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Abstract

Background: The ability to establish root nodule symbioses is restricted to four different plant orders. Soil

actinobacteria of the genus Frankia can establish a symbiotic relationship with a diverse group of plants within eight
different families from three different orders, the Cucurbitales, Fagales and Rosales. Phylogenetically, Frankia strains can
be divided into four clusters, three of which (|, II, lll) contain symbiotic strains. Members of Cluster Il nodulate the
broadest range of host plants with species from four families from two different orders, growing on six continents. Two
Cluster Il genomes were sequenced thus far, both from Asia.

Results: In this paper we present the first Frankia cluster Il genome from North America (California), Dg2, which represents

a metagenome of two major and one minor strains. A phylogenetic analysis of the core genomes of 16 Frankia strains
shows that Cluster Il the ancestral group in the genus, also ancestral to the non-symbiotic Cluster IV. Dg2 contains the
canonical nod genes nodABC for the production of lipochitooligosaccharide Nod factors, but also two copies of the
sulfotransferase gene nodH. In rhizobial systems, sulfation of Nod factors affects their host specificity and their stability.

Conclusions: A comparison with the nod gene region of the previously sequenced Dg1 genome from a Cluster I
strain from Pakistan shows that the common ancestor of both strains should have contained nodABC and nodH.
Phylogenetically, Dg2 NodH proteins are sister to rhizobial NodH proteins. A glnA-based phylogenetic analysis of all
Cluster Il strains sampled thus far supports the hypothesis that Cluster Il Frankia strains came to North America with

Datisca glomerata following the Madrean-Tethyan pattern.
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Background

Nitrogen is the element that most often limits plant
growth. Some prokaryotes can form the enzyme com-
plex nitrogenase to reduce atmospheric dinitrogen and
introduce it into the biosphere. Plants can only access
this source of nitrogen by entering symbioses with
nitrogen-fixing prokaryotes. Root nodule symbioses,
where bacteria fix nitrogen while being hosted inside
plant cells within special organs, the root nodules,
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belong to the most efficient of such symbioses. All plants
able to enter root nodule symbioses belong to a single
dicotyledonous clade, known as the nitrogen-fixing clade
made up from the orders Fabales, Fagales, Rosales and
Cucurbitales [1, 2]. Two groups of nitrogen-fixing soil
bacteria can induce root nodules: rhizobia, a polyphyletic
group of proteobacteria, enter symbioses with legumes
(Fagales) and with one non-legume genus, Parasponia
(Cannabaceae, Rosales). Actinobacteria of the genus
Frankia can induce nodules on a diverse group of plants
from 23 genera from eight different families belonging
to the orders Fagales (Betulaceae, Casuarinaceae and
Myricaceae), Rosales (Elaeagnaceae, Rhamnaceae and
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Rosaceae) and Cucurbitales (Coriariaceae and Datisca-
ceae). The distribution of symbiotic species within this
clade suggests a common origin of the predisposition to
evolve root nodule symbioses assumed to have arisen
only once ca. 100 million years ago [1, 2]. Subsequently
nitrogen-fixing root nodule symbioses evolved several
times independently among the plants with the common
predisposition, their independent origins reflected by
differences in infection pathways as well as nodule struc-
ture and physiology [3].

Based on 16S rDNA phylogeny, the genus Frankia has
been divided into four clusters, three of which contain
symbiotic strains [4]. The non-symbiotic cluster (Cluster
IV) represents a heterologous, very diverse group of
strains that were isolated from nodules but cannot
induce nodule formation. This group is closely related to
rhizosphere strains previously detected only by direct
amplification of 16S rDNA [5]. The three symbiotic clus-
ters more or less correspond to host-specificity groups.
The members of Cluster I can nodulate species of the
three actinorhizal families of the order Fagales except for
the genus Gymnostoma (Casuarinaceae). Cluster III
strains nodulate the actinorhizal Elaeagnaceae (Rosales),
and all actinorhizal genera of the Rhamnaceae
(Rosales) except for the genus Ceanothus, and with
the genera Gymmnostoma (Casuarinaceae) and Morella
(Myricaceae, Fagales). Cluster II strains form
nitrogen-fixing root nodule symbioses with members
of the families Coriariaceae and Datiscaceae (Cucurbi-
tales) as well as all the actinorhizal members of the
Rosaceae (i.e., the Dryadoideae tribe) and Ceanothus
(Rosales). In contrast with strains of Clusters I, III
and IV, so far only one strain of Cluster II could be
cultured, and this strain represents an alkaliphile [6].

Analysis of Frankia genomes has shown a surprising
variation with regard to genome sizes. Strong differences
exist within Cluster I, 5.0 - 5.6 Mb for Casuarina-infect-
ive strains; [7—10] and ca. 7.5 — 7.7 Mb for the others [7,
11-14]). So far, Cluster II genomes are consistently in
the lower size range (5.3—5.6 Mb; [6, 15]). Cluster III ge-
nomes range from 7.6 to 10.5 Mb [7, 16-18], similar to
Cluster IV genomes (6.9 — 10 Mb; [19, 20]). These size vari-
ations have been suggested to reflect differences in sapro-
trophic potential [4]. Cluster II strains display a large host
range and, at least in western North America, low genetic
diversity [21] which might indicate a recent evolutionary
bottleneck. This is interesting since its host genera from the
Cucurbitales, Datisca sp. and Coriaria sp., show a disjunct
distribution [22, 23]. In the case of the genus Datisca, the
Eurasian species Datisca cannabina is found in Pakistan
and northwestern India and in the east Mediterra-
nean, while the American species Datisca glomerata
grows in California and northern Baja California,
Mexico [15, 22].
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As stated above, Frankia Cluster II strains can enter
symbioses with members of the Cucurbitales and of the
Rosales. The most recent common ancestor of the
actinorhizal Cucurbitales, Coriariaceae and Datiscaceae
has been molecular-clock dated to 73 +/- 3 mya [24].
Even if we assume that the symbiosis arose not in the
common ancestor, but in oldest of both families, the
Coriariaceae, the symbiosis would have preceded the
diversification of the crown group of Coriaria. Accord-
ing to Yokoyama et al. [23], the divergence between the
Coriaria species from the Northern and the Southern
Hemisphere can be dated to 63 or 59 million years ago
using fossil-calibrated rbcL and matK molecular clocks.
As for the North American host plants of Frankia Clus-
ter II, [25] date the origin of Ceanothus in California to
16.6—-34.7 mya. The origin of the Dryadoideae tribe of
the Rosaceae is dated to the younger Oligocene
(23.03-28.1 mya; [26]). These data suggest that North
American Cluster II symbioses are significantly youn-
ger than the Cucurbitales symbiosis.

Frankia Cluster II strains could have reached North
America either from South America with Coriaria ruscifolia
[23, 27], or from Asia when Datisca spread from what is
now northern India/Pakistan/Nepal to North-East Asia and
then to western North America following the Madrean-
Tethyan pattern [28]. According to [29, 30] a continuous,
sclerophyllous, dry-adapted flora existed between western
North America (“Madrean”) and Eurasia (“Tethyan”) across
a North Atlantic land bridge during the Ecocene and
Oligocene (55 — 25 mya). This is consistent with the timing
of Datisca speciation: [31] estimated the time of allopatric
speciation that led to the distinction between the Eurasian
D. cannabina and the American D. glomerata to 36.5-50.5
mya and 42 mya based on allozyme data and rbcL
sequences, respectively. In North America, the Frankia
Cluster II microsymbiont of Coriaria ruscifolia or Datisca
sp. could have extended its host range to Ceanothus sp. and
the Dryadoideae.

