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Abstract

Background: To develop a set of transcriptome sequences to support research on environmental stress responses
in green ash (Fraxinus pennsylvanica), we undertook deep RNA sequencing of green ash tissues under various stress
treatments. The treatments, including emerald ash borer (EAB) feeding, heat, drought, cold and ozone, were selected
to mimic the increasing threats of climate change and invasive pests faced by green ash across its native habitat.

Results: We report the generation and assembly of RNA sequences from 55 green ash samples into 107,611 putative
unique transcripts (PUTs). 52,899 open reading frames were identified. Functional annotation of the PUTs by
comparison to the Uniprot protein database identified matches for 63 % of transcripts and for 98 % of transcripts with
ORFs. Further functional annotation identified conserved protein domains and assigned gene ontology terms to the
PUTSs. Examination of transcript expression across different RNA libraries revealed that expression patterns clustered
based on tissues regardless of stress treatment. The transcripts from stress treatments were further examined to identify
differential expression. Tens to hundreds of differentially expressed PUTs were identified for each stress treatment. A set
of 109 PUTs were found to be consistently up or down regulated across three or more different stress treatments,
representing basal stress response candidate genes in green ash. In addition, 1956 simple sequence repeats were
identified in the PUTs, of which we identified 465 high quality DNA markers and designed flanking PCR primers.

Conclusions: North American native ash trees have suffered extensive mortality due to EAB infestation, creating a
need to breed or select for resistant green ash genotypes. Stress from climate change is an additional concern for
longevity of native ash populations. The use of genomics could accelerate management efforts. The green ash

transcriptome we have developed provides important sequence information, genetic markers and stress-response

candidate genes.
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Background

Green ash (Fraxinus pennsylvanica Marsh.) is the most
widely distributed species in the Fraxinus genus in
North America. Green ash is valuable both economically
and ecologically. Green ash produces a large number of
seeds, an important source of food for a diverse array of
wildlife species [1]. It has been widely planted as a street
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tree, in parks, and in residential areas due to fast growth
and adaptability to urban conditions. Both natural stands
and urban plantings of green ash are now seriously
threatened by the emerald ash borer (EAB, Agrilus
planipennis Fairmaire), a pest of Asian ash species acci-
dentally introduced into North America [2]. EAB was ori-
ginally identified as the cause of widespread death and
decline of native ash trees in Michigan and Ontario in
2002 [2]. EAB has since spread quickly and is currently
found in 26 U.S. states and two Canadian provinces
[3]. All native North American ash trees are considered
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susceptible to this pest, and mortality rates of up to 99 %
have been observed in forest stands 6 years after infest-
ation [4]. EAB has killed millions of ash trees in Michigan,
Ohio and Indiana, and is spreading rapidly across North
America [5]. Economic and ecological damage is expected
to occur as the pest spreads [6—8] with estimates of costs
due to lost tree value, removal and replacement ranging
from $10.7 billion to $26.0 billion [9, 10].

Abiotic stresses induced by climate change, including
drought and heat, pose an increasing threat for all North
American trees, including green ash [11]. In northeastern
U.S. forests, greater precipitation and warmer temperatures
have been recorded [12], and species ranges are expected to
shift northward in response [13]. Climate change can also
affect the spread of invasive pests [14, 15]. Changing
climate may help the EAB to move further north into
territory where winters are currently too cold to allow the
larvae to survive [16], possibly more rapidly than the nat-
urally slow range shifts expected of the trees themselves.

Molecular tools and genomic resources are less well
established for most forest trees than for agricultural
crops, although forestry applications show great promise
[17, 18]. Green ash is one of the economically and eco-
logically important tree species facing devastating losses
from pests and other environmental stresses for which
genomic resources are needed to gain a greater under-
standing of molecular responses to stress. Transcriptome
studies have been an effective means for identifying
candidate genes utilized by trees to combat stress, in
species such as cork oak (Quercus suber) [19], chestnut
(Castanea mollissima) [20] and Douglas fir (Pseudotsuga
menziesii) [21]. Transcriptome data also serve as a source
of sequence-based genetic markers, enabling studies
of population structure, genetic linkage mapping, quanti-
tative trait loci (QTL) identification, and associations
of phenotype with genotype. Such information provides
powerful tools to advance pedigree-based breeding
and selection programs as well as management of standing
populations [17].

