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Abstract

Background: ChIP-seq and related high-throughput chromatin profilig assays generate ever increasing volumes of
highly valuable biological data. To make sense out of it, biologists need versatile, efficient and user-friendly tools for
access, visualization and itegrative analysis of such data.

Results: Here we present the ChIP-Seq command line tools and web server, implementing basic algorithms for
ChIP-seq data analysis starting with a read alignment file. The tools are optimized for memory-efficiency and speed
thus allowing for processing of large data volumes on inexpensive hardware. The web interface provides access to
a large database of public data. The ChIP-Seq tools have a modular and interoperable design in that the output
from one application can serve as input to another one. Complex and innovative tasks can thus be achieved by
running several tools in a cascade.

Conclusions: The various ChIP-Seq command line tools and web services either complement or compare favorably
to related bioinformatics resources in terms of computational efficiency, ease of access to public data and
interoperability with other web-based tools. The ChIP-Seq server is accessible at http://ccg.vital-it.ch/chipseq/.

Keywords: ChIP-seq data analysis, Bioinformatics resources, Web server, Peak finding, Genomic context analysis,
Transcription factor binding sites, Histone modifications, DNA sequence motifs

Background
The advent of chromatin immunoprecipitation combined
with sequencing (ChIP-seq) has revolutionized research in
gene regulation. A basic ChIP-seq experiment is schema-
tized in Fig. 1a. In essence, the technology allows mapping
of in vivo DNA-protein interactions at very high reso-
lution on a genome-wide scale and at low cost [1, 2].
Thanks to ChIP-seq, the tissue-specific chromatin state of
gene regulatory regions has become visible and transcrip-
tion factor (TF) binding events leading to expression
changes of target genes can directly be observed. Unsur-
prisingly therefore, this technique has become a standard
assay for genomics research in very short time. A wealth
of data has been released over the last years, which is of
potential interest to any biologist working on gene regula-
tion. Noteworthy in this context are the reference data

sets released by the large international consortia ENCODE
[3] and Roadmap Epigenomics [4] providing detailed epi-
genetic characterization for a large number of tissues and
cell types from human and mouse.
Being low cost and high-throughput, the true bottle-

neck of a ChIP-seq experiment is data analysis. Although
the bioinformatics community has reacted quickly to
this new challenge by developing a wealth of specialized
software tools, we believe that ChIP-seq data are still
largely under-analyzed. Lots of new insights into gene
regulatory mechanisms could be gained by simply ana-
lyzing existing data under new angles. Likewise, such
data should be used to corroborate or refute biological
hypotheses put forward in papers. Consequently there
is a need for bioinformatics resources providing easy
access to public ChIP-seq data to a wider research
community and offering efficient software tools for
integrative analysis of large data sets.
Reviews on ChIP-seq data analysis can be found in [5, 6].

A typical analysis pipeline starts with the mapping of
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sequence reads to the genome of the corresponding species
followed by peak finding, peak annotation and DNA motif
analysis. The publicly available resources for carrying out
these tasks have been implemented in different ways: (i) as
stand-alone UNIX command-like tools, e.g. Bowtie [7] for
read alignment and MACS [8] for peak finding, (ii) as R
packages, e.g. Rolexa [9] and metagene [10], (iii) as wrapper
shell scripts executing a comprehensive analysis pipeline
by calling multiple external programs in a cascade
[11], (iv) as integrated software platforms with a
graphical interface requiring local installation, e.g.
Homer [12], cisGenome [13] and seqMiner [14], and
(v) as web-servers, e.g. Cistrome [15].
Here we present the ChIP-Seq tools, a collection of

programs implementing a variety of ChIP-seq data analysis
algorithms downstream of read mapping. We initially de-
veloped these programs for our own research, see [16] for
an early application. Encouraged by positive feedback from
our collaborators, we later invested considerable efforts to
make our tools available to a wider community.
The ChIP-Seq tools are made available in two forms

serving different user communities: as an open source
collection of Unix command-line programs and as an
interactive web interface. The latter is tightly integrated
with other web-based resources maintained by our
group, including the Eukaryotic Promoter Database EPD
[17], and the Signal Search Analysis (SSA) server [18].
We believe that the ChIP-Seq tools fill an important niche
in computational genomics due to their original design and
unique capabilities. More than any competing program
package we know of, our tools are streamlined for memory
efficiency and speed, enabling researchers to process high

volumes of data on modest computer hardware. With the
ongoing data explosion resulting from the fact that sequen-
cing costs are going down faster than data processing
costs, this aspect may even become appealing to large se-
quencing centers. The ChIP-Seq web server offers access
to a large database of uniformly formatted ChIP-seq and
other types of genomics data, covering a broad range of or-
ganisms from yeast to human, making it an interesting
web resource for bioinformaticians involved in large-scale
comparative studies of epigenetic profiling data from differ-
ent species and tissues. Biologists primarily interested in
analyzing their own samples have the possibility to com-
pare their data with analogous data from other studies and
to complement their analyses with data covering other as-
pects of chromatin structure and function.
The remainder of the paper is organized as follows.

The Implementation Section explains the design princi-
ples of the ChIP-Seq command line tools and briefly
introduces the most important programs. It further in-
cludes a description of the database of public genomics
data sets installed at the backend of the web server. The
Results Section presents the web interface to the ChIP-
Seq tools, including a brief description of connected web
resources developed by our group. The capabilities of
the ChIP-Seq server are illustrated on typical examples
in a tutorial style fashion. (Step-by-step instructions for
reproducing the results and Figures are given in
Additional file 1.) The Results Section concludes with a
comparison of the ChIP-Seq tools to similar resources.
The Conclusions Section briefly recapitulates the hall-
marks and highlights of our resource and ends with an
outlook on future developments.