In all phylogenies including different Cluster II strains,
strains from New Zealand have always been sister to all
other Cluster II strains [16, 21, 32, 33]. Cross-infection
studies showing that Ceanothus sp. and Purshia sp.
could not be nodulated in New Zealand [34] suggest
strong divergence between Frankia Cluster II strains in
New Zealand and in North America. There seems to be
less divergence between Asian and North American
strains, in that a Frankia Cluster II strain sampled from
soil or nodules of Coriaria nepalensis in an area in
Pakistan where both C. nepalensis and D. cannabina are
distributed, can nodulate the Californian Datisca species
D. glomerata [15]. This makes it more likely that Cluster
II Frankia strains in North America originated from
nodules of Datisca sp. which arrived from Asia via the
Bering Strait.
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The first genome of a Frankia Cluster II strain to be
sequenced, Candidatus Frankia datiscae Dgl, originated
from nodules of C. nepalensis in Pakistan [15, 35]. The
second sequenced genome of a Cluster II strain,
BMG5.1, originated from nodules of Coriaria japonica
growing in Japan [6]. Thus, the analysis of a Frankia
Cluster II genome from an area devoid of host plants
from the genus Coriaria could promise novel insights
into the diversity within Cluster II and the differences
between the three symbiotic Frankia clusters. Specific-
ally, the genome of a North American strain promises to
reveal information on the evolution and distribution
of Frankia Cluster II from Asia/New Zealand/South
America to North America.

The evolution of root nodule symbioses involved
the recruitment of mechanisms from the evolutionar-
ily older arbuscular mycorrhizal (AM) symbioses [36].
In legume/rhizobia symbioses, flavonoids in the root
exudates of the host plants induce the expression of
bacterial nodulation (nod) genes leading to the
synthesis of lipochitooligosaccharide (LCO) signal
molecules, the Nod factors. Also AM fungi produce
LCO signal factors [37]. These LCOs are perceived by
plant kinases of the LysM family and activate the
common symbiotic pathway (CSP) that controls both
legume/rhizobia and AM symbioses ([38]; reviewed
by [39]). This CSP is also used for microsymbiont
signaling in actinorhizal symbioses, as shown for D.
glomerata [40] and Casuarina glauca [41, 42]. In
this context, it seems likely that symbiotic signaling
of Frankia strains also involved LCO-like com-
pounds that are perceived by LysM receptor kinases.
However, so far only the genome of Candidatus
Frankia datiscae Dgl has been shown to contain the
canonical nod genes nodABC which in rhizobia are
responsible for the synthesis of the common back-
bone of the LCO Nod factors [15, 35]. The second
Cluster II strain to be sequenced, BMG5.1 did not
contain homologs of the canonical nod genes in the
draft genome [6].

In order to gain more insight into the evolution of
North American Cluster II Frankia strains and to
answer the question whether the presence of the
canonical nod genes in Dgl typical for Cluster II, or
represents an exception, we sequenced the genome of a
Cluster II inoculum from D. glomerata in California.

Methods

Plant and bacterial material

Datisca glomerata (C. Presl) Baill. seeds originating from
plants growing at Gates Canyon in Vacaville, California,
USA. Plant seedlings were grown under sterile condition
to avoid contamination of Framkia strain Dgl which
were growing in the greenhouse. Seedlings were then

Page 3 of 17

transferred to pot filled with autoclaved mixture of soil
and sand, ratio 1:1. Plants were grown in a growth
chamber under a 15 h/9 h light dark cycle and day/night
temperature of 23 °C/19 °C, relative humidity 65 % and
light intensity of 60-100 pEm™s’. A soil sample
containing the uncultured Frankia strain was acquired
under a growing D. glomerata at Gates Canyon,
Vacaville, California. Nine-week old D. glomerata plants
in the growth chamber were inoculated with this infected
soil. Inoculated plants were fertilized with 1-quarter-
strength Hoagland’s medium without nitrogen [43].

Isolation of genomic DNA from isolated vesicle clusters

To isolate the Frankia vesicle clusters from root nodules,
the protocol from Lundquist and Huss-Danell [44] was ap-
plied with some modifications. Root nodules harvested
from D. glomerata were surfaced sterilized in 1 % sodium
hypochlorite for 10 min. Then they were washed with ster-
ile dd H,O. Nodules were homogenized in a mortar in
homogenization buffer (0.05 M Tris-HCI pH 7.9-8, 4 %
(w/v) PVP, 0.1 M KCl, 5 mM EDTA, 0.6 M sucrose,
10 mM Na,S,0,4). The homogenized tissue was poured
over an 80 pm nylon filter and the flow through was
poured over a 16 pm nylon filter. The 16 pm filter was
washed several times with a wash buffer (50 mM HEPES
pH 7.8, 4 % (w/v) PVP, 10 mM EGTA, 10 mM EDTA,
2 mM Na,S,0,) and the cells obtained on the filter were
transferred to a new tube containing pectinase buffer
(10 mM Tris-HCI pH 6, 10 mM NaCl). The cells were in-
cubated with pectinase (Macerozyme R10; Saveen-Werner,
Sweden) at 37 °C for 2 h, shaking slowly (110 rpm). The
vesicle clusters were spun down and resuspend in TES
buffer (0.3 M sucrose, 25 mM EDTA pH 8.0, 25 mM Tris/
HCI pH 8.0). The vesicle clusters were broken using the
ultrasonic homogenizer Sonoplus HD 2070 (Bandelin
Electronic) at 90 % amplitude and 30 % pulsing for 30 s.
The genomic DNA then was extracted using CN solution
(10 % CTAB in 0.7 M NaCl) and phenol/chloroform (1:1).

Sequencing and genome assembly of the Candidatus
Frankia datiscae Dg2 metagenome

The quality of the DNA was assessed by gel-electrophoresis
and the quantity was estimated using the Quant-iT
PicoGreen dsDNA kit (Invitrogen) and the Tecan Infinite
200 Microplate Reader (Tecan Deutschland GmbH, Mainz,
Germany). To obtain the complete genome sequence, a
whole-genome-shotgun PCRfree (Nextera DNA Sample
Prep Kit; [llumina, Munich, Germany) and an 8 K mate pair
library (Nextera Mate Pair Sample Preparation Kit;
Ilumina) were generated based on the manufacturer’s
protocol. After sequencing and processing of the raw data,
a de novo assembly was performed using the GS De Novo
Assembler software release version 2.8 (Roche, Mannheim,
Germany) with default settings. In our approach, we used a
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2 x 300 bp paired end sequencing run. For quality-control
and filtering, a pipeline including trimmomatic (Bolger
et al. [45]), r2cat [46] and contig-length vs. read-count
analysis [47, 48] was implemented. The resulting data set
was manually inspected and improved.

