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Abstract

Background: Resistance gene analogs (RGAs), such as NBS-encoding proteins, receptor-like protein kinases (RLKs)
and receptor-like proteins (RLPs), are potential R-genes that contain specific conserved domains and motifs. Thus,
RGAs can be predicted based on their conserved structural features using bioinformatics tools. Computer programs
have been developed for the identification of individual domains and motifs from the protein sequences of RGAs
but none offer a systematic assessment of the different types of RGAs. A user-friendly and efficient pipeline is
needed for large-scale genome-wide RGA predictions of the growing number of sequenced plant genomes.

Results: An integrative pipeline, named RGAugury, was developed to automate RGA prediction. The pipeline first
identifies RGA-related protein domains and motifs, namely nucleotide binding site (NB-ARC), leucine rich repeat (LRR),
transmembrane (TM), serine/threonine and tyrosine kinase (STTK), lysin motif (LysM), coiled-coil (CC) and Toll/
Interleukin-1 receptor (TIR). RGA candidates are identified and classified into four major families based on the presence
of combinations of these RGA domains and motifs: NBS-encoding, TM-CC, and membrane associated RLP and RLK. All
time-consuming analyses of the pipeline are paralleled to improve performance. The pipeline was evaluated using the
well-annotated Arabidopsis genome. A total of 98,5, 85.2, and 100 % of the reported NBS-encoding genes, membrane
associated RLPs and RLKs were validated, respectively. The pipeline was also successfully applied to predict RGAs for 50
sequenced plant genomes. A user-friendly web interface was implemented to ease command line operations, facilitate
visualization and simplify result management for multiple datasets.

Conclusions: RGAugury is an efficiently integrative bioinformatics tool for large scale genome-wide identification of

RGAs. It is freely available at Bitbucket: https://bitbucket.org/yaanlpc/rgaugury.

Keywords: Resistance gene analog (RGA), Nucleotide binding site (NBS), Receptor like protein (RLP), Receptor like

kinase (RLK), Genome-wide prediction, Pipeline

Background

Aside from physical and chemical barriers, plants pro-
tect themselves from pathogen infections by employing
a sophisticated biochemical immune system composed
mainly of two layers. The first layer is conferred by cell
surface pattern-recognition receptors (PRRs) that detect
general elicitors pathogen/microbe-associated molecule
patterns (PAMP/MAMPs), known as PAMP-triggered
immunity (PTI). The defence could be overcome by spe-
cific pathogen effectors [1, 2]. Plants have also evolved

* Correspondence: Frank.You@agr.gc.ca

'Morden Research and Development Centre, Agriculture and Agri-Food
Canada, Morden, MB R6M 1Y5, Canada

Full list of author information is available at the end of the article

( BioMed Central

other types of receptors called resistance (R) proteins
that recognize specific effectors and elicit a robust
counter-attack system termed effector-triggered immun-
ity (ETI) [3]. This second response layer corresponds to
a gene-for-gene interaction [4].

Resistance gene analogs (RGAs) comprise both PRRs
and R-genes and, most have conserved domains and
motifs [5]. The majority of characterized PRRs are either
surface-localized receptor-like protein kinases (RLKs) or
membrane associated receptor-like proteins (RLPs) [6-8].
RLKs possess an extracellular sensing domain, a trans-
membrane (TM) region and an intracellular protein
kinase, containing two types according to the domain
structure, leucine rich repeat (LRR) type, such as FLS2 [9],
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EFR [10] and XA21 [11], and, lysin motif (LysM)-type,
such as CERK1 [12]. RLPs have similar domain architec-
ture to RLKs except for the absence of a kinase domain in
their intracellular region [13], such as Cf-9 (LRR-type)
[14], Eix1 and Eix2 (LRR-type) [15], CEBiP (LysM-type)
[16]. R-proteins or effector-recognition receptors are
described as intracellular immune receptors and most
belong to nucleotide-binding site-LRR (NBS-LRR or NLR)
class [17]. Seven domains or motifs may be found in
R-proteins: Toll/Interleukin-1 receptor (TIR), coiled-coil
(CQ), leucine zipper (LZ), NBS, LRR, TM and serine-
threonine kinase (STK) [18]. Based on these domains,
R-proteins are categorized into five main classes: (1)
CC-NBS-LRR (CNL), (2) TIR-NBS-LRR (TNL), (3) RLKs,
(4) RLPs and (5) other variants [19].