Fig. 1 ChIP-seq assay and data representation. a Schematic representation of a ChIP-seq experiment. Chromatin is first crosslinked and cut into
small pieces. DNA fragments bound by a specific protein are isolated with an antibody and sequenced from the ends using a short-read sequencing
technology. The reads are then computationally mapped to the genome. Note that the reads mapping to the plus + and – strand of the genome,
respectively, are expected to form clusters upstream and downstream of the protein binding site. b ChIP-seq data representation in SGA format. SGA
is the working format of the ChIP-Seq tools. Each line contains five obligatory fields: sequence identifier (here an NCBI RefSeq ID), feature name
(designating a ChIP-seq experiment), sequence position, strand and read count. Note that only the genomic position corresponding to the 5′end of the
mapped sequence read is recorded in an SGA file
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Implementation
Design principles of the ChIP-Seq command-line tools
The ChIP-Seq command-line tools package is a collec-
tion of stand-alone programs written in C and Perl. The
package is of highly modular design. Each program reads
from standard input, writes to standard output, and car-
ries out a well-defined elementary operation. Standard
ChIP-seq data analysis tasks such as peak finding are
often accomplished by sequentially running multiple
program units in a UNIX pipe.
The logical design of the ChIP-Seq tools is based on a

standard input-output format called SGA (Fig. 1b). SGA
stands for “Simple Genome Annotation”. All ChIP-Seq
programs take input in SGA format and many produce
output in SGA format as well. SGA is a tab-delimited
text format with five obligatory fields per line: chromo-
some (sequence) identifier, feature, position, strand, and
counts. Additional fields may follow but are not essential
and thus ignored by most ChIP-Seq tools programs.
SGA, unlike BED or GFF, is a single position format

that assigns positive integer values (counts field) to se-
lected bases of the genome. The format can represent
any type of experimental data or genome annotations
compatible with these restrictions. In the case of ChIP-
seq data, the position and strand fields refer to the base
that corresponds to the 5′-end of a mapped sequence
read, and the count field indicates how many reads were
mapped to this same position. Other data types that can
be represented by SGA and processed with ChIP-Seq tools
programs include mapped sequence reads from DNase-
seq or MNase-seq assays, CAGE tags, transcription start
sites from genome annotation databases (e.g. ENSEMBL)
or SNPs from the 1000 Genomes Project [19].
There are other specificities of the SGA format which

are worthwhile mentioning. The strand field may be set
to zero (rather than “+” or “–”) to indicate that the gen-
omic feature is intrinsically unoriented. The feature field
serves to distinguish lines from different data sources or
representing different genomic features, which is neces-
sary because many ChIP-Seq tools programs require two
features as input while physically accepting only one in-
put file. Perhaps the truly mission-critical requirement
of the SGA format is that lines must be sorted by
chromosome, position and strand. Once sorted, the data
can be processed using fast algorithms that produce re-
sults by one pass through the genome. As a consequence,
all ChIP-Seq tools programs have time complexity O(N),
N being the number of lines in the input file. The sorting
also enables programs to read in and process data for
only one chromosome at a time, resulting in a gain
in memory efficiency.
The ChIP-Seq package currently comprises 21 stand-

alone programs (in Additional file 1: Table S1), many of
them performing mere reformatting or preprocessing

tasks. In the following, only the programs addressing
area-specific non-trivial tasks such as peak finding will
be described in more detail. Algorithms requiring sub-
stantial computations are implemented in C, others
are currently offered as Perl scripts. In the long run,
we plan to replace all Perl scripts by C programs.
The major algorithms are given as pseudo-code in
Additional file 1: Text S3.

Feature correlation tools
The hallmark of this class of programs is that they take
two types of genomic features as input and generate nu-
merical data suitable for graphical display or follow-up
analysis by stats packages such as R. The two features
are supplied in a single SGA file, typically generated on
the fly via a sort-merge operation and then passed to the
program via standard input.
Chipcor is the prototype feature correlation tool. To

describe how it works, let’s call the two features “refer-
ence” and “target”. Chipcor then computes a profile (nu-
merical vector) indicating the average abundance of the
target feature at various distances upstream and down-
stream of the reference feature. The user has to specify
the distance range around the reference feature and size
of the bins in which target features are to be counted.
The output of chipcor is a tab-delimited text file which
can be visualized as so-called aggregation plot (AP) [20].
Chipcor is used for two main purposes: generation of

cross-correlation plots and genomic context analysis. In
the former case, tags mapped to the + and – strands from
the same ChIP-seq experiment are supplied as reference
and target features respectively. The resulting profile re-
veals the average length of the pulled-down fragments
and is essentially equivalent to the cross correlation plot
recommended by the ENCODE consortium [21] for
quality control purposes.
Genomic context analysis serves to visualize positional

correlations between features of different type. The ref-
erence feature typically consists of a relatively small set
of genomic positions originating from manual annota-
tion efforts (e.g. a promoter collection) or automatic
processing of primary experimental data (e.g. a ChIP-seq
peak list). The target feature may be of any kind includ-
ing high density features such as mapped sequence reads
from ChIP-seq experiments. Many examples of feature
correlation plots can be found in the Results Section fur-
ther below.
There are two other programs taking two feature types

as input and performing similar operations as chipcor.
The first one, chipextract, extracts target feature counts
in binned genomic regions for each reference feature in-
dividually. The output is an integer matrix which can be
visualized as a heat map. The second program is chip-
score that counts target features within a user-defined
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region around the reference features (without splitting
the region into smaller bins). The output is an extended
SGA file composed of the reference feature lines of the
input file and an additional field presenting the target
features counts in the specified regions. The program
can also be used as a feature selection tool by specifying
a non-zero tag threshold via a command line option.
Unlike most other ChIP-Seq tools programs, chipscore
reads all optional fields from reference feature lines and
transfers them to the output, which makes it possible to
annotate the same reference feature set with tag counts
from multiple experiments.