Currently, there is insufficient genomic information
for green ash to undertake molecular-based tree improve-
ment approaches. Little is known about ash response to
stress at the gene level. A previously reported RNA-
Seq resource pooling phloem tissue samples from green,
white, black, blue and Manchurian ash species yielded
over 58,000 assembled transcript sequences, a valuable re-
source for genetic marker design and initial functional
characterization of genes expressed in ash phloem tissue,
on which EAB feeds [22]. However, the sequence obtained
in that study was all from healthy tissues pooled from all
five species, making it impossible to assign sequences
to individual species or to identify genes activated in
response to stress. To expand the resources for green
ash we conducted high-throughput RNA sequencing with
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a diversity of tissues and stress conditions, including cold,
heat, drought, ozone, wounding, and EAB-feeding. The
sequences were assembled into a reference transcriptome
and differential gene expression between libraries was
examined to identify general stress-response genes con-
served across tissues and stress types.

Methods

Sampling and treatments

Parent tree treatments and tissue collection

Seed with wings, axial buds, terminal buds, leaflets, one-
year-old twigs, xylem from three-year-old twigs and open
pollinated seeds were collected from a healthy adult green
ash tree located at the University of Missouri’s Agrofor-
estry Research Center. From the same tree, attached leaf-
lets were wounded by punching multiple holes with a
paper punch across the leaf tissue, and one-year-old twigs
were wounded by snapping the end of the twigs off.
Tissues from the wound sites (broken twig end or leaf
hole margin) were collected after 5 h and again after 24 h.
DNA samples from this tree have been banked and are
available upon request.

Seedling growth for stress treatments

Open pollinated seeds from the above parent tree
were germinated in the greenhouse at the University
of Missouri. At the age of 1 year, seedlings were shipped to
Clemson University and to Pennsylvania State University
for abiotic stress treatments. One-year-old open-pollinated
seedlings were acclimated to the normal greenhouse envir-
onment for at least 1 month prior to abiotic stress treat-
ments. Six biological replicates were used for all treatments
levels for cold, heat, wounding, drought and ozone stress
experiments on seedlings.

Seedling temperature stress treatments and tissue collection
Heat and cold treatments were conducted in a growth
chamber with a cycle of cool fluorescent light followed
by 8 h of dark. Heat-stressed tissues were collected after
24 h of exposure to 40 °C. Cold stress was induced by
exposing 12 seedlings to 4 °C for 24 h. Tissues were
collected from half of the seedlings immediately after
cold stress (“cold stressed”). Tissues were collected
from the other half of the seedlings 24 h after they
were returned to the normal greenhouse environment
(“cold stressed, recovery”).

Seedling drought stress treatments and tissue collection

Drought and mechanical wounding were performed in
the greenhouse facility. For drought treatment, watering
was withdrawn from two sets of seedlings: one set was
for tissue collection, and the other set for petiole pre-dawn
water potential measurements. When water potential in six
out of seven surveyed seedlings dropped below -0.1Mpa,
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tissues were collected from six seedlings going through the
same drought scheme as the surveyed ones.

Seedling mechanical wounding treatments and tissue
collection

Mechanical wounding was introduced by punching four
holes per leaf. Wounded leaves were then collected ei-
ther 5 or 24 h after wounding. All tissues were collected
in the morning, except for the 5 h after wounding time
point, for which tissues were collected in the afternoon.
Leaf, petiole, and root tissues were collected for heat,
cold, and drought treatments; leaf and petiole tissues
were collected for mechanical wounding as above.

Seedling ozone stress treatments and tissue collection
Greenhouse-acclimated seedlings (<10 parts per billion
(ppb) ozone) were placed into Continuously Stirred
Tank Reactor (CSTR) chambers. After at least 3 days of
acclimation to the chambers, ozone was delivered as de-
scribed by Heck et al. (1978) [23]. Ozone exposures were
conducted for 28 days: <10 ppb ozone as control,
80 ppb, 125 ppb, and 225 ppb. Ozone was delivered in
square-wave fashion, for 8 hr, 7 day/wk, with exposures
beginning at 0900 h, ending at 1659, via a controllable
micro metering system. Concentrations were monitored
with a TECO Model 49 Oj analyzer and data logger/
computer recording system. Leaf samples were collected
at 3 time points (7 hr, 14 days, 28 days) after stress initi-
ation with six biological replicates (seedlings) for each
time point/treatment, for a total of 24 seedlings. After
sampling on the 28th day, mechanical wounding was
conducted in situ, with three leaves of each plant being
wounded by multiple hole punches. Leaf samples from
the hole margin were collected 24 h post-wounding
(i.e. “29-day wounding”).