Reference assembly on the Candidatus F. datiscae Dg2
metagenome from the metagenome dataset

Based on contig length vs. read count analysis [47-49]
and on taxonomic profiling by applying LCA [50], the
established dataset was classified as a metagenome
dataset including different Frankia strains, Datisca
glomerata and a low amount of a diverse bacterial
strains. To identify related species of Frankia in the
metagenome dataset, a reference assembly was applied.
For reference assembly, metagenomic contigs were
mapped onto the reference genome Frankia sp. Dgl [15]
by means of r2cat [46]. Mapped contigs and their corre-
sponding reads were extracted and de novo assembled
using the GS Assembler (version 2.8; Roche) with default
settings. Furthermore, automatic gene prediction and
annotation of coding sequences on metagenomic
Frankia contigs was performed within the genome anno-
tation system GenDB 2.0 [51] as described previously
[47, 52, 53]. An in silico gap closure approach was
performed to close the gap between the two nodC
contigs [49, 52, 54, 55].

Nucleotide sequence data for the reconstructed Frankia
sp. Dg2 strains were deposited in the EBI database (acces-
sion numbers FLUV01000001-FLUV01002738). The nod
region was finished manually and therefore separately de-
posited at EMBL (accession number LT622247).

Identification of single-nucleotide polymorphisms in the
Dg2 metagenome

SNP and DIP detection is 1 of the key analyses to
estimate the amount of included strains in a recon-
structed reference sequence out of a metagenome.
Therefore metagenomic reads were mapped on the
reconstructed reference sequence of Framkia sp. Dg2
by applying gsMapper (Roche) using strict settings
(90 % sequence, 100 bp minimal overlap). SNP and
DIP detection was performed by means of Read-
Xplorer [56]. The implemented SNP and DIP detec-
tion in ReadXplorer not only reveals small-scale
evolutionary differences, but also allows analysis of
the resulting functional differences emerging from
polymorphisms. ReadXplorer detects SNPs and DIPs
based on a user-definable minimum percentage of
variation and a minimum count of mismatching bases
in the mappings at the examined position. This allows
the detection of small amounts of underrepresented
strains in a reconstructed reference sequence.
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Phylogenetic analysis and comparison of the
reconstructed Dg2 metagenome to the genomes of
completely sequenced and annotated members of the
genus Frankia

To compare and phylogenetically classify Frankia sp.
Dg2 in relation to completely sequenced and anno-
tated members of the genus Frankia, the comparative
genomics platform EDGAR was applied [57]. The
core genome of all selected strains was calculated by
means of EDGAR and based on all core genes for
each Franmkia strain, phylogenetic distances were
calculated from multiple sequence alignments. A
phylogenetic tree was deduced from concatenated
core gene alignments using PHYLIP [58].

Identification of Frankia genes involved in secondary
metabolite synthesis by applying antiSMASH

antiSMASH [59, 60] is the first comprehensive pipeline
enabling identification of biosynthetic loci covering the
whole range of known secondary metabolite compound
classes. This tool was used to search for secondary
metabolite synthesis clusters in the different available
Frankia genomes. For this approach, all Frankia
genomes were selected and imported in antiSMASH.
The output was in detail manually analyzed for second-
ary metabolite synthesis clusters and compared with
related clusters in our bacteria.

Read-based comparative analysis based on fragment
recruitment

Fragment recruitment approaches were performed as
described previously [61]. Briefly, reads that led to low
abundant SNPs to the Dg2 metagenome sequence were
exported and aligned to Frankia sp. Dgl genome and
Dg2 metagenome sequences by applying blastN [62].
Reads were used for further evaluation if at least 80 % of
a read were aligned to one of the target sequences and if
the identity was at least 55 %. Sequence homology to
Dgl and Dg2 was compared to get better insight into
the taxonomical relationship of this low abundant
Frankia strain.

Average nucleotide identity and genome alignment of
Frankia Cluster Il strains

Average nucleotide identity (ANI) was analysed as de-
scribed previously [63, 64, 65] to determine the relation-
ship between different Frankia genomes.

MAUVE [66] was used to align and to visualize rear-
rangements in the chromosomes of Candidatus Frankia
datiscae Dgl vs. Frankia sp. Dg2 and Frankia sp.
BMG5.1, Frankia alni ACN14a vs. Frankia sp. ACN1%,
Frankia alni ACN14a vs. Frankia sp. QA3 and in Frankia
sp. Ccl3 vs. Frankia sp. BMGb5.23, respectively. The bio-
informatics tool MAUVE including the progressiveMauve
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algorithm was applied with default settings for the com-
parative analysis [67]. Before applying Mauve, r2cat [46]
was used to adapt order and direction of contings.

Protein phylogeny

The sequences encoded by the open reading frames
identified as putative nodH genes from the assembled
Dg2 metagenome (Dg2nodHI1, FDG2_3270; Dg2nodH?2,
FDG2_3293) were each used as a query for a separate
BLASTX search against two databases, the non-
redundant (nr) dataset of GenBank (searched on
2015.12.17), and all genomes available in JGI-IMG
(searched on 2015.12.17). A total of 204 amino acid se-
quences from ten different genera were identified with
similarity of 1e”* or above to at least one of the two pu-
tative orthologs. A total of 25 sequences were collected
by selecting, from each genus, up to three sequences
from unique species with the best e-values. These se-
quences were combined with Dg2nodH1 and Dg2nodH2
to generate a dendrogram.

The collected amino acid sequences were first aligned
using MAFFT [68]. Aligned sequences were then ana-
lyzed using ProtTest3 [69] to estimate the best amino
acid substitution model. The estimated parameters
were then used in GARLI 2.0 [70] under default set-
tings to generate a maximum likelihood tree. Three
parallel searches were conducted in order to avoid
selecting a tree lodged on a local optimum. Bootstrap
analysis was conducted with 100 replicates. For each
bootstrap replicate, parameters were estimated by
GARLI 2.0 and two parallel searches were conducted.

GInA-based phylogeny of Frankia strains

Field samples were collected and specimen vouchers were
deposited in the herbarium of UC Davis (CA, USA). DNA
was extracted from single nodule lobes using a modified
CTAB procedure [71] after the nodule lobes had been
washed with ddH,O, TEA buffer, and the periderm had
been removed. PCR of a partial sequence of the glnA gene
using primers DB41 and DB44 [33] was conducted. Fifty
microliter PCR reactions (10 ng template DNA, each pri-
mer at 0.5 pM, 2 mM MgCl,, 1 unit of Taqg DNA polymer-
ase, 20 uM of each dNTP, and 5 pl of 10X buffer) were
run on thermocycler (Perkin-Elmer manual, Perkin-Elmer
Corp., Norwalk, CT) programmed for a hot start (95 ° C,
2 min.) and 30 cycles of 94 ° C for 30 s, 57 ° C for 45 s,
and 72 ° C for 1 min with a final extension for 7 min. A
negative control, lacking template DNA, was also run.
PCR amplifications were analyzed in a 1.5 % agarose gel
run in 0.5 X TBE buffer and visualized with ethidium
bromide under UV light. PCR products were cloned using
a TOPO TA cloning kit (Invitrogen) and sequenced using
Big Dye reagents (Applied Biosystems, Foster City, CA)
and analyzed on an ABI Prism 3100 automated sequencer
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(Applied Biosystems) according to the manufacturers’
instructions.