Pyramiding of plant resistance genes in new cultivars
is the most effective and environmentally friendly
approach for plant disease control and reduction of yield
losses. Development of diagnostic molecular markers as-
sociated with disease resistance is a prerequisite for
molecular resistance breeding. Marker saturation in the
vicinity of the target resistance gene is a critical step for
mapped-based or positional cloning of R-genes which
results in the development of diagnostic markers [20].
RGAs-based marker development strategies have been
successfully applied for the development of diagnostic
markers for orange wheat blossom midge and wheat
stem rust resistance genes [21, 22]. This strategy involves
four iterative steps: (1) identification of genome-wide
RGAs, (2) identification of potential RGA candidates in
the vicinity of the target resistance gene using compara-
tive genomics analysis, (3) design of SNP markers for
candidate RGAs, and (4) marker evaluation using bipa-
rental genetic populations and/or association panels.
Therefore, the identification of genome-wide RGAs is a
useful genomic resource for fine-mapping and cloning of
resistance genes and, for marker development for resist-
ance breeding.

To date, hundreds of NBS-LRR, RLK and RLP genes
have been reported in plants [13, 23-27]. In these re-
ports, RGAs were detected using several individual com-
puting programs to predict related domains and/or motifs
followed by manual or semi-automated summarization of
the results with custom scripts. These programs include
BLAST [28], Hmmer3 [29], InterProScan5 with Pfam and
SMART databases [30, 31], Phobius [32], TMHMM [33],
pfam_scan [34], and nCoils [35]. The diversity of tools and
parameters used in these studies makes it impossible to
properly compare their outputs [5]. In addition, tools,
such as nCoils, Phobius and pfam_scan, do not have
multiple-threading features or are not optimized for large
datasets, limiting their performance in genome-wide ana-
lyses. As the number of sequenced genomes increase,
rapid and accurate RGA identification will benefit genome
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annotation endeavours. Here, we developed a comprehen-
sive pipeline to address these shortfalls. Our primary
objective was to develop an efficient and integrative pipe-
line tool to identify all known types of RGA candidates
from genome-scale datasets, with a user-friendly interface
and, that would be fully integrated from dataset to
summarization. The pipeline, which we named RGAug-
ury, was validated using the well-annotated Arabidopsis
genome data and successfully applied to 50 sequenced
genomes for comparative analysis.

Implementation

Pipeline design

NBS and TM-CC containing proteins and membrane as-
sociated RLPs and RLKs belong to the main four known
RGA families [5], and were thus included in the current
version of RGAugury. RGA identification generally
includes two basic steps: the identification of all con-
served domains and/or motifs from protein sequences
translated from gene sequences, followed by the analysis
of the domain and/or motif composition including the
classification of the genes into one of the four known
types of RGAs based on such domain and/or motif
structures. To improve the computing performance for the
genome-wide identification of RGAs, three additional
solutions were implemented in the pipeline: (1) an initial fil-
tering of RGA candidates to remove a large portion of non-
RGA genes, (2) parallel computing for time-consuming
calculations, and (3) selection of the most efficient protein
databases for domain detection. The design and the work-
flow of the pipeline are summarized in Fig. 1 and described
in the following sections.

Initial filtering of RGA candidates
Because RGAs occupies a small percentage of the total
genes in a genome, initial filtering to remove non-RGA
genes can dramatically reduce the number of genes for
the downstream domain/motif detection which saves
considerable computing time. To do so, we used
BLASTP to identify potential RGA candidates against an
RGA database called RGAdb (see description below).
The BLAST+ package was selected for sequence align-
ment as it outperforms BLAST in calculation power
under the same conditions [36]. In the initial step, the
input protein sequences are aligned against RGAdb by
BLASTP using an E-value cut-off of le-5 (this E-value
cut-off may be adjusted according to different species).
Non-RGA proteins are filtered out (Fig. 1). Based on the
analyses of 50 sequenced plant genomes, an average of
76.4 % of the annotated genes were removed, signifi-
cantly abridging the downstream analysis time.