EAB larvae treatments

Tissues from four putatively EAB-resistant (PE19, PE21,
PE22, and PE24) and two confirmed EAB-susceptible
(PE36 and SUM) green ash genotypes were collected
before and after exposure to EAB larvae. The EAB-
feeding bioassay is described in [24]. Briefly, the two
EAB-susceptible and four EAB-resistant genotypes
were grafted and grown in the greenhouse for 2 years.
Samples of bark and phloem of each genotype were
acquired in the summer as untreated control tissues.
Subsequently EAB eggs were placed under the bark
around the stem of each graft for hatching. After 8 weeks
of EAB larvae feeding, the insects were removed and the
EAB-damaged phloem and bark tissues were sampled.
Vouchers for the wild-collected green ash trees are avail-
able at USDA Forest Service, Northern Research Station,
Project NRS-16 under voucher accessions FS-NRS16-241-
2016 (tree PE36), FS-NRS16-242-2016 (tree PE19), FS-
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NRS16-243-2016 (tree PE21), FS-NRS16-244-2016 (tree
PE22), and FS-NRS16-245-2016 (tree PE24). Tree PE36
was collected by Kathleen Knight and David Carey. Trees
PE19, PE21, PE22 and PE24 were collected by Mary
Mason and Dan Herms. Green ash tree SUM is the culti-
var ‘Summit’ and was accessioned from Dawes Arboretum
(D1991-0541). A voucher for this tree is also available at
the USDA Forest Service, Northern Research Station, Pro-
ject NRS-16 (FS-NRS16-240-2016).

RNA extraction and library preparation

Tissue samples collected at the time points mentioned
above were immediately flash frozen in liquid nitrogen
and stored at —80 °C until RNA extraction. For stress
experiments of seedlings with biological replicates, tissue
samples for RNA extraction were pooled in equal amounts
from each replicates per treatment per time point. Total
RNA was isolated from ~1 g of frozen pooled tissue, using
a modified CTAB method with lithium chloride precipita-
tion [25]. RNA quality was assessed using an Agilent
Bioanalyzer (Agilent technologies). cDNA libraries were
prepared from the pooled RNAs for each treatment and
time point for a total of 55 libraries. For each sample, 1ug
of RNA was converted to ¢cDNA using the Illumina
TruSeq kit. The cDNA samples were sheared on a
Covaris S2 to ~300 bp, following the manufacturer’s
recommendation (Covaris, Woburn, MA). Size selec-
tion was performed on the Biomek FXp using the
SPRIworks HT Reagent Kit. Each library was uniquely
tagged with one of Illumina’s TruSeq LT DNA barcodes to
allow library pooling for sequencing. Library quantitation
was performed using Invitrogen’s Picogreen assay and the
average library size was determined by running the librar-
ies on a Bioanalyzer DNA 1000 chip (Agilent). Library
concentration was validated by qPCR on a StepOne Plus
realtime thermocycler (Applied Biosystems, Grand Island
NY), using qPCR primers, standards and reagents from
Kapa Biosystems (Wilmington, MA).

Transcriptome sequencing and de novo assembly
Of the 55 RNASeq libraries for green ash, 41 were se-
quenced on both the Illumina MiSeq Desktop and the
[lumina HiSeq 2000 sequencers (San Diego, CA), 12
were sequenced only on the MiSeq, and two were se-
quenced only using HiSeq 2000. For most libraries, qual-
ity was assessed by running the samples on an Illumina
MiSeq sequencer and high throughput sequencing was
carried out on an Illumina HiSeq 2000 sequencer at a
read-length of 101 bp paired-end. All raw reads were de-
posited in the NCBI Short Read Archive (SRA) under
the bioproject accession PRJINA273266. A summary of
read statistics per library is provided in Additional file 1.
Raw sequences were trimmed using trimmomatic ver-
sion 0.32 [26]. Trimmed reads generated from the MiSeq
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platform were assembled using Trinity pipeline version
r20121005 [27]. Outputs from the Trinity assembly were
further assembled with cd-hit version 4.6.1 to collapse iso-
forms [28]. The Trinity plugin TransDecoder was used to
predict open reading frames (ORFs) in the assembly [29].