Peak finders and segmentation tools
The ChIP-Seq tools include two programs to search
ChIP-seq data for signal-enriched regions. Chippeak is a
classical peak finder appropriate for finding transcription
factor binding sites. Chippart is a segmentation tool or
“broad peak” finder that partitions the genome into
signal-enriched and depleted regions. Chippart is typic-
ally used for processing histone modification profiles. In
terms of input-output behavior, the main difference be-
tween the two programs is that chippeak returns a single
genomic position corresponding to the peak center
whereas chippart returns the start and end positions of
genomic regions.
Chippeak is a basic peak finder. The current version

takes a single feature type as input and thus cannot
make use of a control experiment for local background
correction. Conceptually, chippeak uses a sliding window
approach to identify signal enriched regions. The num-
bers of tags are counted in a window of fixed size along
the genome and peaks correspond to local maxima in
terms of tag coverage. The peak-calling process is pri-
marily controlled by three parameters: the window
width, the tag threshold, i.e. the minimal number of tags
a window must contain in order to qualify as a peak,
and the vicinity range, i.e. the size of the region within
which the window must be a local maximum. Speed is
gained by restricting the search to positions hit by at
least one ChIP-seq tag. The original position corre-
sponding to a mapped sequence tag can optionally be
replaced by a “weighted average position” computed
from the tag distribution within the corresponding win-
dow. Chippeak is at least 10 times faster than any other
ChIP-seq peak finder we have tested (Additional file 1:
Table S3). In spite of its simplicity, it generally performs
well, sometimes even better than competing programs
using a more elaborate statistical model to assess the
significance of a peak [22, 23].
Chippart partitions the genome into an alternating

series of signal-enriched and signal-depleted regions.
Signal strength is defined as counts per base-pairs. The
output is a so-called “regions” SGA file, a special type of

SGA file where each line marks a segment boundary.
Lines with a “+” sign in the strand filed mark the begin-
ning, those with a “−” sign mark the end of an enriched
segment. The total number of counts in an enriched re-
gion is returned in the fifth field. The optimal segmenta-
tion of a chromosome is found by means of an efficient
dynamic programing algorithm maximizing a global
segmentation score (for details, see pseudo-code in
Additional file 1: Text S3). This score critically depends
on two parameters, the count density threshold which de-
fines the border between enriched and depleted, and the
transition penalty which controls the extent of fragmenta-
tion of the genome (high penalty favors large regions).

Preprocessing programs and command line options
Chipcenter is used for centering mapped sequence tags
from a ChIP-seq experiment, a preprocessing step that is
also referred to as tag shifting [24]. In essence, the tags
assigned to the “+” strand of the genome are shifted by a
user-defined distance downstream, those assigned to the
“−” strand are shifted by the same distance upstream.
The output is a centered SGA file with the strand field
set to zero on all lines. Centering is motivated by the ex-
pected distribution of sequence tags around ChIP-seq
targets (Fig. 1a) and increases the positional resolution
of the ChIP-seq signal.
The program counts_filter eliminates lines from an in-

put SGA file which fall within “blacklisted” genomic re-
gions. Input is a composite SGA file containing two
types of genomic features, one that is subject to filtering
and will be transferred to output, the other one defining
the start and end points of the blacklisted regions. This
program is often used to eliminate ChIP-seq tags of
peaks that fall within annotated repeat regions.
Each ChIP-Seq program is controlled by a number of

command line options. Two of these options are com-
mon to many programs and thus deserve brief mention-
ing. Option –c (count cut-off ) specifies the maximal
number of counts accepted at a single genomic position.
If set to one, it has the same effect as eliminating dupli-
cates at the read mapping step. Option –o (oriented)
controls the interpretation of the strand field. For pro-
grams like chipcor, which take two feature types as input,
it has the effect that the target features are processed in
“reverse-complementary” manner for reference features
assigned to the “–” strand. Reverse-complementary
means that a target feature assigned to the “+” strand and
located 100 bp upstream of the reference feature would
be treated like a target feature assigned to the “−” strand
and located 100 bp downstream. For chippeak, the ori-
ented mode has the effect that peak finding is carried
out separately for the “+” and “–” strand of the genome.
This behavior is useful, for instance, for finding clusters
of TSSs in CAGE data.
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The mass genome annotation (MGA) repository
The abbreviation MGA has been introduced by the
DDBJ and EMBL nucleotide sequence data libraries and
stands for “Mass sequences of Genome Annotation”
[25]. We have adopted this term to designate the data
repository harboring all public data that can be accessed
and analyzed through our web servers. The MGA re-
pository is also accessible via anonymous FTP. Though
not maintained by a database management software, the
MGA repository is highly structured and respects rigor-
ous formatting standards. All data sets are presented in
SGA format. Chromosomes and contigs are invariantly
identified by versioned RefSeq [26] accession numbers
(e.g. NC_000001.10 for chromosome 1 of human genome
assembly GRCh37/hg19). This eliminates the risk of pro-
ducing wrong results by comparing sequence positions re-
lating to different versions of the same chromosome.
The MGA repository is hierarchically split into subdir-

ectories. There is one root-level subdirectory for each
supported genome assembly. Data sets from the same
study are organized as series, as in GEO [27]. All data
files pertaining to the same series are kept in the same
leaf-level subdirectory together with a manually edited
documentation file in HTML format. Each series
contains two additional machine-readable text files, one
providing information about the series as a whole, the
other one about individual samples. These files are pri-
marily used by software components of the web server.
For instance, the data access menus of the program input
forms are automatically generated in this way. The series
documentation files are web-accessible via a hierarchically
organized table with expandable subsections.
The MGA repository currently contains more than

10’000 data samples, about half of them from ChIP-seq
and other chromatin profiling assays such as MNase-seq
[28] and DNase-seq [29]. High priority is also given to
TSS mapping data such as CAGE [30] which constitute
the source data for EPDnew [17], the automatically com-
piled part of the Eukaryotic Promoter Database EPD.
More than 1500 tissue and cell-type specific TSS librar-
ies from ten different species are available. An overview
of the current contents of the MGA repository is shown
in Additional file 1: Table S2.
Unlike other bioinformatics resources which harbor

large public next generation sequencing (NGS) data col-
lections such as Cistrome, the MGA repository also pro-
vides a large variety of non-experimental, computationally
derived or manually generated data sets. Examples are
transcription start and end site (TSS, TES) collections
from ENSEMBL [31], lists of repeated elements from
Repbase [32], single nucleotide polymorphisms from
dbSNP [33] and cross-genome conservation scores from
the UCSC Genome Browser database [34]. Computation-
ally derived features include published ChIP-seq peak lists,

which we offer in addition to the read mapping data if
available. Some genomic feature lists are provided in ex-
tended SGA format with an optional sixth field containing
a gene name (TSS lists), or a statistical significance score
(peak lists).
The majority of the NGS data were downloaded from