RGAdb was constructed using protein sequences and
their annotations from the NCBI non-redundant protein
database (nr) (http://www.ncbi.nlm.nih.gov/), plant
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Fig. 1 Workflow of RGAugury. The pipeline was designed to use protein sequences to detect conserved domains and motifs found in genes
involved in plant resistance and identify RGAs by integrating results generated from five programs: BLAST, InterProScan, pfam_scan, nCoil and
Phobius. The annotated candidates for four different RGA types are exported as plain files. Analyses performed in parallel mode are labelled in
blue. Intermediate results are indicated by a dashed-line box. GFF3: Generic Feature Format version 3; CC: coiled-coil; LRR: leucine-rich repeat;
NB-ARC: nucleotide binding adapter shared by APAF-1, R gene products and CED-4; STTK: serine/threonine and tyrosine kinase; LysM: lysin motif;
TM: transmembrane

resistance gene database (PRGdb, http://www.prgdb.org)
[19]) and other cloned R-genes. Sequence entries were
retrieved from nr with the key words ‘resistance’ and
‘disease’. Disease-irrelevant entries such as resistance to
aluminum, drought, cold, DNA-damage, herbicide and
UVB were removed. A total of 14,906 disease resistance
related sequences were retained. In addition, ‘contrib-
uted; ‘putative’ and ‘references’ entries from PRGdb were
merged and the resulting dataset was filtered to remove
redundant and non-annotated entries. As a result,
44,109 entries from PRGdb were appended into RGAdb.
A few NBS encoding proteins from wheat and Brachypo-
dium were also added into RGAdb [37-39]. Finally
RGAdb contains 59,597 entries which were derived from

more than 300 plant species (Additional file 1) and 80 %
of the database entries are NBS coding proteins, RLKs,
RLPs, MLO- and RPW-like proteins. In addition, this
database will be regularly maintained to remove irrele-
vant entries and add new RGA entries.

Domain and motif detection

The initial filtering results in a reduced set of potential
RGA candidates for the downstream domain and motif
detection. There are seven RGAs-related domains and
motifs, including NB-ARC or NBS, LRR, TM, STTK,
LysM, CC and TIR in proteins. To detect them, four
third-party tools were chosen and integrated into the
pipeline. nCoils program was used to identify the CC
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domain present in CNL, CN and TM-CC types [35].
Minor modifications on the original source code of
nCoils were made under its redistribution permission
to facilitate the RGAugury pipeline to call nCoils
through command-line. For detection of the NB-
ARC domain, the pfam_scan toolkit was preferred
because it outperformed InterProScan according to
the test results obtained using the Arabidopsis gen-
ome data (data not shown). In addition, unlike Inter-
ProScan, the P-value parameter in pfam_scan is
adjustable offering flexibility for the adjustment of
the P-value cut-off across plant species. However,
InterProScan was chosen to identify LRR and LysM,
which are two components of RLPs and RLKs that
play a role in pathogen signal recognition [16]. Inter-
ProScan is also suitable for the detection of the
STTK domains of RLKs [25, 40—42]. Two tools, Phobius
[32] and TMHMM [33], are available for TM domain
identification but Phobius was elected because it per-
formed better than TMHMM [32]. RGAugury’s configur-
ation file can be easily modified to add any additional
domains or motifs for detection, thus offering flexibility
and extendibility.

InterProScan is a protein domain identifier that uses
up to 14 databases for detection [43]. The accuracy and
computing performance depend on the number and
nature of the databases used for analysis. Pfam, Gene3D,
SMART, Superfamily and the external database Panther
were chosen for RGA domain detection based on accur-
acy and computing performance for the detection of
LRR, LysM and STTK domains/motifs (data not shown).
Three modes for database selection are provided in the
pipeline. The default ‘Quick’ mode uses only Pfam and
Gene3D which can identify most domains and motifs
from input protein sequences. In the ‘Deep’ mode,
Superfamily and SMART are also included for domain
detection. As a consequence of the additional databases,
the ‘Deep’ mode may perform slightly more slowly but
this reduction in performance must be weighed against
the accuracy and completeness of the results coveted.
Differences between the two modes were mainly in the
numbers of identified proteins with LRR motifs. The
third mode is called ‘Free’ mode. This mode allows users
to select one or more databases from a list. This mode is
usually intended for result confirmation but can also be
of use in custom applications. Here, the Panther (Protein
Analysis Though Evolutionary Relationships) [44] data-
base is introduced to the pipeline. Panther is a large
protein database for comprehensive protein evolu-
tionary and functional classification that contains
more than 12,000 protein families from 104 se-
quenced genomes [45]. Our test results indicated
that Panther would require huge calculation resource
upon CPU threads for genome-scale protein analysis,
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which may take days to weeks depending on the in-
put sequences. Thus, it is not suitable for genome-
scale RGA identification but it can be accessed in
the ‘Free’ mode for specific purposes such as the
confirmation of small numbers of identified RGA
candidates for example.