In supplemental files and public repositories, all tran-
script names begin with “Fraxinus_pennsylvanica_120313_"
to indicate transcriptome origin and version. This part of
the transcript name this has been removed from the text
for brevity. For example, transcript “Fraxinus_pennsylvani-
ca_120313_comp52211_c0_seq2” is referred to in the text
as “comp52211_c0_seq2”.

Assembly quality assessment

Three methods were used for assessing whether the as-
sembly contains all or most of the green ash genes. First,
CEGMA (Core Eukaryotic Genes Mapping Approach)
version 2.5 was used to compare the assembled green
ash transcriptome against the core set of eukaryotic
genes [30]. Next, nine incremental assemblies were con-
ducted with subsets of data to build a saturation curve
and predict if new gene discovery would be likely with
additional sequencing. The nine assemblies were per-
formed with the same methodology previously described
for the full assembly. Each additional assembly used all
of the data from the previous assembly plus an add-
itional set of tissues or treatments. The libraries included
in each assembly and assembly statistics are provided in
Additional file 2. A third quality assessment was per-
formed by aligning all trimmed read pairs to the
transcriptome with bowtie2 version 2.2.1 [31].

Functional annotation and SSR discovery
Both the transcript sequences and the amino acid se-
quences from the predicted ORFs were queried against
the Swiss-Prot protein database and the plant taxonomic
division of the TrEMBL protein database [32] using
BLAST+ version 2.2.22 [33]. Amino acid sequences were
subjected to InterProScan version 5.4-47.0 searches to
predict protein family membership and identify con-
served domains [34]. Gene ontology (GO) terms [35]
were assigned using the InterProScan software [36].
Simple sequence repeats (SSRs) were identified from
transcripts. Di-, tri-, and tetra- nucleotide repeats were
only reported if they met the following criteria: di-
nucleotide repeats with 8—200 copies, tri-nucleotide re-
peats with 7-133 copies, and tetra-nucleotide repeats
with 6-100 copies. SSRs were flagged as compound if
they were adjacent or separated by less than 15 bases.
Primer3 v2.3.6 was used to design primers flanking the
SSRs, excluding all compound SSRs. Sequences were
masked for low complexity regions with dustmasker [37]
prior to primer design. The following parameters were
altered from the default: primer_product_size_range =
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100-450, primer_min_tm = 55.0, primer_max_tm = 65.0,
primer_min_gc =40, primer_max_gc = 60, primer_max_
poly x =3, primer_gc_clamp = 2. The perl script used to
extract these sequences and run Primer3 is available at
via GitHub [38]. The spreadsheet output by this script is
available as Additional file 3 and contains summary sta-
tistics, SSR locations and primer sequences.

Gene expression across tissues and treatments

HTSeq version 0.6.1pl was used to produce raw read
counts for each transcript per library [39]. To account
for variations among gene length and library size, these
counts were converted to the metric RPKM (reads per
kilobase per million mapped reads) [40]. To calculate
the number of transcripts expressed in each sample, a
minimum expression cut-off of RPKM >0.1 was used.
As previously described [41-43], log2(RPKM +1) nor-
malized values were used for clustering; adding one was
necessary to prevent a log2 transformation from calcu-
lating undefined values in cases of zero values. Pearson
correlations were calculated using the result of the
log2-transformations. A distance matrix was constructed
using these values. Hierarchical clustering was performed
using the hclust function with average distance.

Differential expression analysis
The R package DESeq2 version 1.63 was used to deter-
mine statistically significant differentially expression
[44]. Raw counts from HTSeq were provided as input.
All comparisons used the default Wald test except the
Ozone libraries where the likelihood ratio test (LRT)
was utilized. Principal component analyses (PCA) were
also calculated with the DESeq2 package. The R code
utilized to generate the results is available at GitHub
[45] and the lists of differentially expressed putative
unique transcripts (PUTs) are available in Additional file 4.
The set of up and down differentially expressed PUTs
were each assessed for GO term enrichment using the
Cytoscape application BINGO v3.03 [46], an often used
tool for assessing GO enrichment in transcriptome
studies [47-49]. The R scripts and raw data files used
to generate figures, including the cluster analysis and
GO term enrichment in BiNGO, are archived publicly
at https://github.com/statonlab/green_ash_rnaseq. All GO
enrichment results are listed in Additional file 5.