GEO, ArrayExpress [35] or the UCSC Genome Browser
database. A few (mostly older) data sets were directly
downloaded from the author’s institutional websites. If
available, we used libraries of already mapped sequence
tags in BAM or BED format as source data. A technical
description of the conversion procedure from BAM or
BED to SGA is given in Additional file 1: Text S2.
Otherwise, we carried out the tag-to-genome mapping
ourselves, usually starting from FASTQ files and using
Bowtie [36] for read alignment. The conversion proce-
dures and the URLs for the source data are given in the
corresponding documentation files for each series.
Some data sets in the MGA repository have undergone

substantial modifications relative to the original file, either
to reduce the size or to make the representation compat-
ible with an integer-based single-position format. As men-
tioned before, the repeat libraries used for repeat masking
are provided as regions SGA files. For genomic conserva-
tion analysis, the MGA offers compacted versions of the
phastCons [37] and phyloP [38] tracks from the UCSC
Genome Browser database to speed up the analysis at the
expense of some precision. As a general rule, we try to
keep the size of SGA files below 100 million lines.
The machine-readable series description file contains

the complete path to the data directory, a descriptive title,
a literature or database reference in textual form plus
GEO, ArrayExpress and/or PubMed IDs, if available. The
ChIP-Seq web server transfers these fields to output pages
in order to give appropriate credit to the authors of the
data and to generate hyperlinks to external resources.
The sample description file provided for each series is

a tab-delimited table with lines corresponding to sam-
ples. It contains essential information for the ChIP-Seq
server as well as command-line users. The first field of
each line contains the name of the corresponding SGA
file and is followed by fields containing a sample de-
scription and the feature name used in the SGA file. The
fourth field assigs each sample to a so-called “data type.”
Examples of data types are “ChIP-seq”, “ChIP-seq-peak”
or “Genome Annotations”. Note that a series may
contain samples belonging to different data types.
Additional fields indicate whether the feature is “ori-
ented” and whether the sample is provided in FPS for-
mat (FPS stands for “functional position set” and refers to
the native format of the SSA package, see below). GEO or
ArrayExpress IDs are also included if applicable.
An SGA file is called “oriented” if the strand field is

occupied by + and – signs; “unoriented” SGA files have
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the strand field invariantly filled with zeros. Small data
sets comprising less than 100’000 genomic positions
(typically genome annotations and peak lists) are usually
provided in both SGA and FPS format. As a conse-
quence, these files are also accessible through the input
server menus of the SSA server.
The MGA repository currently contains NGS data for

ten species, all mapped to a single, so-called primary as-
sembly of the corresponding species, except for human
where the data are split over the assemblies hg18 and
hg19 (in Additional file 1: Table S2). In addition, basic
support files (gene annotations, repeat libraries, and
conservation tracks) are provided for additional assem-
blies of the same species. These files offer users who
have data mapped to a non-primary assembly an easy
way to carry out a certain number of standard analysis
tasks, such as repeat masking, analyzing histone marks
in promoter regions, or generating sequence conserva-
tion profiles for ChIP-seq peaks. Using the data from the
main assembly would require remapping of the genomic
coordinates in the original file (which is pretty straight-
forward as well). Command line users can remap SGA
files with the aid of the SGA-to-BED conversion utilities
from the ChIP-Seq command-line tools and the liftOver
utility from the UCSC Genome Browser [39]. The ChIP-
Seq web interface allows remapping of genomic coordi-
nates upon data upload.

Results
General characteristics of the ChIP-Seq web server
The ChIP-Seq server is a web interface to the ChIP-Seq
tools and the MGA repository. Any result that can be
produced over the web interface can also be produced
from the command line with data files downloaded from
the MGA repository. For the sake of transparency and
reproducibility, the UNIX shell scripts executed by the
server are posted on all results pages. These scripts may
also serve as templates to command-line users who
would like to integrate the web-based applications into a
data analysis workflow running on a local computer.
Note that throughout this manuscript, web interfaces

to command tools will be spelled with a dash in the mid-
dle followed by the capitalized tool name, e.g. ChIP-Cor
is the web interface of chipcor.
Like the stand-alone programs, the individual web ser-

vices are designed to be modules that can be used se-
quentially. The output from one application can be
transferred to the next application via direct navigation
buttons. However, there is no one-to-one correspond-
ence between command-line programs and web applica-
tions. A web application typically fulfils a more complex
task requiring the execution of several programs and
scripts by the server. For instance, the ChIP-Peak web
application allows users to do tag centering with

chipcenter, repeat-masking with counts_filter, peak find-
ing with chippeak and conversion of the output SGA file
into BED format in a single run. Analogous web applica-
tions exist for the major ChIP-seq programs chipcor,
chipextract and chippart. Chipscore is offered via a follow-
up menu displayed on the Chip-Cor results page. The
application ChIP-Convert serves as a hub for data input,
format conversion, and data export to other applications.

Input forms
The input forms have a standard design, with three
parts: one for data access, one for specifying preprocess-
ing options, and one for entering the analysis parameters
of a particular application (Fig. 2a).
The input data can be specified or uploaded in three

ways: (i) through a hierarchical menu that provides ac-
cess to the MGA repository, (ii) by specifying the name
of a server resident file and (iii) by uploading a data file
from a local computer or via URL.
The menu-driven access to the MGA repository has

four hierarchical levels. At the first level, the user can
choose one of the supported genome assemblies. The sec-
ond level is organized by data type (ChIP-seq, RNA-seq,
genome annotations, etc. see previous Section). Large data
collections from international consortium projects are
provided as separate data types. The two lower levels cor-
respond to series and samples. Note that the server menu
is not a perfect mirror of the MGA directory structure. A
MGA series may contain samples of different data types,
in which case the series name appears multiple times
under different data types in the server menus.
Data access via filenames allows developers and in-

formed collaborators to access server-resident files via a
local filename and directory path. This mechanism is fur-
ther used for transferring data between web applications.
If a user clicks on a direct navigation button, the name of
the temporary file generated by the previous application
will appear in the input form of the next application.
External files can be uploaded in various genome an-

notation formats, either from a local data directory or
via a URL. Large files can be transferred in compressed
form (zip and gzip). In principle, the server accepts any
kind of sequence identifier relating to any species. How-
ever, if the identifiers do not correspond to a supported
genome assembly, many useful features will not be avail-
able. For instance, it will not be possible to analyze the
uploaded data jointly with data from the MGA reposi-
tory. Direct navigation buttons to the motif analysis pro-
grams from the SSA server will also be suppressed. If
data correspond to a supported genome assembly,
UCSC-style chromosome names or contig identifiers
have to be used and the corresponding assembly needs
to be specified on the input form. Alternatively, chromo-
somes can be identified by versioned RefSeq accession
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numbers. RefSeq identifiers are always used internally by
the server.
For reasons of efficiency, we recommend uploading data