RGA identification

Once all domains and motifs are identified from the
input protein sequences, RGAugury creates a table that
lists the RGA candidates initially identified by BLASTP,
along with their identified domains and coordinates on
genes. The RGA identification module was developed to
classify genes as potential RGAs and to classify them
into specific RGA families (Fig. 2). First, the program
classifies genes containing an NB-ARC or a TIR domain
into the NBS encoding family. Genes that contain a TM
domain may belong to the RLP, RLK or TM-CC families
depending on the presence of other domains in the gene
structures. If no NB-ARC, TIR or TM is observed, the
gene is discarded as a non-RGA. The NBS-encoding
gene family members are further divided into several
subgroups according to their domain architecture,
namely NBS, CNL, TNL, TN, CN, NL, TX and
OTHER that may have chimeric domain/motif archi-
tecture. Here C, N, L, T and X represent CC, NBS or
NB-ARC, LRR, TIR and unknown domains, respect-
ively. For example, a gene with CC, NB-ARC and
LRR domains is classified in the CNL subgroup. How-
ever, a gene with both TIR and CC domains ends up
in the OTHER subgroup. In this case, a user needs to
manually check this unexpected domain combination
using the exported domain information. A gene with
only an NB-ARC domain would require confirmation
by InterProScan.

Data input and result output

The command-line pipeline requires three parameters.
The first parameter is a protein sequence file in FASTA
format from either a whole genome annotation project
or manually annotated protein sequence data. The
second one is the P-value cut-off for the initial RGA fil-
tering using BLASTP. The default value is set to le-5.
The last parameter informs on the database(s) to be
queried for domain detection using InterProScan.
RGAugury provides an optional parameter for specifying
a companion Generic Feature Format (GFF3) or Gene
Transfer Format (GTF) file when they are available.
GFF3 or GTF files are helpful to draw RGA distribution
plots using CViT [46] and draw gene and RGA domain
structure plots. For most sequenced plant genomes,
GFF3 annotation files can be downloaded from Phyto-
zome [47].
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Processing files derived from domain detection step
and final RGA identification results are exported to plain
text files. When a GFF file is provided, distribution plots
of RGA families on chromosomes and the gene and
domain structures for each RGA candidate are also
generated.

Implementation of the command-line version

A single command-line pipeline program was written in
Perl to seamlessly process all analyses. As domain detec-
tion for genome-scale protein sequences is computation-
ally intensive, performance was a critical factor considered
during the design of RGAugury. Benefitting from the
development of programming techniques and hardware,
parallel computing can significantly boost large-scale data
analysis. To parallel heavy analyses, a Per]l module,
tool.pm, which invokes the fork function to parallel the
execution of BLAST searches in the initial RGA filtering
and domain detection, was implemented.

Web interface

To ease the command-line operations, a user-friendly
web interface was designed and implemented using PHP
and Java script (Fig. 3a). The necessary FASTA format-
ted protein sequences can be copied and pasted into the
sequence text box or uploaded from a sequence file. A
GFFS3 file corresponding to the input protein sequences
is optional but recommended. Databases for InterProScan
can be selected through one of three modes: ‘Quick; ‘Deep’
or ‘Free’ (flexible selection of up to five available databases).

The default P-value cut-off for initial RGA filtering was set
to le-5 but can be altered at user’s wish.

A project name is used as an intuitive ID for project
management purposes. A ‘Job List Status’ page is dynam-
ically generated upon project submission or following a
mouse click on the ‘Status of Submitted Projects’ link
(Additional file 2: Figure S1A). Finished jobs and current
status of jobs being processed are displayed. Finished job
are marked with the status “complete” in green that can
be updated with the “Check” link to the ‘Results and
Summaries’ page that shows the summary information,
such as the numbers of RGAs and the detailed domain
structure thumbnails for individual RGAs (Fig. 3b). The
‘Results and Summaries’ page also provides a link to
download intermediate and final result files. All RGA
candidates listed can be browsed. A search box is pro-
vided to query the candidates using full or partial letters
or numbers from the table. For each RGA, an individual
page will be generated by clicking on the Gene Structure
Viewer (GSV) icon to show the details of the gene struc-
ture (Additional file 2: Figure S1B). GSV also provides
links to the EnsemblePlants and GenBank websites for
the genes that are available in these two databases, a
useful feature for accessing additional gene information.
When a GFF3 file is submitted along with the protein
sequences, figures of RGA distribution on chromosomes
are shown by clicking on the “Whole genome RGA dis-
tribution can be viewed’ link on Results and Summaries
page (Additional file 2: Figure S1C).