Results and discussion

Transcriptome sequencing and de novo assembly
Transcriptome sequencing of 55 green ash RNA samples
spanning a variety of tissues and treatments yielded over
99 Gb of sequence data. Sample libraries encompass
EAB damage, specialized tissues, mechanical wounding,
heat exposure, drought exposure, cold exposure, ozone
exposure, and ozone exposure plus mechanical wounding
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(Table 1). A stringent filtering and de novo assembly pipe-
line was used to produce 107,611 PUTs. The PUTs have
an average length of 818 nucleotide base pairs and an N50
of 1327 bases. A total of 52,899 open reading frames
(ORFs) could be identified from 47,069 PUTs (43 %).
PUTs with more than one ORF may represent operons
from plastid or mitochondrial genomes, chimeras, or mis-
assemblies where a 1-2 base insertion/deletion shifted the
OREF. PUTs without an ORF were of considerably shorter
length: 409 bases in average length of PUTs without ORFs
vs. 1342 bases average length of PUTs with ORFs. This
may indicate that lack of a captured start or stop codon
impeded OREF identification or that the reads originated
from noncoding RNAs.

Assembly completeness

Three strategies were employed to test the completeness
of the transcriptome: comparison to CEGMA (Core
Eukaryotic Genes Mapping Approach), alignment of
reads to the transcriptome, and saturation analysis.
CEGMA includes a database containing 248 highly con-
served eukaryotic genes and a computational method for
assessing the presence of these genes in a dataset [30].
Comparison of the green ash transcriptome to the
CEGMA dataset indicates that all core eukaryotic genes
are present in the final assembly. The majority, 238
genes or 96 %, were found to be complete in length in
the green ash transcriptome. For the remaining ten
genes, green ash transcripts were found but span only a
portion of the expected gene length.

To assess how well the final assembly represented all
of the sequenced reads, the reads were aligned to the
PUTs. A slight difference in rates of alignment for librar-
ies from two different sequencing instruments was de-
tected. For reads from the MiSeq instrument, an average
of 89 % of reads aligned with a range for the 53 individual
libraries from 83 to 91 %. Reads from the HiSeq aligned
on average at a rate of 87 %, with a range of 83 to 90 % for
individual libraries. Less than 3 % of all read pairs aligned
discordantly, i.e. two paired reads aligned to different tran-
scripts. For all but two of the libraries sequenced on both
platforms, the MiSeq reads aligned at a slightly higher
rate, about 1.6 % more often, than the reads from the
HiSeq for the same library (Fig. 1). However, for individual
libraries sequenced on both platforms, the rate of align-
ment from the MiSeq is correlated to the rate for the
HiSeq (R*=0.68), confirming that library quality can be
assessed effectively on a MiSeq platform prior to higher-
throughput sequencing on a HiSeq.

Saturation analysis was carried out to detect the incre-
mental new gene discovery from the addition of new
RNA libraries. A rarefaction curve was generated by pro-
ducing nine assemblies using subsets of data. The smal-
lest data set assembled was a single RNA library, with
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additional libraries added to each subsequent assembly
until all libraries were included. The incremental assem-
bly size ranged from 14,723 transcripts to 107,363 tran-
scripts depending on total data included in the assembly;
more sequencing libraries resulted in more transcripts
with each addition of data (Additional file 2). While the
overall number of transcripts and ORFs are increasing
with the addition of data, the total number of identified
ORFs increased much more slowly, indicating that
additional sequencing would likely yield few new ORFs
(Fig. 2a). From an assembly with input data of 51.8 M
reads to 54.0 M reads, 3149 new transcripts were found
but only 1053 new ORFs were discovered. Regarding the
length of the transcripts, both N50 and average length are
increasing only slightly at the largest data input sizes
(Fig. 2b): one additional base pair in N50 length per
addition of 200,000 input reads and one additional base
pair in average transcript length per addition of 500,000
input reads. Saturation was reached for peptide length for
both N50 as well as average length. From the fourth
largest assembly with an input of 26.0 M reads to the final
assembly of 54.0 M reads, the average and N50 lengths in-
creased by only four and five amino acids, respectively.

