in agreement with our
previous finding-more TUNEL positive cells were ob-
served in testes from underfed than in well-fed sheep
[10], so we conclude that under-nutrition increases
apoptosis in germ cells. On the other hand, Claudin-11
is a tight junction protein expressed in Sertoli cells and
rarely in other cell types in the testis [29] and plays a
central role in the formation of tight junctions [30, 31].
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In testicular tissue from underfed sheep, increased ex-
pression of Claudin 11 and disorganization of Claudin
11 protein strongly indicate the impairment of tight
junctions [5]. In addition, in the present study, over
1000 mRNAs showed lower expression in underfed than
in well-fed sheep, including CYP51A1 and SPATA4.
CYP51A1 is a member of the cytochrome P450 family
and is expressed strongly by germ cells [32], illustrating
its crucial role in spermatogenesis. Therefore, the lower
level of CYP51A1 expression in underfed sheep is coher-
ent with the decrease in numbers of germ cells and de-
fective spermatogenesis caused by undernutrition [10].
SPATA4 has also been reported to be testis-specific and
associated with spermatogenesis, and involved in main-
taining spermatogenesis [33]. Therefore, the reduced ex-
pression of SPATA4 in underfed sheep is also consistent
with compromised spermatogenesis with under-nutrition.

The functional analysis using IPA revealed that, for
mRNAs that are differentially expressed between nutri-
tional treatments, the most common functions are quan-
tity of germ cells, testis size, quantity of Sertoli cells and
quantity of connective tissue cells. Thus, the differen-
tially expressed transcriptomes are consistent with the
reductions of testis mass and sperm production in
underfed rams [10]. Among all the genes that were re-
lated to these functions, we considered the genes that
were related to more than one function may be more
important, such as IGFIR, INHBA, TP53. In the testes of
adult mice lacking IGFIR in their Sertoli cells, there is a
reduction in testis size and daily sperm production [34],
indicating a role for IGFIR in control of sperm produc-
tion by Sertoli cells. A protein product of the INHBA
gene, activin A, is an important regulator of testicular
cell proliferation [35]. As indicated above, TP53 regulates
spermatogenesis by inducing apoptosis [36]. We propose
that, the expression of IGFIR, INHBA and TP53 may be
used as biomarkers of sperm production.

To further investigate the crucial genes in spermato-
genesis and apoptosis, we looked at the relationships
between these phenotypes and the gene modules that
we discovered in the testis. We found five genes
(CFLAR, PTPRC, F2R, MAP3KI, EPHA?) that appear
to be crucial for apoptosis and two genes (APP and
BCAP31) related to both apoptosis and spermatogen-
esis. More importantly, all seven of these genes were
differentially expressed between nutritional treatments,
suggesting that they played pivotal roles in the control
of testis function. These conclusions are supported by
previous studies. For example, CFLAR is involved in in-
hibition of the death receptor-activated pathway [37];
MAP3K1 has both anti- and pro-apoptotic functions
[38]; EPHRINAS-EPHA7 complex induces apoptosis
through TNFRI [39]. Therefore, these seven genes are
potential biomarkers of spermatogenesis and apoptosis.

Page 10 of 12

Interestingly, the changes in these genes were associ-
ated with change in testis mass, raising the possibility
that factors associated with change in testicular tissue,
rather than direct effects of nutritional treatments on
testicular tissue, are responsible for changes in sperm-
atogenesis and apoptosis [5, 10]. If this were to be the
case, then the relationships between gene modules and
phenotypes observed in the present study could be ap-
plied more generally to other factors that can cause
changes in the testis mass, such as photoperiod, stress
and temperament, or physical fitness.

In addition, this study further identified miRNA-RNA
relationships which may regulate the above altered ex-
pression events. Of particular importance are oar-novel-
miR-33 and oar-novel-miR-31 because they paired with
the greatest number of mRNAs, indicating a crucial role
in testis function. Novel-miR-33 is homologous to miR-
296 that is specific to embryonic stem cells and has been
reported to be highly conserved between species [40]. So
far, there is no direct evidence for a role for miR-296 in
testis function. However, one study proved that miR-296
was more highly expressed in mature testis than in im-
mature testis, indicating a pivotal role in spermatogen-
esis in the adult. In addition, miR-296 was also defined
as anti-apoptotic [41]. Therefore, the reduced expression
of novel-miR-33 (miR-296) in underfed sheep [10] illus-
trates decreased testis function and increased cell apop-
tosis. By contrast, novel-miR-31 is homologous with
miR-34 which has been shown to enhance germ cell
phenotype during the late stages of spermatogenesis in
other species [42]. In the current study, therefore, the
lower level of novel-miR-31 in underfed sheep is coher-
ent with the loss of germ cell function [10].