The web version of RGAugury provides a new feature
for InterProScan version check. When InterProScan
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Fig. 3 Web user interface pages of RGAugury. a The main page of
RGAuguary for data input. All parameter values required in the
command line version are specified directly on this page. Only
protein sequences in FASTA format are required. A GFF3 file
corresponding to the input protein sequences is optional but
recommended. Databases for InterProscan can be selected by
choosing either a predesigned ‘Quick’ mode or a ‘Deep’ mode. The
default E-value cut-off for the initial RGA filtering with BLASTP is
Te-5. b The RGA prediction result summary page

runs on a web server, the web program will automatic-
ally check over the Internet whether the local InterProS-
can and its domain databases are up-to-date. If not, the
web program pop-up dialog box reminding the user to
update the software and its databases. In addition, de-
tailed help pages are provided and synced with the
RGAugury Bitbucket Wiki page (https://bitbucket.org/
yaanlpc/rgaugury/wiki). Any updates on the Wiki page
will also be reflected on the web help pages.

The RGAugury web program provides a project man-
agement function. Users can cancel executing jobs or
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delete finished projects from the server. Overall, the web
version of RGAugury provides flexibility, convenience
and interactive functionality over the command-line
pipeline without compromising the RGA identification
capabilities. The RGAugury web program can run on an
HTTP server such as Apache. As hours of computing
time are needed to finish a genome-scale RGA predic-
tion, RGAugury is not suited for installation on a public
web server. However, users are advised to download the
pipeline and its web program from Bitbucket (https://
bitbucket.org/yaanlpc/rgaugury) and install them in
users’ local servers which can be used through intranet.

Result and discussion

RGA identification accuracy

Case studies were performed to test the prediction
accuracy of the RGAugury pipeline. The protein se-
quences of the well annotated Arabidopsis genome
(TAIR 10) [13, 25] were used for analysis. A total of 207
NBS-encoding genes were previously reported [27] but
14 of them were later considered rejected in TAIR1O0 as
a consequence of erroneous annotations. The remaining
193 genes were used as a test data set for NBS-encoding
genes. All protein sequences were downloaded from the
NIBLRRS project website (http://niblrrs.ucdavis.edu). A
total of 190 (98.5 %) out of 193 NBS-containing proteins
were predicted and validated by the RGAugury pipeline
(Table 1, Additional file 2). The three proteins with
inconsistent prediction were AT5G45510, AT5G17950
and AT3G26470. AT5G45510 and AT5G17950 had an
LRR domain but lacked an NB-ARC domain, while
AT3G26470 was reported as RPWS, an oth-R type of
resistance gene [48] that was presumed to have a TM
and a CC domains rather than a NB-ARC domain [49].
As such, these three genes may have been originally
incorrectly annotated [27]. If this inference is true, then
the prediction accuracy of RGAugury is 100 % for NBS
encoding genes in Arabidopsis. To further test RGAug-
ury’s ability to detect genes harboring NBS motifs, all
27,416 unique Arabidopsis protein sequences (TAIR10)
were processed through the pipeline. Besides the same
190 proteins mentioned above, an additional 15 NBS-
encoding genes were predicted (Additional file 2). Of
these newly predicted RGA genes, 6 NB-ARC domain

Table 1 Evaluation of RGA identification accuracy with
RGAugury using the Arabidopsis thaliana dataset (TAIR10)

RGA type  No. of known RGAs  No. of RGAs identified % identified
NBS 193 190 985
RLP 54 46 85.2
RLK 456 460 100.0
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containing genes were already annotated as disease
resistance genes in TAIR10, the remaining 9 TX type
genes were classified as unknown functions.

A similar evaluation was performed for RLP- and
RLK-type RGAs. The previous report [50] indicated that
the Arabidopsis genome encodes 57 RLPs, of which
three have no sequence in TAIR 10, precluding their fur-
ther analysis. Out of the remaining 54 RLPs, 46 (85.2 %)
were predicted and 8 remained unclassified as a conse-
quence of the absence of a TM domain (Table 1, Additional
file 3). For RLKs, a total of 608 members were reported in
the Arabidopsis genome, but only 75 % (456) of them were
claimed to be associated with membranes [25]. RGAugury
validated all 456 membrane-associated RLKs and identified
additional four RLKs (Table 1, Additional file 4). The re-
cently cloned wheat stem rust disease resistance genes sr33
and sr35 were also validated by RGAugury as NBS-LRR re-
sistance genes [37, 38]. These case studies demonstrate that
RGAugury accurately predicts RGAs on a genome-wide
scale, and can be used for R-gene annotation.