Sequences were proofread and assembled using Seq-
Man (1998, DNAstar, Madison, WI.) and then Blast
searched at the NCBI Home page (www.ncbinlm.nih.-
gov/BLAST/) to identify and categorize sequences. Clus-
ter II Frankia sequences generated were then aligned
with existing Cluster II Frankia ginA sequences.

All alignments were created using MUSCLE (multiple
sequence comparison by log-expectation [72]; Edgar
2004) at the EMBL-EBI website. Maximum Likelihood
analyses were performed using PhyML 3.0 [73] on the
ATGC bioinformatics server. The substitution model was
GTR, with estimated invariant sites, and rate variation
sampled from a gamma distribution. Support for branches
was evaluated using bootstrap analysis as above.

Real time quantitative reverse transcription PCR (RT-
qPCR) for the analysis of gene expression in nodules
RNA was isolated as described by Persson et al. [35], but
using the Spectrum Plant Total RNA Kit (Sigma-Al-
drich, Stockholm Sweden) from young D. glomerata
nodules (i.e., nodules with two to three lobes) harvested
eight weeks after infection. RT-qPCR analysis was per-
formed as described by Persson et al. [35]. Reverse tran-
scription was done using the SuperScript IV First Strand
Synthesis System (Invitrogen). Primers were designed
using Primer3Plus [74].

Results

Sequencing of the Candidatus Frankia datiscae Dg2
metagenome

DNA isolated from vesicle clusters originating from a
Datisca glomerata plant growing at Gates Canyon, Vaca-
ville, CA, USA, was de novo sequenced by applying a
strategy combining whole-genome-shotgun and mate
pair sequencing on the Illumina MiSeq platform. Se-
quencing on MiSeq platform resulted in 8,217,565 reads
with a total of about 2.1 Gb sequence information. As-
sembly of the data by applying of the gsAssembler 2.8
resulted in 52,586 contigs, 1441 scaffolds and a size of
28.3 Mb. First, all assembled reads were taxonomically
classified by applying LCA [50]. In total, about 1,700,000
reads were classified to the domain Bacteria. Mainly
these reads were classified to the genus Franmkia (ca.
1,150,000 reads), but also to Streptomyces (ca. 28,000
reads) and Mycobacterium (ca. 4,534 reads). In addition,
ca. 210,000 reads were classified to Eukaryota. To gain
deeper insights into the sample composition, a ‘contig-
length vs. read-count’plot was calculated (Additional file
1; [47-49]). Obtained results represented a point cloud,
but two contig groups at 1x and at 10x were apparent.
Contigs of both groups were analyzed by means
BLASTn [62] to deduce further taxonomical information
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on these contigs. The underrepresented contigs of the
1x group were assigned to Datisca glomerata and to
diverse bacterial strains, whereas the other group repre-
sents contigs belonging to Framkia. The data were fil-
tered by means of a reference mapping to Frankia sp.
Dgl applying r2cat. This mapping approach was aimed
to reconstruct the Frankia genome from the identified
metagenome. In total, 3,269,398 reads (40.68 % of all
metagenome sequence reads) amounting to 576.12 Mb
sequence information were extracted for further analysis.
Further genome assembly of extracted reads related to
the Frankia Dgl genome applying the GS assembler
(version 2.8) yielded 8,283 contigs (1066 scaffolds) and
amounting a total length of 5.92 Mb.

Detection of different Frankia strains in a reconstructed
draft genome by means of SNP and sequence analysis
The relatively high number of assembled contigs and scaf-
folds suggested that the sample contains more than one
Frankia strain. To determine the degree of conservation
of the Frankia sp. Dg2 sequence, all sequence reads of the
project were mapped on the reconstructed Dg2 metagen-
ome. The mapping approach was aimed at the estimation
of Frankia species in the metagenome. In total, 6,234,666
reads (75.87 % of all metagenome sequence reads) yielding
approximately 159 Gb sequence information were
mapped on the Dg2 metagenome sequence. Based on
SNP calling by applying ReadXplorer [56], 158,053 SNPs
were predicted. More than 80 % of the SNPs show a low
coverage <10 % of all bases at a certain variable pos-
ition. The low abundant SNPs were always repre-
sented by a particular base and no additional variants
were found. That may indicate a low abundant, re-
lated Frankia strain in the metagenomic sample.

To get taxonomical information about this strain,
44,620 reads leading to the low abundant SNPs were
exported and used for a fragment recruitment using Dgl
and Dg2 as reference sequence. In both fragment
recruitment approaches, 99 % of all reads were mapped
to the reference sequences. Mapped reads to the refer-
ence genomes showed an average sequence identity of
96.6 % to Dgl, whereas the average sequence identity to
Dg2 was somewhat lower (93.8 %). Therefore this
putative strain is more closely related to Dgl.

In combination with the SNP approach, a visual
inspection of the assembly data was performed. In a few
cases, a 50-50 distribution of SNPs in comparison to the
consensus sequence was observed. In addition, conserved
Frankia contigs are followed by two different contig vari-
ants, detected in 267 cases. Local similarities were de-
tected frequently within such contig pairs. It is very likely
that these contig pairs contain variants of Frankia genes/
regions that are significantly different to each other and
therefore were not assembled into one contig. Occurrence

Page 6 of 17

of sequence differences is not evenly distributed over the
aligned and matching contig segments indicating that
some regions are more conserved than others, e.g. regions
with housekeeping genes are highly conserved in both
Frankia strains. Therefore, such local similarities between
contigs in first instance confirm the existence of two
closely related Frankia sp. Dg2 strains. These genomes
share conserved regions without a SNP, but also contain
some individual regions. In total, 198 of 267 contig vari-
ants represent variations in intergenic regions, whereas
the remaining variants mainly refer to insertions/deletions
of mobile genetic elements or changes in genes encoding
hypothetical proteins.

The reconstructed Frankia sp. Dg2 metagenome
contains sequence information of three different Frankia
strains originating from D. glomerata nodules. Based on
a SNP calling approach in ReadXplorer [56] including a
manual inspection of the assembly and mapping result,
these three different Frankia strains were detected. With
bioinformatic methods, it was not possible to split the
two abundant Frankia sp. Dg2 strains, Dg2a and Dg2b,
in separate datasets because of their close relatedness
(ca. 98-99 %) and a similar abundance in the sample (ca.
55 % Dg2a, ca. 45 % Dg2b). Therefore, the reconstructed
sequence will be called “metagenome” in the next
chapters, because it contains sequence information of 2
closely related Frankia strains. The third strain, Dg2c,
was so underrepresented in the sample (ca. 1 %) that its
effect on the consensus sequence could be ignored.