Nutritional treatment did not affect the total number
of alternative splicing junctions, in contrast with some
previous reports of nutritional effects on other biological
processes [43, 44]. The lack of effect of nutritional treat-
ment on the total number of alternative splicing junc-
tions suggests that alternative splicing is a fine-tuner in
the testis that stabilizes testis function, as suggested for
other tissues [45, 46]. However, with respect to specific
genes, we found 159 that were differentially spliced be-
tween high diet and low diet groups. Functional analysis
of these genes indicated roles in RNA splicing and
spermatogenesis, and suggests that nutrition affects
spermatogenesis by changing pre-mRNA splicing. For
example, the alternative splicing event for CREM (cAMP
response element modulator) is alternative last exon. It
has been reported that CREM mRNA exhibits a remark-
able array of alternative splice variants [47]. For example,
during male meiosis, the inactive CREM variant is
switched to active CREM variant (by incorporation of
transactivating domains) directed by alternative splicing.
Therefore, in the mature male sheep, it is possible that
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nutrition affects the number of active CREM isoforms,
potentially explaining the disruption of spermatogenesis
in underfed sheep. Future studies on verification of alter-
native splicing events genes related to spermatogenesis
detected by RNA-seq using qPCR and how such changes
affect the activity, possibly involving construction of a
shortened ‘minigene’ containing the regulated exons and
splicing signals [48], will be required to better under-
stand this process. In addition, it is essential to deter-
mine whether the changes in splicing can affect protein
expression.

Conclusions

In conclusion, we have identified two molecular mecha-
nisms that could explain the effect of nutrition on
spermatogenesis and germ cell apoptosis in the adult
male: 1) nutrition-induced changes in the expression of
mRNAs in sheep testis, the functions of the differentially
expressed mRNAs are mainly related to spermatogenesis
and germ cell apoptosis, an important regulator in these
processes are the regulatory relationships between miR-
NAs and mRNAs; 2) nutritional treatment causes differ-
ences in pre-mRNA alternative splicing, and these
changes are closely involved in spermatogenesis and
germ cell apoptosis in testis. Some differentially spliced
genes (CREM and DDX4), and testis phenotype related
genes (CFLAR, PTPRC, F2R, MAP3K1, EPHA7, APP
and BCAP31I) should be able to work as potential bio-
markers for spermatogenesis and apoptosis. To make
the study move forward, confirming the predicted func-
tions of these genes using in vivo and in vitro experi-
ments are required.

Additional files

Additional file 1: Table S1. Phenotypic traits of sheep testes used for
WGCNA analysis. “H" indicates sheep fed with high diet, “L" indicates
sheep fed with low diet. P1 indicates testis weight (g), P2 indicates sperm
number per testis, P3 indicates diameter of seminiferous tubule, P4
indicates volume of seminiferous epithelium (x 1012 um3), P5 indicates
change of scrotal circumference (cm) and P6 indicates apoptotic germ
cells/tubule. (XLSX 10 kb)

Additional file 2: Figure S1. Transcription profiles plotted across the
sheep genome, showing the distribution of the RNA-seq read density
along the length of each chromosome. Each vertical blue line represents
log2 of the frequency of reads plotted against the chromosome coordi-
nates. (PDF 880 kb)

Additional file 3: Table S2. Differentially expressed mRNAs in testis
from sheep fed a low or high diet (N = 8 for each treatment). Note: Fold
change (FC) = CPM of low diet group/CPM of high diet group. CPM
(Counts per million) = (MRNAs reads number/total reads number per
library) x 1,000,000. The significant DE mRNAs were determined by false
discovery rate (FDR) < 0.05. (XLSX 168 kb)

Additional file 4: Table S3. The 10 most related function clusters of
differentially expressed mRNAs by DAVID analysis. The lower p value
indicates greater relevance. (XLSX 12 kb)

Additional file 5: Figure S2. qRT-PCR validation of differentially
expressed genes. mMRNA expressions from gRT-PCR are shown by line
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graphs on the top and values are shown on the right Y-axis as relative
expression (2-AACt). mRNA expressions from RNA-Seq are shown by bar
graphs on the bottom and values are shown on the left Y-axis as log2
(normalised reads number). a, b - indicate the significant difference in the
relative expression of mRNAs detected via gRT-PCR at P<0.05; A, B - indicate
significant difference in the expression of MRNAs detected from RNA-seq at
FDR <0.05. Data are presented as Mean+Standard deviation. (PDF 610 kb)

Additional file 6: Table S4. Identification of putative miRNA-mMRNA
pairs on the basis of target prediction and the negative regulatory effect
of miRNAs on mRNA expression levels. (XLSX 26 kb)

Additional file 7: Figure S3. Regulatory relationships for two pairs of
miRNAs and mRNAs that were differentially expressed in sheep testis
following nutritional treatment: oar-novel-miR-33 with 68 mRNAs, and
oar-novel-miR-31 with 52 mRNAs. (PDF 937 kb)

Additional file 8: Table S5. Identification of alternative splicing events
with Tophat2 software. (XLSX 1164 kb)
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