Computing performance and multiple thread
optimization

RGAugury can run in either ‘Quick’ or ‘Deep’ mode
which rely on the number of databases used for domain
detection. Differences between the two modes resided
mostly in the numbers of identified LRR containing pro-
teins (Table 2). For example, LOC_Os11g42590.1, an NL
type in rice, was identified as NBS type using the ‘Quick’
mode but as an NL type using the ‘Deep’ mode. The
LRR domain in this gene can be identified by either
Superfamily or SMART database through InterProScan.
However, these differences were minor in most cases
(Table 2). Thus, the ‘Quick’ mode is recommended for
fast RGA annotation.

Though BLASTP has its own multiple thread param-
eter (-n), the paralleled tool, tool.pm, developed herein,
outperformed it. Two threading methods were compared
using 40 CPUs. BLASTP searches were performed for
5000 and 10,000 protein sequences randomly selected
from the Arabidopsis genome against RGAdb using two
threading methods (Additional file 5). An improvement
of 3.8- and 3.4-fold in execution speed for the two data-
sets, respectively, was observed for the toolpm module
when compared to the thread parameter (-n) of
BLASTP. Speed improvement of the domain detection
programs nCoil, Phobius and pfam scan theoretically
depends on the called CPU numbers because they lack
embedded multiple threads function. Thus, application
of toolpm to these programs significantly reduces the
time needed for domain detection, making it possible to
shorten computing time for genome-scale RGA identifi-
cation to mere hours.
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To further evaluate the performance of RGAugury, we
predicted RGAs for 50 sequenced plant genomes, in-
cluding 44 angiosperm species and 6 green algae. All
protein sequences were downloaded from the Phyto-
zome (ver11.0) database website [47]. With both ‘Quick’
and ‘Deep’ modes, the processing time was highly correlated
with the number of coding genes in genomes (R* = 0.76 for
the ‘Quick’ mode and 0.75 for the ‘Deep’ mode) (Fig. 4).
The total processing time averaged 2.4 h in ‘Quick’ mode.
The ‘Deep’ mode averaged an extra 0.5 h but resulted in the
enhanced prediction of LRR domains in some cases. Maize
(Zea mays) data was not included in the correlation analysis
because only 159 % of the input protein sequences were
retained after the initial BLATP filtering compared with an
average of 23.6 % among these 50 plant genomes, resulting
in significantly fewer hours needed for the downstream
domain identification. In general, RGAugury saves an aver-
age of 76 % time in the downstream domain/motif analysis
if the initial BLASTP filtering step is performed before do-
main detection, demonstrating that the RGAugury pipeline
is efficient for large-scale genome-wide RGA identification.

Large-scale genome-wide RGA identification for compara-
tive analysis

A summary of the RGA prediction results for the 50 se-
quenced plant genomes is shown in Table 2. NBS encod-
ing genes are divided into two major groups based on
their variable N-terminals: TIR and non-TIR [51]. It has
been hypothesized that TNL have never evolved in
monocots [52] or have been discarded during evolution
[51, 53-55]. Tarr et al. [56] developed an indirect
method to search for TNL in monocots and magnoliids
based on degenerate PCR and, they did not observed
any TNL in the studied monocots. Among the 50
genomes studied here, nine belong to three different
monocot orders: Poales (Brachypodium distachyon, Oryza
sativa, Panicum hallii, Panicum virgatum, Setaria italic,
Sorghum bicolor, Z. mays), Zingiberales (Musa acuminata)
and Alismatales (Spirodela polyrhiza). Our RGAugury
prediction of these monocot species did not identify any
TNL type confirming the previous findings (Table 2).
Genes encoding TN or TX proteins were detected in these
monocots but the numbers were smaller compared to
genes predicted to encode other types of NBS motifs and
compared to those from species other than monocots,
implying that TNL may have been discarded during the
evolution in the monocot lineage.

No genes coding for NB-ARC domains were predicted
from the model green algae Chlamydomonas reinhardltii,
Volvox carteri, and Cyanidioschyzon merolae because
TIR and non-TIR NBS encoding genes arose only in the
Plantae [57]. Our prediction results for all six green
algae organisms confirmed this observation (Table 2),
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Table 2 Summary of RGA identification results for 50 sequenced plant genomes