The three quality assessment metrics indicate that the
green ash de novo transcriptome represents the majority
of expressed genes based on presence of conserved
eukaryotic genes, the alignment of the majority of reads
back to the assembly, and a saturation analysis indicating
that few new ORFs are likely to be discovered with add-
itional sequencing. The strategy of sequencing RNA
from a variety of green ash tissues and treatments effect-
ively maximized the sampling of all genes, yielding a rich
transcriptome sequence resource for further genomic
and genetic work in ash.

Functional annotation and SSR discovery

To provide functional annotation for the green ash PUTs,
a combination of sequence similarity, protein domain
searches and GO term assignments were conducted.
BLAST searches [50] against the Swiss-Prot and plant
TrEMBL databases [32] were conducted to compare the
green ash PUTs to previously sequenced and annotated
proteins. For transcript sequences, 46 % matched at least
one Swiss-Prot accession and 63 % matched at least one
plant protein from TrEMBL. The inferred homology re-
sults support the ORF-predictions; 98 % of PUTs with an
ORF matched a known protein while only 36 % of PUTs
without a predicted ORF matched a known protein. PUTs
without a match to known proteins may be non-coding
RNAs, genes that have significantly diverged from avail-
able reference sequences, or erroneous sequence data.
The predicted protein sequences from the ORFs were
characterized for homology to protein families and do-
mains by InterProScan [36] (Additional file 7), yielding
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Table 1 Samples for sequencing

Tissue Source # Reads
Leaves, ambient ozone for 7 h 6 seedlings, pooled 419,064
Leaves, 80 ppb ozone for 7 h 6 seedlings, pooled 457,118
Leaves, 125 ppb ozone for 7 h 6 seedlings, pooled 495,728
Leaves, 225 ppb ozone for 7 h 6 seedlings, pooled 500,118
Leaves, ambient ozone for 14 days 6 seedlings, pooled 450,932
Leaves, 80 ppb ozone for 14 days 6 seedlings, pooled 427,298
Leaves, 125 ppb ozone for 14 days 6 seedlings, pooled 507,634
Leaves, 225 ppb ozone for 14 days 6 seedlings, pooled 483,742
Leaves, ambient ozone for 28 days 6 seedlings, pooled 440,864
Leaves, 80 ppb ozone for 28 days 6 seedlings, pooled 486,950
Leaves, 125 ppb ozone for 28 days 6 seedlings, pooled 516,644
Leaves, 225 ppb ozone for 28 days 6 seedlings, pooled 318,838
Leaves, 80 ppb ozone for 28 days, wounding after 28th day, 29 days total 6 seedlings, pooled 13,160,726
Leaves, 125 ppb ozone for 28 days, wounding after 28th day, 29 days total 6 seedlings, pooled 11,583,960
Leaves, 225 ppb ozone for 28 days, wounding after 28th day, 29 days total 6 seedlings, pooled 12,506,320
Leaves, ambient ozone for 28 days, wounding after 28th day, 29 days total 6 seedlings, pooled 10,723,914
Unstressed leaves 6 seedlings, pooled 24,953,504
Unstressed petioles 6 seedlings, pooled 30,230,264
Unstressed roots 6 seedlings, pooled 29,378,320
Wounded leaves 5 h 6 seedlings, pooled 24,619,536
Wounded leaves 24 h 6 seedlings, pooled 27,899,560
Wounded petioles 5 h 6 seedlings, pooled 23,312,492
Wounded petioles 24 h 6 seedlings, pooled 25,669,498
bark and phloem after EAB feeding Tree 19 23,628,074
bark and phloem control Tree 19 52,011,186
bark and phloem after EAB feeding Tree 21 27,585,376
bark and phloem control Tree 21 25,016,884
bark and phloem after EAB feeding Tree 22 21,570,304
bark and phloem control Tree 22 29,090,224
bark and phloem after EAB feeding Tree 24 26,814,566
bark and phloem control Tree 24 26,043,308
bark and phloem after EAB feeding Tree 36 26,342,646
bark and phloem control Tree 36 26,495,904
bark and phloem after EAB feeding Tree Summit 32,053,344
bark and phloem control Tree Summit 59,097,222
Cold stressed leaves (4C for 24 hr, recovery for 24 hr) 6 seedlings, pooled 29,361,894
Cold stressed petioles (4C for 24 hr, recovery for 24 hr) 6 seedlings, pooled 15,174,806
Cold stressed roots (4C for 24 hr, recovery for 24 hr) 6 seedlings, pooled 21,691,182
Cold stressed leaves (4C for 24 hr) 6 seedlings, pooled 15,625,080
Cold stressed petioles (4C for 24 hr) 6 seedlings, pooled 18,679,338
Cold stressedroots (4C for 24 hr) 6 seedlings, pooled 18,870,828
Drought stressed leaves (<1.0 Mpa) 6 seedlings, pooled 15,984,282
Drought stressed petioles (<1.0 Mpa) 6 seedlings, pooled 20,242,284
Drought stressed roots (<1.0 Mpa) 6 seedlings, pooled 18,864,744
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Table 1 Samples for sequencing (Continued)
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Heat stressed leaves (40C for 24Hr)