in SGA format. However, all major applications support the
following other input formats: BED, BAM, GFF and FPS.
There is a dedicated application named ChIP-Convert for
importing and converting external data formats into com-
pressed SGA. Once converted, an uploaded data set will be
accessible via URL or a temporary name for at least one
hour. For repeated use over a certain period of time, we
recommend reformatting voluminous data files into com-
pressed SGA via ChIP-Convert, rather than repeatedly
using conversion options provided by program-specific in-
put forms. ChIP-Convert also provides more specific con-
version schemes such as proper conversion of the BED-like
narrowPeak format used by ENCODE.
All input forms are pre-loaded with reasonable default

parameters. Importantly, in the case of the peak-finding
applications ChIP-Peak and ChIP-Part, the critical
threshold parameter is expressed as a fold-change over
the average count density of the input sample, resulting
in robust and reproducible behavior across data sets.

Results pages and interoperability with other tools
The output pages generated by the ChIP-Seq server are
also standardized (Fig. 2b). For programs that produce

SGA output, the results are provided in BED and FPS for-
mat as well if the input relates to a supported genome as-
sembly. If this is the case, a number of additional action
buttons will be displayed on the output pages, including a
link for viewing the results in a UCSC Genome Browser
window, a menu that enables the user to extract se-
quences within a specified range around the genomic po-
sitions, and several buttons that will directly upload the
results (genomics coordinates) to other ChIP-Seq server
applications or external web services. For web applications
that produce numerical output, the results consist of a
graphical representation plus a download button for sav-
ing the numbers in text file format. For scientific articles,
it is often desirable to combine results from several
web jobs in a single figure (as it is done here). This
can be achieved by saving the numerical results files
to disk and re-importing them into the user’s pre-
ferred graphics program.
The ChIP-Seq server is tightly interconnected with other

resources developed by our group, including the Eukaryotic
Promoter Database (EPD), the Signal Search Analysis (SSA)
server and the recently introduced PWMTools. Of particu-
lar relevance to ChIP-Seq data analysis is the SSA server, a
suite of programs for the discovery and characterization of
DNA sequence motifs that occur in the vicinity of a func-
tional genomic site [40]. These programs were developed

Fig. 2 Web interface of ChIP-Peak. a Input form. The inputs correspond to the example presented in this paper. A server-resident ChIP-seq sample
from the MGA repository has been selected through the data access menu. Alternately, users could upload their own data by clicking on the
“Upload custom data” radio button. b Output page. The peak list can be downloaded in various formats. Hyperlinks are provided for sending the
peak list directly to external servers for peak annotation. The “Sequence Extraction Option” enables users to extract sequences around the peak
centers in Fasta format. Direct navigation buttons enable downstream analysis with other tools from the ChIP-Seq and SSA servers
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during the eighties primarily for the purpose of analyzing
eukaryotic promoters. With the advent of ChIP-seq, the
SSA programs have become useful in a new context,
namely for the analysis of DNA motifs that are enriched
near peak center positions. The most relevant tools are
OProf (Occurrence Profile) and FindM (Find Motif).
OProf takes as input a list of genome positions plus a

DNA motif definition, and returns a “motif occurrence pro-
file”. A DNA motif can be entered as a IUPAC consensus
sequence, as a position weight matrix (PWM) or, alterna-
tively, taken from a public PWM collection via a pull-down
menu. Currently, more than 2000 TF binding specificity
matrices are offered to the user. OProf is analogous to
ChIP-Cor, the main difference being that the target fea-
tures, i.e. the motif matches, are computed on the fly by
the program rather than read from an input file.
FindM takes the same input as OProf but produces a

different kind of output, namely a new list of genome po-
sitions. The program may be used to select genomic posi-
tions from an input file which are (or are not) flanked by a
given motif within a certain distance range. Alternatively,
it can be forced to return the positions of flanking motifs.
In ChIP-seq data analysis, FindM is sometimes used to re-
align computationally identified peaks on the exact base
positions of the cognate TF binding motifs.
The PWMTools server provides access to more recently

developed PWM-oriented software that uses SGA as work-
ing format. Two applications, which are potentially useful
for ChIP-seq data analysis, will be described briefly.
PWMScan enables users to scan a whole genome with a
PWM and returns a complete list of PWM matches in vari-
ous formats. Such a list could then be uploaded to ChIP-
Cor in order to extract those matches that are not occupied
by the corresponding TF in vivo according to a ChIP-seq ex-
periment. Genomic context analysis could be employed to
find an explanation why these sites are not occupied in vivo.
PWMEval is a tool to assess the quality of a PWM based

on its ability to distinguish in vivo TF binding sites from
random genomic sequences. It takes as input a PWM plus
a ranked ChIP-seq peak list and returns a ROC area under
the curve (AUC) value as a performance measure. The af-
finity of a peak region to the PWM is computed as de-
scribed in [41]. Note that the performance indicated by
PWMEval depends equally on the good quality of the
PWM and the ChIP-seq peak list. The tool can thus vice-
versa be used for peak list quality assessment.
Interoperability between the ChIP-Seq server and external

bioinformatics servers is assured through the BED format.
Direct navigation buttons allow forwarding of BED output to
the UCSC Genome Browser and optionally to the GREAT
server [42] if the output file contains less than 20’000 lines.
For peak annotation on a Galaxy-based platform such as
Nebula [43], the output from ChIP-Peak can be transferred
by right-clicking on the BED download button and using

“Copy link location” to paste the URL into the file upload
page of the Galaxy interface. The same mechanism can be
used in the opposite direction. For instance, some re-
searchers may prefer to do peak finding with MACS on a
Galaxy server and then use ChIP-Cor to explore the gen-
omic context of the peak regions on our servers. For motif
finding with an external tool, e.g. MEME-ChIP [44], se-
quences can be extracted in FASTA format from all applica-
tions that produce genomic position lists as output.