Features of the reconstructed Dg2 metagenome

The final sequence of the Frankia sp. Dg2 metagenome
was established as described above. Based on scaffold in-
formation it could be proven that the Frankia sp. Dg2
metagenome only comprises a circular chromosome.
Additional Frankia plasmids were not detected in the
remaining metagenome data. Considering the final size
of the Frankia sp. Dg2 metagenome, a 93-fold coverage
was achieved after different filter steps. Relevant data of
the Frankia sp. Dg2 metagenome project are summarized
in Table 1. The circular chromosome of the Frankia sp.
Dg2 metagenome has a size of 5,929,312 bp and features a
GC content of 67.90 %. Gene prediction and annotation
of the assembled metagenome sequence were performed
within the GenDB system [51]. This approach resulted in
the prediction of 6,536 coding sequences, 36 tRNA genes,
and two rrn operons. The Frankia sp. Dg2 metagenome
sequence contained a typical origin of replication oriC.
Housekeeping genes, e.g. genes involved in glycolysis,
essential for the survival of the bacterium, were identified
on the circular chromosome of Frankia sp. Dg2. Due to
this fact, the reconstructed Frankia sp. Dg2 sequence
represents a characteristic first chromosome. In addition,
a region related to the plasmid pFSYMDGO1 of Dgl was
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Table 1 Sequencing and assembly statistics of the reconstructed
Candidatus F. datiscae Dg2 metagenome

Features Frankia sp. Dg2
All Reads 8,217,565

All Bases 2,163,821,348
Filtered Reads for genome reconstruction 3,269,398
Filtered Bases for genome reconstruction 576,128,786
Assembled Reads for genome reconstruction 3,123,854
Assembled Bases for genome reconstruction 550,550,122
Contigs 8283

Largest Contig 36,613 bp
Scaffolds 1066

Largest Scaffold 368,548 bp
Reconstructed genome size 5929312 bp
Predicted genes 6536

Genes with predicted function 3248

tRNA 36
rr-Operons 2

GC content 67.90 %

found on a contig originating from the Dg2 chromosome.
It seems that Framkia plasmids can integrate into the
chromosome, which is not surprising because the parBA
gene system, encoding a chromosome/plasmid partition-
ing system, was found in both the Dgl chromosome
(FsymDg_4545 and FsymDg_4546) and in the Dg2 meta-
genome (FDG2_6558 and DG2_6557; parA/parB).

Core genome comparison of Dg2 with other Frankia
genomes

Using EDGAR [57] a phylogenetic tree of Frankia strains
was calculated using core genome comparison (Fig. 1). In
this tree, Cluster II is the basal symbiotic Frankia cluster
as previously described [6, 35, 75]. Consistent with the
data presented by Gtari et al. [6], Cluster II is not only sis-
ter to the other symbiotic Clusters I and III, but also to
the non-symbiotic Cluster IV.

Within Cluster II, Dg2 (California) is sister to Dgl
(Pakistan; [15]) and BMG5.1 (Japan; [6]). However, given
that this phylogeny does not contain a strain from New
Zealand which are the ancestral strains in Cluster II in all
other phylogenies, this cannot be interpreted to mean that
North American Cluster II strains are ancestral to Eur-
asian ones. At any rate, the comparison shows that in con-
trast with North American Cluster II Frankia strains [21],
Eurasian ones do not show low genetic diversity.

Average nucleotide identity (ANI) and alignment of
genomes of Frankia cluster Il strains

To determine similarities between the different Frankia
genomes of the Clusters I and II, pairwise Average
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Nucleotide Identies (ANI) were calculated. Usually
genomes of prokaryotic isolates, which belong to the
same species, have ANI values above 95 % [63].

Analysis of ANI showed that while Candidatus Frankia
datiscae Dgl and Frankia sp. BMG5.1 belong to the same
species (96 %; see also [6]), Dg2 belongs to a different
species (ca. 88 % ANI vs. Dg1/BMG5.1). To better under-
stand the evolution of Cluster II strains, genome
alignments were performed for Dgl/Dg2 (Fig. 2a) and
Dgl/BMG5.1 (Fig. 2b). It should be taken into account
that the genomes of Dg2 and BMG5.1 are draft genome
the scaffolds of which (1066 scaffolds for Dg2, 116 for
BMGS5.2) were aligned with the Dgl genome so that not
all rearrangements are visible. For comparison, genome
alignments were performed for two strains from the same
species from Cluster Ic, i.e., the Casuarina-infective
strains CcI3 (fully assembled chromosome; [7]) and
BMG5.23 (166 scaffolds; [8]) with ANI 99 % (Fig. 2¢) and
for two strains from different species from Frankia Cluster
Ia, ie., the Alnus-infective strains ACN14a (fully assem-
bled chromosome; [7]) and ACN1% (90 scaffolds; [13])
with ANI 92 % (Fig. 2d). Thus, a high amount of genome
rearrangements is observed in Cluster II strains compared
to the Cluster I strains, which would seem consistent with
the high amount of complete IS elements in Dgl
compared to other Frankia strains [35]. However, a gen-
ome alignment of two Alnus-infective strains from differ-
ent continents, ACN14a (Canada) and QA3 (Pakistan;
fully assembled chromosome; [11]) with ANI 91 % shows
a far higher amount of genome rearrangements than be-
tween Dgl and Dg2 (Fig. 2e). To some extent, this can be
explained by the fact that the genomes of both ACN14a
and QA3 represent fully assembled chromosomes.

Dg2 is predicted to have greater saprotrophic capabilities
than Dg1
A comparison between the ORFs found in the genomes
of Dgl and BMG5.1 versus Dg2, respectively, shows that
Dg2 has the ability to use nitrate as N-source in that it
can form assimilatory nitrate reductase and nitrite
reductase (FDG2_0181, _0191, _0192, _0193) which are
also encoded on the BMG5.1 genome but lacking in
Dgl. Several transporters are present in the Dg2 meta-
genome that also occur in other Frankia strains, but are
missing in Dgl and BMG5.1, e.g.,, a putative ABC sugar
transporter (FDG2_6040, _6041, _6042). Dg2 also con-
tains an acetone carboxylase putatively involved in the
use of acetone as carbon source which are missing in
Dgl and BMG5.1 (FDG2_0380, _0381, _0382; Clark and
Ensign 1999). So Dg2 should be better equipped for
saprotrophic growth than Dgl.

Furthermore, the Dg2 metagenome contains more
operons for the production of secondary metabolites than
either the genome of Dgl or of BMG5.1 (Additional file 2).
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Dg2 contains the canonical nod genes nodABC linked to 2
copies of nodH

Like Dgl, Dg2 contains the canonical nod genes
nodABC, distributed over several transcriptional units,
and in a configuration very similar to that in Dgl except
that in Dg2, all nod genes are clustered in one area of
the chromosome (Fig. 3). Sequence alignments of the
encoded proteins are shown in Additional file 3. Like in
Dgl, a nodBC operon (DG2_3264-DG2_3265; here, con-
taining a 5'-truncated nodB gene) is followed by nodl]
homologs (nltI and nltJ, DG2_3266 and DG2_3267) and
like in Dgl, the distance between the open reading
frames makes it questionable whether nodBCnlitl] are
forming an operon [35].