Annota __ Protein '
Species tion  Coding average _NBS encoding RLP RK 1M
Version 9MeS 22 NBS CNL TNL CN TN NL TX  Other ce
P. patens 30 26610 388 28 6 4 4 3 33 6 1 44 240 70
S. moellendorffii 1.0 22,273 381 10 2 o 3 0o 2 2 0 31 182 64
A.trichopoda 10 26846 314 37 14 8 15 2 32 10 1 67 200 64
S. polyrhiza 20 19623 368 11 30 o 3 1 40 30 46 387 71
M. acuminata 1.0 36528 345 11 50 o 7 2 44 3 0 107 530 138
B.distachyon 3.4 34310 376 30 %1 0 25 3 143 2 0 57 672 102
5 O sativa 70 41289 369 4847 221222 0 3938 3 195196 3 0 118 867 158
S P halli 20 37232 368 41 14 0 33 3 1,2 4 0 101 732 125
8 £ P igatum 11 98,007 302 226/221 256/257 O  206/205 2  457/462 6 1 194 1470 218
§ g S.italica 21 35471 31 336 164 0 37 3 181183 2 0 91 700 120
S E S bicoor 21 33032 391 23 183 0 17 2 164 2 1 75 687 128
= O Zmays 30 63480 275 3837 52 0o 23 2 4849 3 1 63 671 161
A. coerulea 11 24,823 407 13 120 0 6 172 3 0 51 474 132
A. halleri 11 25008 380 10 20 47 5 15 30 36 1 70 415 87
M. guttatus 20 28140 396 26024 119421 0 86 2 172474 3 0 58 584 105
S.lycopersicum 2.3 34,727 344 e5/64 6970 19 98 7 9091 12 1 86 512 133
S.tuberosum 34 35119 314 7574 84 33 22 12 147148 19 3 133 513 105
K. laxifiora 11 50461 416 8 48 0 6 21 70 171 72 927 218
E. grandis 20 36349 386 5350 195 181 24 98 238241 128 23 273 1439 172
V. vinifera 10 26346 378 27126 1020103 15 17716 5 148/149 11 6 108 512 127
L usitatissimum 1.0 43471 399 15 21 0 3 18 33 45 9 104 791 211
M. esculenta 61 33033 388 9 156 29 7 2 59 o 6 163 790 172
P.trichocarpa 3.0 41335 385 50 181 95099 14 35/31 170 56 27 208 1057 173
R communis 04 31221 333 27 4647 21 1009 6 47 "7 63 485 137
S. purpurea 10 37,865 402 13 1601161 87 43 3 146 28 10 177 1020 187
C. sinensis 11 25379 382 6160 140 29 65 31 1691170 45 8 187 608 124
C.clementina 10 24,533 415 1110 182 8384 27 1211 90091 25 12 167/168 680 129
C. papaya 04 27584 297 1211 10 4 5 1 2021 5 3 27 200 81
G. raimondii 21 37505 398 5 11 22 19 1 88 12 4 179 910 224
T. cacao 11 209452 391 1716 173 14 13 3 6566 8 0 166/167 640 181
A. lyrata 10 32,657 360 15 32 86 4 20 34 46 16 56 495 125
A. thaliana 100 27416 405 5 39 7o 13 21 33 16 75 517 147
B. stricta 12 27416 392 12 46 136 5 30 60 85 34 98 523 137
B. rapa 13 40492 383 8 36 86 2 20 35 44 13 118 747 179
C.grandilora 1.1 24,805 408 5 12 B 4 14 27 2 6 69 474 133
C. rubella 10 26521 415 6 38 20 3 "3 45 11 o7 53 156
E.salsugineum 1.0 26351 407 10 28 49 3 9 25 9 5 83 483 134
C. sativus 10 21,503 395 3 17 112 0 32 32 6 2 43 402 106
o F. vesca 11 32831 394 26 60 17 8 13 60 127 19 147 500 188
S E 6. max 10 54175 304 333 132 112 6 25 138/140 59 19 241 1235 301
58 £ M.domestica 1.0 63514 372 137 2417244 167 58/55 63 200 136 81 407/408 1317 344
228 M. truncatula 4.0 50894 327 62 2461247 205 15/14 38 187 86 68 2421243 921 193
£ 3 P. vulgaris 10 27197 423 3 158 65 3 " 88 23 16 123 706 149
o < o P. persica 21 26873 409 23 14 89 7 20 122 28 16 157 681 139
C.reinhardti 55 17,741 734 0 0 o o o o 10 26027 150 62
L] V. carteri 20 14971 527 0 0 o o o o o o 10 65 29
.E C.subellpsoidea 2.0 9,629 426 0 0 o o o o o o 16 31 13
o M. pusila CCMP 30 10,660 449 0 0 o 0 o 0 o o 3 8 15
g M.pusilaRCC 30 10,103 485 0 0 o o o o o 0 5 7 21
S O. lucimarinus 2.0 7,796 404 0 0 o o o o o o 1 3 17