An example illustrating the use of the ChIP-Seq server
In the following, we are going to illustrate the capabilities
of the ChIP-Seq server using data from an early landmark
paper reporting the genome-wide mapping of STAT1
binding sites in interferon-γ stimulated HeLa cells [45].
The data set, which comprises about 15 million mapped
sequence tags, is available from the ChIP-Seq server menu
(Fig. 2a). We will also use a control data set from a ChIP-
seq experiment done with unstimulated HeLa cells, were
the STAT1 protein is supposed to reside in the cytoplasm
and thus unable to bind to its target sites in the genome.
The example we present is partly based on a tutorial pre-
sented elsewhere [46].
Here we will focus on the biological motivation for the

different types of analyses and on the interpretation of
the results. Detailed step-by-step instructions on how to
reproduce the results shown in Figs. 3, 4, 5, 6 and 7 via
the web server can be found in Additional file 1: Text S4.
Note further that the graphics shown in this paper are not
screenshots of the server output pages. They typically
combine results from different program runs and were
generated by downloading the results in text format and
subsequently processing them with the R software.

5′-3′ end correlation analysis
We start by generating a 5′-3′ strand correlation plot using
ChIP-Cor on the STAT1 data set mentioned above. We use
the 5′ (+ strand) tags as reference feature and compute the
frequencies of 3′ tags as a function of the distance from the
reference feature (Fig. 3a). ChIP-Cor offers several options
for scaling the abundance of the target feature. Here, we
choose “count density”, which is defined as the number of
target feature tags per base pair. We note a Gaussian peak
with a maximum at about position +150, suggesting that the
average length of an immunoprecipitated fragment is about
150 bp. In all subsequent analyses, we will therefore use half
of this value (75 bp) as centering distance for combining the
5′ and 3′ tags from this experiment. Repeating the same
analysis with the control sample produces an essentially flat
profile (Fig. 3a), consistent with the assumption that virtually
all tags from this experiment represent background noise.
Next, we generate a so-called autocorrelation plot for

centered STAT1 tags against themselves (same reference
and target feature). We see again a Gaussian peak this
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time with a maximum at 0 (Fig. 3b). The ChIP-Cor ser-
ver automatically attempts to fit the correlation histo-
gram to a Gaussian curve. If successful, the results of
the fit can be accessed via a hyperlink on the output
page. Results are provided in graphical and textual
form. The text output file contains recommended pa-
rameters for the subsequent peak finding step (in
Additional file 1: Figure S1).

Peak detection
The Gaussian fit to the auto-correlation plot suggests a
window size of 286 bp and a threshold value of 12 tags for
peak finding. We round the window to 300. Running then
ChIP-Peak with the recommended parameters returns
55’922 peaks. We have to be aware that 12 is a minimal
threshold intended to maximize sensitivity. For many
types of downstream analysis more stringently selected

Fig. 3 5′-3′end correlation and autocorrelation plots. a 5′-3′ end correlation plot for STAT1 ChIP-seq tags from interferon-γ stimulated and
unstimulated HeLa cells. The horizontal position of the peak maximum suggests an average fragment size of about 150 bp. b Autocorrelation
plot of 75 bp-centered STAT1 ChIP-seq tags from stimulated cells

Fig. 4 STAT1 peak annotation with external tools. a GO term enrichment analysis with GREAT. b Peak location statistics with Nebula
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peak lists are preferable. We therefore repeat ChIP-Peak
with higher thresholds of 25, 50 and 100 tags and obtain
16’332, 4’442 and 1’521 peaks, respectively.
ChIP-Peak returns peak lists in three formats, SGA,

FPS, and BED. It is recommended to save them in all
three formats for further analysis. Moreover, the out-
put page contains an action button allowing for re-
mapping of the chromosomal coordinates to other
genome assemblies.
Some of the identified STAT1 peaks fall into repetitive

elements of the human genome. These peaks may cause
problems for certain types of downstream analysis, in
particular DNA motif discovery. Since all ChIP-Seq ser-
ver input forms allow users to filter out tags falling into
repeat regions, we rerun ChIP-Peak once more with the
RepeatMasker checkbox activated.

Peak analysis with external tools
The output page of ChIP-Peak contains links to other
web resources (Fig. 2b). The link to the UCSC Genome
Browser enables the user to view individual STAT1
peaks in the context of other genomic features. The
hyperlink to the GREAT server serves for GO term en-
richment analysis of the genes in the neighborhood of
peaks (Fig. 4a). We note that the majority of terms relate
to cytokine mediated signaling consistent with the re-
ported biological function of STAT1.
Another topic of interest is the location of TF binding

peaks relative to protein coding genes. One web-based
resource performing such an analysis is Nebula. It
returns graphics showing the abundance of peaks within
promoter regions, gene bodies, intergenic regions, and
components of genes (Fig. 4b). Nebula also returns a

Fig. 5 Motif enrichment analysis. a STAT1 consensus sequence (TTCNNNGAA) enrichment in peak lists obtained at various tag thresholds.
b Comparisons of peak lists derived with ChIP-Peak from data published in [45] versus peak lists published by ENCODE. Here, consensus
sequence enrichment serves as a proxy for enrichment in true binding sites. Note that a fair comparison is only possible between peak
lists of similar size. c Comparative evaluation of three alternative STAT1 binding motif descriptions: (i) consensus sequence TTCNNNGAA,
(ii) PWM from JASPAR and (iii) MEME-ChIP-derived PWM from the peak regions identified by ChIP-Peak (tag threshold 100)

Fig. 6 Histone modifications around STAT1 peaks. a Distribution of three histone marks around STAT1 peaks from interferon-γ stimulated HeLa
cells. Note that the histone marks have been assayed in non-stimulated HeLa cells where STAT1 is not supposed to bind to any of its genomic
target sites. b H3K27ac marks around STAT1 peaks in HeLa and other cell types

Ambrosini et al. BMC Genomics  (2016) 17:938 Page 10 of 15



peak annotation table, indicating for each peak the near-
est gene and its relative location to that gene.