The presence of several truncated copies indicates a
number of transposition events in the past. The configur-
ation of the Dg2 nodAInodBnodA operon (DG2_3275 —
DG2_3273) matches that in Dgl; furthermore, the 3’-trun-
cated nodAI’ genes at the beginning of the Dgl and the
Dg2 operon are missing the same parts and are nearly
identical (Fig. 3; Additional file 3). Thus, the transpositions
that led to the nodA1’nodBnodA configuration must have
occurred in a common ancestor of Dgl and Dg2. Dg2
contains an additional 5-truncated copy of nodA,
Dg2nodA2’ (DG2_3248) which is nearly identical with
Dg2nodA1I (Fig. 3; Additional file 3) and presumably arose
by incomplete duplication of Dg2nodA1. NodB sequence
alignment shows that Dg1NodB2, encoded by the nodB

gene of the nodBC(nltl]) operon, contains an insertion in
its N-terminal part while its orthologue Dg2NodB2’
(DG2_3264) is truncated in the 5’- and 3’-part (Additional
file 3). Thus, a comparison of the nod gene region of Dgl
and Dg2 indicates that the nodAI’nodBlnodA operon was
present in the common ancestor of both strains. In Dgl,
half of the nod region was transferred over more than
1 Mb to another part of the chromosome. In Dg2, a partial
duplication of nodA took place, yielding nodA2; and
the nodB2 gene (part of the nodB2C operon) acquired
a 5’- and a 3’-deletion.

In Dg2, the nodABC genes are linked to two complete
copies of an additional nod gene, nodH, encoding a
sulfotransferase (DG2_3270 and DG2_3293; Fig. 3).
Similar to the nodABC genes (nodA, 59.10 % GC; nodAl;
59.92 % GC; nodA2; 60.36 % GC; nodBl, 66.08 % GC;
nodB2; 66.66 % GC; nodB3; 62.76 % GC; nodC, 64.60 %
GG; nltl, 60.6 %; nlt], 66.5 %), both nodH genes have a
GC content below the average of the Dg2 metagenome
(nodH1, 60.64 % GC; nodH2, 61.04 % GC).

NodH phylogeny

The amino acid sequences from the two putative NodH
proteins encoded by Dg2 were used in a maximum like-
lihood phylogenetic analysis. PROTTEST found JTT + G
(=0.824) to be the best model based on the Bayesian
information criterion (BIC) and on the corrected Akaike
information criterion (AICc). GARLI2.0 generated the
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Fig. 2 Frankia genome alignments using MAUVE [66]. Chromosome coordinates are plotted on the x-axis and the y-axis denotes the percentage
of sequence identity. Colored areas appear above and possibly below the center line. Each of these areas surrounds a region of the genome
sequence that aligned to part of another genome, and is presumably homologous and internally free from genomic rearrangement. When an
area lies above the center line the aligned region is in the forward orientation relative to the first genome sequence. Areas below the center line
indicate regions that align in the reverse complement orientation. Regions outside the colored areas lack detectable homology among the input genomes.
Inside each area, Mauve draws a similarity profile of the genome sequence. The height of the similarity profile corresponds to the
average level of conservation in that region of the genome sequence. Regions that are completely white were not aligned and
probably contain sequence elements specific to a particular genome. The height of the similarity profile is calculated to be inversely
proportional to the average alignment column entropy over a region of the alignment. a Pairwise alignment of the genomes of
Candidatus Frankia datiscae Dg1 (chromosome) and Candidatus Frankia datiscae Dg2 (1066 scaffolds) (88 % ANI). b Pairwise alignment
of the genomes of Candidatus Frankia datiscae Dg1 (chromosome) and Frankia sp. BMG5.1 (116 scaffolds) (96 % ANI). ¢ Pairwise alignment of the genomes

sp. QA3 (chromosome) (91 % ANI)

of Frankia sp. Ccl3 (chromosome) and Frankia sp. BMG5.23 (166 scaffolds) (99 % ANI). d Pairwise alignment of the genomes of Frankia alni ACN14a
(chromosomes) and Frankia sp. ACN1% (90 scaffolds) (92 % ANI). e Pairwise alignment of the genomes of F. alni ACN14a (chromosome) and Frankia

most likely phylogeny with a likelihood score of -6545.95.
A putative sulfotransferase from Cyanothece sp. PCC7424
(NCBI, GI: 218173889), the only cyanobacterial sequence
in the tree with the most distantly related taxa with by far
the longest branch, was used to root the tree. The result-
ing tree (Fig. 4) shows that the two Dg2 NodH proteins
form a sister group to rhizobial NodH proteins.

NodH expression could not be detected in nodules

NodH is clearly not essential to nodulate Coriaria nepa-
lensis, the original host for Dgl, or D. glomerata, in whose
nodules Dgl was maintained for over a decade, or D. can-
nabina which can be nodulated by Dgl as well as by Dg?2,
respectively (Additional file 4). To address the question
about the expression of Dg2 nodH in nodules, D. glomer-
ata nodules induced by nodules induced by Dg2 were
examined for nodA, nodB, nodC and nodH mRNA using
quantitative RT-PCR. While nodABC were expressed, ex-
pression of nodH could not be detected in Dg2-induced
nodules of D. glomerata (Additional file 5).

Phylogeny of Cluster Il Frankia strains — North America vs.
Eurasia

Previously, Vandenheuvel et al. [21] had found low
genetic diversity of Cluster II Frankia strains from
western North America while using a glnA fragment as

phylogenetic marker. Our core genome comparison
shows that while Cluster II strains are not as genetically
diverse as Cluster III strains, there are strong differences
between Cluster II strains from Asia (represented by
Dgl and BMG5.1) and from North America (repre-
sented by Dg2; Fig. 1). Among the three Cluster II ge-
nomes available, Dg2 is sister to the two genomes from
Asia, Dgl from Pakistan and BMG5.1 from Japan [6]. In
Cluster II phylogenies involving more strains, the New
Zealand strains were always ancestral [32]. Therefore,
without a genome from a Cluster II strain from New
Zealand included, this core genome tree cannot be used
as the basis to determine the earliest divergent lineage of
Cluster II Frankia.

When the glnA-based phylogeny of Vandenheuvel et al.
[21] was extended to include all Cluster II strains analysed
thus far (the Coriaria-infective strains from Nouioui et al.
[27], as well as a new collection of sequences amplified
from nodules of North American Dryadoideae), the diver-
sity of the Eurasian Cluster II strains was as low as that of
the North American Cluster II strains (Fig. 5; Additional
file 6), a phylogenetic grouping which contradicts our core
genome comparison of the two Asian strains Dgl and
BMG5.1 with Dg2 (Fig. 1). Furthermore, the glnA-based
phylogeny did not result in an unambiguous separation of
Eurasian and North American Cluster II strains. No
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Species Reference
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100 Cupriavidus sp. AMP6
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Cupriavidus taiwanensis LMG19424
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Fig. 4 The most likely phylogeny of nodH genes based on amino acid sequences. Nodes with bootstrap support of 50 or higher have their values
indicated at each node. The scale bar indicates the number of amino acid substitutions per site

greater diversity was found when 16S rRNA sequences
were included in the comparison (data not shown). So
glnA, while a suitable marker for the phylogeny of the
whole Frankia genus [33], does not seem to show enough
sequence diversity to reflect the phylogeny of Cluster II
Frankia strains.