Note: Two modes for database selection were used: the ‘Quick’ mode (Pfam + Gene3D) and the ‘Deep’ mode (Pfam + Gene3D + SMART + Superfamily). Results were
separated by a slash if differences existed between the two modes. Plants were sorted by taxonomic groups which are labelled on the left side of the table. A.
coerulea: Aquilegia coerulea; A. halleri: Anemone halleri; A. lyrata: Arabidopsis lyrata; A. thaliana: Arabidopsis thaliana; A. trichopoda: Amborella trichopoda; B.
distachyon: Brachypodium distachyon; B. rapa: Brassica rapa; B. stricta: Boechera stricta; C. clementina: Citrus clementina; C. grandiflora: Capsella grandiflora; C. papaya:
Carica papaya; C. reinhardtii: Chlamydomonas reinhardtii; C. rubella: Capsella rubella; C. sativus: Cucumis sativus; C. sinensis: Citrus sinensis; C. subellipsoidea:
Coccomyxa subellipsoidea; E. grandis: Eucalyptus grandis; E. salsugineum: Eutrema salsugineum; F. vesca: Fragaria vesca; G. max: Glycine max; G. raimondii: Gossypium
raimondii; K. laxiflora: Kalanchoe laxiflora ; L. usitatissimum: Linum usitatissimum; M. acuminata: Musa acuminata; M. domestica: Malus domestica; M. esculenta:
Manihot esculenta; M. guttatus: Mimulus guttatus; M. pusilla: Micromonas pusilla; M. truncatula: Medicago truncatula; O. lucimarinus: Ostreococcus lucimarinus; O.
sativa: Oryza sativa; P. hallii: Panicum hallii; P. patens: Physcomitrella patens; P. persica: Prunus persica; P. trichocarpa: Populus trichocarpa; P. virgatum: Panicum
virgatum; P. vulgaris: Phaseolus vulgaris; R. communis: Ricinus communis; S. bicolor: Sorghum bicolor; S. italica: Setaria italica; S. lycopersicum: Solanum lycopersicum; S.
moellendorffii: Selaginella moellendorffii; S. polyrhiza: Spirodela polyrhiza; S. purpurea: Salix purpurea; S. tuberosum: Solanum tuberosum; T. cacao: Theobroma cacao; V.
carteri: Volvox carteri; V. vinifera: Vitis vinifera; Z. mays: Zea mays
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Fig. 4 Performance of RGAugury. Forty-nine sequenced plant
genomes (Zea mays was excluded, see text) with varying numbers of
protein coding genes were used for RGA identification on a server
embedded with 40 CPUs. Time to complete the processing of the entire
pipeline for each dataset was recorded as a performance measurement.
Performance for the ‘Quick’ mode (Pfam + Gene3D databases) and Deep’
mode (Pfam + Gene3D + SMART + Superfamily) were compared. The dots
and R? value in red represent results for the ‘Quick’ mode and those in
red represent the results for the ‘Deep’ mode

providing additional validation for the RGAugury predic-
tion ability.

Conclusions

We developed a command-line and a web version of an
integrative, efficient and user-friendly pipeline called
RGAugury, for large-scale genome-wide RGA prediction
based on translated protein sequences. Four types of
RGAs, namely NBS-encoding, RLP, RLK and TM-CC
can be predicted. The results from validation data sets
and the 50 sequenced plant genomes demonstrated its
high accuracy and utility.

Additional files

Additional file 1: Contents of the RGAdb database. (XLSX 31 kb)

Additional file 2: Figure S1. Additional web user interface pages of
RGAugury. (A) The Status of Submitted Projects page. (B) Gene and domain
structure page for an identified RGA. Detailed information is included in a
spreadsheet result file. External links to NCBI and EnsemblPlants are
indicated with their respective website logo. (C) RGA distribution on
chromosomes. NBS encoding, RLP, RLK and TM-CC RGAs are represented by
different color bars. ALL represents a combined RGA distribution figure for
the merged data of all four RGA families. (PPTX 359 kb)

Additional file 3: Prediction results for NBS-encoding genes in the
Arabidopsis genome. (XLSX 58 kb)

Additional file 4: Prediction results for RLP genes in the Arabidopsis
genome. (XLSX 11 kb)
Additional file 5: Prediction results for RLK genes in the Arabidopsis
genome. (XLSX 21 kb)
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