Motif studies in peak regions
STAT1 is known to bind to a DNA motif approximately
described by the consensus sequence TTCNNNGAA. If
the peaks found by ChIP-Peak are indeed real binding
sites, one would expect this motif to be over-represented
near the peak center positions. In fact, motif enrichment
analysis is commonly used for benchmarking the per-
formance of ChIP-seq peak finders [47]. The OProf pro-
gram of the SSA server can be used for this purpose. It
returns a graph showing the percentage of sequences
containing a motif in a sliding window along genomic se-
quences aligned on a reference position, in this case the
peak center. Figure 5a shows the motif occurrence pro-
files for TTCNNNGAA for the four different STAT1
peak lists obtained with different tag thresholds. With all
peak lists, we see a clear enrichment of STAT1 motifs
near position zero (the reported peak center). As ex-
pected, the peak height is inversely correlated to the
number of peaks. Note however that in absolute
terms, the number of motif-containing peaks is high-
est in the peak list obtained at the lowest tag thresh-
old 12: 13.7% of 55,921 = 7661 as compared to 25.1%
of 16,332 = 4099 for tag threshold 25.
The OProf server provides access to a large number of

ChIP-seq peak lists, including two STAT1 peak lists
from the ENCODE consortium. Figure 5b shows the
consensus sequence enrichment profiles for the EN-
CODE peak lists together with the two high-threshold
peak lists generated with the ChIP-Seq server. We note
that our peak lists compare favorably to ENCODE
peak lists with similar peak numbers, both in terms
of enrichment (peak height) and positional resolution
(peak width).

For most TFs, a consensus sequence can only provide
an approximation of the true binding motif. Position
weight matrices (PWMs) are generally considered super-
ior tools for describing the binding specificity. The
OProf server provides menu-driven access to PWMs
from several public resources, including a STAT1 matrix
from the JASPAR database [48]. We may wonder
whether an even better matrix could be obtained by ap-
plying a de novo motif discovery program to ChIP-seq
peak regions. To test this, we extract sequences from
position −60 to +60 relative to the peak center positions
from the repeat-masked peak list obtained with tag
threshold 100. The sequences can be transferred via
copy-paste to the MEME-ChIP server. Since we expect
the STAT1 binding motif to be palindromic, we restrict
the search to palindromic motifs. The resulting PWM is
shown in Additional file 1: Text S4.
Figure 5c shows motif enrichment profiles for the

STAT1 consensus sequence, the JASPAR matrix, and the
de novo generated matrix. All motifs were searched at an
equal random discovery rate, which is a condition for
fair comparison. Among the two PWM-based motifs, we
note a slightly better performance of the JASPAR matrix
suggesting that this PWM is near-optimal.

Exploring the genomic context of STAT1 peaks
ChIP-Cor enables the user to generate aggregation plots
(APs) for peak lists with a great variety of target features.
We first investigate whether the STAT1 binding sites are
associated with active or repressive histone marks. Since
the STAT1 binding experiment was carried out in HeLa
cells, we choose histone modification data from the same
cell type generated by the ENCODE consortium. Specific-
ally, we are going to test an active promoter mark
(H3K4me3), an active enhancer mark (H3K27ac) and a re-
pressive chromatin mark (H3K27me3). Remember in this

Fig. 7 High resolution aggregation plots for in vivo occupied STAT1 sites. a Single-base resolution phyloP profile around STAT1 motifs aligned with
the sequence Logo of the JASPAR STAT1 matrix. Note the reduced conservation at the weakly conserved central base of the near-palindromic STAT1
motif. b Occurrence and distance preference of a second STAT1 motif downstream of an in vivo bound motif. The control set consists of motif
matches outside STAT1 peak regions. The MEME-ChIP derived PWM was used for this analysis
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context, that STAT1 peaks were discovered in HeLa cells
that were stimulated with interferon-γ. On the other hand,
the histone modification maps from ENCODE were ob-
tained from non-stimulated cells, in which STAT1 is not
supposed to bind to any genomic target sites. The results
are shown in Fig. 6a. We see that STAT1 peaks fall into
regions of about 500 base-pairs which are 15-fold enriched
in H3K27ac and 7-fold in H3K4me3 compared to the
background level. Conversely, no enrichment is seen for
H3K27me3 in the vicinity of STAT1 peaks. These results
suggest that STAT1 binds primarily to regions that are
already in an active chromatin state before interferon-γ in-
duction. Note further the bimodal distribution of the ac-
tive histone marks with maxima symmetrically positioned
on either side of the peak center. This may indicate that
STAT1 preferentially binds to target sites that are
nucleosome-free in unstimulated cells.
We may wonder whether genomic regions bound by

STAT1 in HeLa cells are also in an active state and
nucleosome-free in other cell types. To answer this
question, we generate APs for H3K27ac in the embry-
onic stem cell line H1-hESC and the leukemia-derived
cell line K562 (Fig. 6b). We see an approximately two-
fold higher enrichment in HeLa cells over K562 and an
almost flat H3K27ac profile in H1-hESC, suggesting a
substantial degree of tissue-specificity of the regulatory
regions that are bona fide accessible to STAT1 by virtue
of their chromatin state.
In addition, we may explore DNase I hypersensitivity,

sequence conservation, and population variation data
near STAT1 sites (in Additional file 1: Figure S2). The
results of such an analysis can be summarized as follows:
STAT1 peaks occur preferentially within DNase hyper-
sensitive regions of up to 500 bp. Increased cross-
species conservation is observed in a slightly narrower
region of about 300 bp. Consistent with this finding, we
see depletion of indel variation in the same region. How-
ever, contrary to expectation, there appears to be no de-
pletion of common SNPs.

High resolution aggregation plots for bound PWM matches
According to the motif occurrence analysis (Fig. 5), our
peak lists have a positional precision of ±50 bp. Aggrega-
tion plots of potentially higher resolution could be ob-
tained by using the STAT1 motifs found in peak regions
as anchor points. We use the SSA program FindM to
generate a genomic coordinate list of STAT1 motifs
(JASPAR PWM matches) that occur within 75 bp from the
STAT1 peak center position. To generate a random control
set, we also collect PWM matches from genomic regions
far downstream of the peak regions (+10000 to +12000
relative to the peak center). The size of the control regions
has been chosen such as to generate a STAT1 motif list of
approximately the same size.