Discussion

In this study, we sequenced the DNA from Frankia vesicle
clusters isolated from nodules of Datisca glomerata inocu-
lated using a field sample of soil from Gates Canyon,
Vacaville, CA, USA. It turned out to be a metagenome
(Dg2) representing two dominant (Dg2a, Dg2b) and one
minor (Dg2c) Frankia Cluster II strains. Analysis of aver-
age nucleotide identity (ANI) revealed that Dg2 represents
a new species in Frankia Cluster II, while the previously
sequenced genomes of Candidatus Frankia datiscae Dgl
(originating in Pakistan; [35]) and of Frankia sp. BMG5.1
(originating in Japan; [6]) belong to the same species [6].
For comparison with the diversity of Cluster I Frankia
strains, all Casuarina-infective strains the genomes of
which were published so far belong to the same species
(ANIs between 99.4 and 99.9 %), while the three Alnus-in-
fective Frankia strains from Canada the genomes of which
were sequenced represent two species: ACN14a [7] and
Avcll [14] have 99 % ANI, while ACN1°® has 92 % and
91.44 % ANI, respectively, with ACN14a and Avcll [14].
The Alnus-infective Frankia strain from Pakistan,
QA3 [11], represents a third species, showing 91 %
ANI with ACN14a, 9297 % ANI with Avcll and
92 % ANI with ACN1%,

Frankia genome comparisons have shown that
members of the non-symbiotic Cluster IV and of the sym-
biotic Cluster III have the largest genomes with ca. 10 Mb.
Genome reduction took place in the symbiotic Cluster I —
strongly in Casuarina-infective strains where genome size
is reduced to 5-6 Mb [7-10], and less strongly in Alnus-
infective strains where genome sizes are between 7 and
8 Mb [7, 11, 13, 14]. This differential genome reduction
has been correlated with the saproptrophic potential of the
corresponding strains and with the phytogeographical dis-
tribution of their hosts [7], or with their host range [76,
77]. The fact that for decades, Cluster II strains could not
be cultured, indicating a low saprotrophic potential, would
lead to the prediction of a small genome size, while the
low host specificity of Cluster II strains [21] would predict
a large genome size. Since all three Cluster II genomes se-
quenced so far are in the range of 5-6 Mb, the sapro-
trophic potential seems to be the decisive factor here.

A phylogenetic tree based on core genome comparison
of 16 Frankia strains and three actinobacterial outgroups
showed that Frankia Cluster II is not only paraphyletic
to the other symbiotic Frankia strains, but is also also
paraphyletic to Cluster IV which contains the non-
symbiotic strains (Fig. 1). While Cluster II symbioses
may be the oldest root nodule symbioses [2], they can-
not precede the acquisition of the predisposition for de-
veloping root nodules by the precursor of the symbiotic
plant clade which is dated to ca. 100 mya.

The only cultured Cluster II strain reported to date is an
alkaliphile [6]. It is highly unlikely for a root symbiont that
colonizes the proton-rich rhizosphere and acidic plant
endosphere, to secondarily gain alkaliphily making it
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Fig. 5 Phylogeny of Cluster Il Frankia strains based on glnA. All DNA sequences used in this figure are referenced in Additional file 6. Acidothermus
cellulolyticus [93] and several Cluster | and Cluster Ill strains were used as outgroups. Sequences were taken from Vanden Heuvel et al. [21], Clawson et al. [33]
and Nouioui et al. [27] and from the three Cluster Il genomes available; sequences of 34 field samples were contributed by this study (see Additional file 6)

intolerant of pH 6 in culture. However, this perplexing
character is apparently not limited to a single strain;
Canizo et al. [78] showed that while Cluster II Frankia
nodulated Coriaria myrtifolia at a range of pH between 5
and 9, higher rates of nodulation and host growth corre-
lated directly with increasing pH. Furthermore, in New
Zealand, Coriaria sp. grows on volcanic slopes (see, e.g.,
[79]), and soils of active volcanic areas tend to be alkaline
[80]. Considering the genome phylogeny which shows
Cluster II Frankia as sister to all other Frankia, this raises
the possibility that alkaliphiles predates symbiosis in Fran-
kia. As the alkaliphilic and symbiotic crown group of the
genus diverged into Cluster II and its sister, the sister lost
its alkaliphily.

Ultimately, more Cluster II strains have to be cultured
to determine whether this scenario is correct. If, how-
ever, the ancestral Frankia strains were alkaliphiles,
Cluster II strains would not necessarily represent exam-
ples of genome reduction. Contrarily, the evolutionary
more derived Frankia strains might represent examples
of genome expansion during the adaptation to diverse
moderate environments.

How many strains are present in a typical Frankia Cluster
ll-induced nodule?

Studies on the diversity of Frankia in root nodules have
usually relied on the PCR amplification of 16S rRNA frag-
ments (see, e.g., [81]). Since actinorhizal nodules have
thick periderms, sequences amplified that way do not ne-
cessarily derive from the microsymbionts of said nodules,
but may be derived from bacteria living in the dead cells
of the periderm and having escaped surface sterilization.
This may also be exemplified by the fact that not all
strains isolated from nodules of a particular plant can re-
infect that plant species (see, e.g., [82]).

The genomes of two strains have now been sequenced
based on DNA derived from vesicle cluster preparations
from nodules of several plants. Earlier results based on the
analysis of OTUs from nodules had shown that
greenhouse-grown nodules of Datisca glomerata contained
more than one Frankia strain, although only one strain,
Candidatus Frankia datiscae Dgl, was represented in
vesicle clusters [35]. Our study shows the first Frankia
metagenome isolated from D. glomerata nodules induced
by a field sample from D. glomerata, Dg2. The difference
with Dgl may have been due to the fact that Dgl origi-
nated from soil below a nodulated Coriaria nepalensis
plant and was propagated for more than ten years in D.
glomerata plants in a greenhouse [35], while Dg?2 is based

on soil collected from below a nodulated D. glomerata
plant in the field that was used to nodulate a single series
of D. glomerata plants in a growth chamber before the
genome was analysed. Thus, Dg2 is likely to better repre-
sent the situation in the field. Nevertheless, further studies
on vesicle clusters isolated from Frankia Cluster II nodules
in particular, and Frankia nodules in general, are necessary
to find out how many strains are normally represented as
symbionts in the nodules of an individual actinorhizal
plant. Another question to be analysed in the future is
whether the wide host range of Frankia Cluster 1I is due to
the fact that different members of an assemblage dominate
in nodules from different host species.

Dg2 contains the canonical nod genes and also the
sulfotransferase gene nodH: does it produce sulfated Nod
factors?

Bacterial signaling in rhizobial symbioses as well as fungal
signaling in arbuscular mycorrhizal symbioses [39], and also
Frankia signaling in actinorhizal symbioses [40, 41, 83] in-
volves the common symbiotic signal transduction pathway
(CSSP). This pathway has been well examined in legumes,
where rhizobial or fungal lipochitooligosaccharide (LCO)
signal factors bind to modified chitin receptors in the
plasma membrane of root epidermal cells which signal to a
common symbiotic receptor kinase SymRK/DMI2 [38, 39].
The modified chitin receptors belong to a protein family
that meanwhile has been shown to perceive rhizobial LCO
Nod factors, LCO Myc factors from arbuscular mycor-
rhizal fungi, peptidoglycans and exopolysaccharides [84].
Studies on Alnus glutinosa and Casuarina glauca have
shown that in symbioses of Frankia Cluster I, non-LCO
signal substances are signaling via the CSSP [83, 85, 86].
This is consistent with the fact that Cluster I (and Cluster
IIl) Frankia strains do not contain the canonical nod
genes nodABC which encode the enzymes that in rhizobia
are responsible for the biosynthesis of LCO Nod factors
[7]. Similarly, some rhizobial strains that do not contain
the canonical nod genes and cannot form LCO Nod
factors can induce nodules on Aeschynomene sp., and also
this process involves signaling via the CSSP [87].

So far, one Frankia genome was known to contain the
canonical nod genes nodABC, Dgl [35]. Dg2a and Dg2b
not only contained the canonical nod genes but also two
copies of the nodH gene encoding a sulfotransferase which
in rhizobia is responsible for the production of sulfated
LCO Nod factors. As in case of Dgl, the canonical nod
genes of Dg2 could be shown to be expressed in nodules,
but neither nodH copy was transcribed under these
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conditions. A comparative analysis of the nod operons
showed that the common ancestor of Dgl and Dg2 —
which should also be the ancestor of BMG5.1 — is likely to
have contained the canonical nod genes nodABC and
probably also a copy of nodH (Fig. 3; Additional file 3).

While the presence of a diverse NodA protein family in
actinobacteria suggested that the corresponding gene
evolved in actinobacteria and was later picked up by
rhizobia, maybe as an operon together with nodB and nodC
[35], the situation is not clear for nodH. In the absence of a
NodH protein family in non-symbiotic relatives of either
Frankia sp. or rhizobia, the fact that phylogenetically, Dg2
NodH proteins are forming a sister group of rhizobial NodH
proteins (Fig. 4) merely indicates either that a gene transfer
took place between rhizobia and Frankia strains, or that
both groups obtained nodH genes from the same donor.

The high number of full size insertion elements in
Dgl [35] and the clear signs of transposition in the nod
gene regions of Dgl and Dg2, respectively, indicate sig-
nificant genome instability. Under these circumstances,
the fact that both Dgl and Dg2 contain an intact copy of
nodA, nodB and nodC each seems to indicate selection
pressure, and thus a physiological function of nodABC.
This does not necessarily lead to the conclusion that
nodulation by Dgl and Dg2, or by one of them, requires
LCO Nod factors. Nevertheless, the fact that nodABC
are expressed in nodules induced by Dgl and Dg2
suggests that LCOs do play a role in the symbiosis.

Sulfation of LCO Nod factors, apart from playing a role in
host specificity, can increase the stability of Nod factors by
interfering with their digestion by chitinases [88]. This is im-
portant in the rhizosphere but may not be relevant for Nod
factors in planta. So if sulfation of Nod factors does not play
a role in binding Nod factor receptors within D. glomerata
nodules, there might be a rationale for not expressing nodH
genes in planta, only ex planta. It is also possible that the
nodH genes are not expressed in D. glomerata nodules be-
cause they are not necessary to nodulate this particular host
species, as exemplified by the fact that D. glomerata is nodu-
lated by Dgl which does not contain nodH.

Other unique features of Frankia Cluster Il strains:
mammalian cell entry genes

With three genomes of Cluster II available, it becomes
interesting to do phylogenetic profiling to identify genes
that only occur in Cluster II, not in any other Frankia
cluster. Most strikingly, what is exclusive to Cluster II
genomes are large sets of mce (mammalian cell entry)
genes. They represent the actinobacterial paralogues of
the Mla systems (ABC-type transporters; mlaD encodes
the periplasmic substrate-binding proteins, mlaE en-
codes the permease and miaF the ATP-binding protein)
of Gram-negative bacteria that maintain asymmetry in
the outer membrane [89]. Mce genes were first analysed
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in Mycobacterium tuberculosis. Mce systems seem to
represent steroid transporters in that Mycobacterium
spp. Mce4 facilitates the uptake of cholesterol and also
in Rhodococcus jostii RHA1, mce4 encodes an ATP-
dependent steroid transporter necessary for growth on,
e.g., beta-sitosterol [90]. They are involved in virulence
as could be shown since peptides that strongly bind, and
thereby block, the periplasmic component of the mce4
system from M. tuberculosis could prevent the mycobac-
terial entry to type II pneumocytes [91]. In Streptomyces
coelicolor, the mce locus is involved in mediating the
interactions with plants and amoebae. Mce genes are
present across the actinobacteria and presumably repre-
sent an ancient locus; niche specialization has led to
divergence of the mce clusters in each actinobacterial
genus throughout evolution [92].

Analysis showed that the mce systems in the three rep-
resentatives of Frankia Cluster II are highly diverse
(Additional file 7). Several Franmkia Cluster II mce op-
erons contain truncated genes. One operon is present in
BMG5.1 and Dg2, but not in Dgl, although it is con-
served in other actinobacteria, i.e. in Saccharomonospora
marina, suggesting that Dgl lost the entire operon. In
Dg2, this operon mostly contains truncated genes
(FDG2_3167 — FDG2_3173; Additional file 7). Further-
more, Dgl does not contain a mlaF homolog but this
component might be provided by another ABC trans-
porter system. Every Cluster II strain contains at least
two mlaE genes (encoding permeases) and more than 10
mlaD genes (encoding the periplasmic substrate-binding
proteins). Given that the mce systems are involved in the
colonization of plants in case of S. coelicolor, it is tempt-
ing to speculate that they might be involved in the infec-
tion process of Frankia Cluster II strains.

How did Frankia Cluster Il invade the North American
continent?

A glnA-based phylogenetic tree of all Cluster Il Frankia
sequences available to date with Cluster I and III
sequences and the glnA sequence from Acidothermus
cellulolyticus [93] as outgroup (Fig. 5) had the three
sequences from New Zealand in the ancestral position
but the Eurasian and North American strains did not
form separate clades in that support for the separation
was weak and several strains ended up in the ‘wrong’
group (American strains in the Eurasian group and vice
versa). However, if the Cluster II strains nodulating the
North American host plants (Dryadoideae, Ceanothus
sp. and D. glomerata) were derived from South American
strains which originally came from New Zealand [16], we
would not expect the separation between the New
Zealand strains and the Northern Hemisphere strains we
see in Fig. 5. So the currently available are more consistent
with the hypothesis that Frankia Cluster II strains reached
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the North American continent with D. glomerata via the
Bering strait.

Conclusions

The first metagenome of an assemblage of North American
Frankia Cluster II strains, Dg2, represents a different species
than the two Asian strains. A phylogenetic tree based on the
core genomes of 16 Frankia strains puts Cluster II in the
basal position of the entire genus, and shows that the Clus-
ter I genomes available thus far display more diversity than
the Casuarina-infective strains from Cluster I. The Dg2
metagenome contains not only the canonical nod genes
nodABC, but also the LCO sulfotransferase gene nodH, and
a comparison between the nod regions of Candidatus Fran-
kia datiscae Dgl from Pakistan and Dg2 from California
shows that both strains have a common ancestor the gen-
ome of which probably contained nodH.
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