Figure 7a shows single base resolution plots for se-
quence conservation using PhyloP scores from the UCSC
Genome Browser database. Also included in the figure is
the sequence logo of the STAT1 matrix aligned with the
motif location on the horizontal axis. We see increased se-
quence conservation within the 9 bp regions that make up
the STAT1 core motif. As expected, the center position,
which is essentially unconstrained, is not more conserved
than the flanking regions. Note further that the random
control sites, most of which are presumably not bound by
STAT1, show a much lower degree of sequence conserva-
tion which furthermore does not correlate with the col-
umn heights in the sequence logo.
Lists of exact motif coordinates rather than fuzzy peak

center positions are also useful to investigate interac-
tions between sequence motifs. Here we ask the ques-
tion whether in vivo STAT1 binding motifs preferentially
occur as pairs separated by a characteristic distance from
each other. Figure 7b shows a STAT1 motif autocorrel-
ation plot, i.e. a single-base resolution occurrence profile
of STAT1 PWM matches downstream of in vivo occu-
pied STAT1 motifs. We see a narrow peak (±2 bp) cen-
tered 21 bp downstream of the in vivo bound motifs
which is absent in a plot generated with the control set.
This previously observed preferential occurrence of
STAT1 binding site pairs at a center-to-center distance
of two helical turns [22] could be explained by a tetra-
meric binding mode experimentally documented for
some members of the STAT1 family.

Comparison of the ChIP-seq server with other resources
A comprehensive survey of all currently available soft-
ware resources for ChIP-seq data would be beyond the
scope of this article. We therefore deliberately restrict
our comparison to similar resources meeting two cri-
teria: (i) being available over a web interface (ii) and in-
cluding applications that accept a read alignment file in
BED or BAM format as input. This excludes software
packages which require a local installation (see Back-
ground Section), web-based resources supporting only
downstream analysis after peak finding, e.g. EpiExplorer
[49] or ChIPseek [50]. A comparison of the features and
services offered by the remaining resources is given in
Additional file 1: Table S3.
The Galaxy-based Cistrome platform comes perhaps

the closest to our resources. Like the ChIP-Seq server, it
provides access to a large server-resident collection of
public data. For transcription factors, ChIP-seq data are
only offered as peak lists, not as files containing the
coordinates of mapped sequence tags. Cistrome offers
additional statistical analysis tools and further supports
RNA-seq data analysis. The other three Galaxy servers,
Galaxy main [51], Nebula and Galaxeast offer read map-
ping as an additional service and thus enable users to
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start with raw sequence files. Nebula is our preferred re-
source for peak annotation. In addition, it serves as a
web interface for a number of more advanced in-house
developed programs by the Nebula team.
Among the non-Galaxy based resources, GeneProf [52]

and HTStation [53] offer the most comprehensive ChIP-
seq data analysis services. GeneProf provides access to a
large database of experiments and precomputed results.
Workflows are displayed through an intuitive graphical
interface enabling users to download the input files, inter-
mediate data and final results via clickable icons. HTSta-
tion offers a completely automatized ChIP-seq data
analysis pipeline in batch mode, including quality control,
peak finding and DNA motif discovery with MEME-ChIP.
ColoWeb [54] is a more specialized resource primarily de-
signed to make APs with server-resident histone modifica-
tion data and TSSs or ChIP-seq peaks as anchor points.
W-ChIPeaks [55] is essentially a web-based peak finder.
Compared to the ChIP-Seq web server design, the

Galaxy platform offers a number of generally useful func-
tionalities such as the possibility to store private data on
the server side, and to save workflows for later use with
new data. Consistent with the guiding principles of the
ChIP-Seq command line tools, we have chosen a lighter
design. The main goal is to offer users the opportunity to
explore a large number of public data sets rapidly and in a
highly interactive manner. The direct navigation buttons,
which connect web server output pages to input forms,
allow users to carry out complex analysis tasks with a
minimal number of mouse clicks. For instance, after
importing an alignment file in BAM or BED format via
the ChIP-Convert page, it takes less than one minute (and
only three mouse clicks) to extract peaks and to make a
motif enrichment plot of the kind shown in Fig. 5.

Conclusions
We have presented in some detail the ChIP-Seq web ser-
ver, the command-line programs behind the server, and
the data back-end called MGA repository. The three re-
sources are designed to function together. Nevertheless,
the command-line tools and MGA repository can be
viewed as independent resources distributed via different
channels and potentially useful to different researchers.
The command line tools may fill gaps in the software rep-
ertoire of a computational genomics group. The MGA re-
pository is to our knowledge the largest ChIP-seq data
collection made available in a completely standardized
format, and for this reason may also be appreciated
by computational biologists. The web server is prob-
ably appealing to a more diverse user community,
ranging from bench biologists primarily interested in
analyzing their own data, to pure in silico biologists
investigating the principles of gene regulation by ex-
ploring large public data sets.

By providing access to a rich public data collection,
the ChIP-Seq server is also ideally suited as an educa-
tional tool. Teachers can illustrate technical characteris-
tics of ChIP-seq data as well as biological phenomena
revealed by this technology with a great variety of real
data examples. Students and prospective users of ChIP-
seq assays have the opportunity to get a feeling for the
data and learn about analysis methods by re-analyzing
data and reproducing results from landmark papers.
Unlike most other resources, the ChIP-Seq server is an

open system designed to be used in conjunction with
other web servers or locally installed software packages.
The creation of a comprehensive public data analysis
platform has never been our objective. Neither will it be
our policy in the future to add functionalities that are of-
fered elsewhere. Rather we will continue to promote
interoperability with other resources by supporting new
data exchange formats as they become available. Support
of reproducible computational research is another guid-
ing principle of our development efforts. We will take
any measures to make sure that the methods behind our
web servers are transparent and that any result returned
can be reproduced from the Unix command line with
data files that can be downloaded from the MGA reposi-
tory and publicly available open source software.
The extension and curation of the public data collec-

tion at the back-end of the server will be a high priority
in future development efforts. While it is clear that we
will not have the resources to comprehensively mirror
all future public data sets, we will try to offer a balanced
mixture of data sets from high impact papers and large
consortium efforts responding to the demand of a di-
verse user community. Specifically, we plan to expand
the hitherto somewhat neglected data collections for
invertebrate and plant species. As a second priority, we
intend to enhance the usability of our resources by or-
ganizing hands-on courses for prospective users at least
once a year, and by extending the collection of tutorials
and other E-learning tools posted on our website. Briefly,
our mission continues to be making ChIP-seq data more
usable and more widely used.

Additional file

Additional file 1: Supplementary Material: Texts S1–S4, Figures S1–S2,
Tables S1–S3. (PDF 1043 kb)
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