Heat stressed petioles (40C for 24Hr)
Heat stressed roots (40C for 24Hr)
Unstressed leaves (control for wounded)
Wounded leaves

Unstressed 1 year old twigs

Wounded 1 year old twigs

3-year-old xylem

Seed wings

Axial buds

Terminal buds

6 seedlings, pooled 14,167,240
6 seedlings, pooled 13,049,768
6 seedlings, pooled 13,415,506
Adult tree 10,829,406
Adult tree 14,083,066
Adult tree 11,524,160
Adult tree 14,157,548
Adult tree 8,191,208

Adult tree 36,521,672
Adult tree 13,411,952
Adult tree 14,531,836

additional functional information for 45,893 protein se-
quences (87 %). InterProScan also assigned Gene Ontol-
ogy (GO) terms; 29,666 proteins (56 %) were assigned at
least one GO term. The GO terms indicate that a variety
of different genes were captured, with 679 biological
process, 914 molecular function and 227 cellular compo-
nent GO terms assigned.

Extraction of SSRs yielded a total of 1956 individual
SSRs and 5 compound SSRs from 1937 transcript se-
quences. SSRs were relatively rare, with less than 2 % of
transcripts yielding an SSR and an average of one SSR per
44.8 kilobase (kbp) of transcript. Excluding compound
SSRs, di-nucleotides were the most common making up
87.7 % of the total. The second most common was
tri-nucleotides at 11.9 %. Tetra-nucleotides make up
less than 1 % of the total. Primers were successfully

designed to flank 486 of the repeats (Additional file 3). Re-
peats with primers were cataloged for 431 di-nucleotide
SSRs with a range of eight to 11 motif copies, 54 tri-
nucleotide repeats with a range of seven to 12 motif cop-
ies, and a single tetra-nucleotide with six motif copies.

Expression across tissues and treatments

The high depth of reads obtained during RNA sequencing
enables comparison of transcriptome expression patterns
across different tissues and treatments. Libraries with
fewer than 1 million sequenced reads were excluded from
this analysis due to possibly insufficient depth to capture
rarely expressed transcripts, leaving 43 libraries for ana-
lysis. Individual RNA samples were found to express from
76,861 to 99,706 PUTs with two libraries found as outliers
with significantly lower counts: 3-year-old xylem tissue
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with 52,419 expressed PUTs and EAB fed bark and
phloem from Tree 19 with 48,605 expressed PUTs. Fewer
identified transcripts may be indicative of library prepar-
ation variation or an actual lower number of genes
expressed biologically.

Hierarchical clustering of all libraries was performed
to determine which samples had similar expression pat-
terns (Fig. 3). The tissue type was found to be the stron-
gest common element for clustering, indicating that
tissue-specific transcription patterns, even under stress,
are conserved. Cluster A includes mostly leaf tissue sam-
ples, including control, wounding, cold and ozone plus
wounding conditions. Cluster B includes all of the peti-
ole tissue samples and the heat stressed leaf sample.
Cluster C includes the majority of the bark and phloem
tissues; the exceptions include Tree 19 samples as well
as the Tree Summit control sample. Cluster D includes
primarily root samples, and cluster E includes twig and
bud tissue samples exclusively. Interestingly, twigs and
buds from a mature green ash did not group with the
bark and phloem samples from two-year-old grafts.
Cluster F includes the majority of ozone stressed leaf tis-
sue samples with a single exception, the ozone stressed
leaf tissue samples with wounding on the 28th day. They
did not group with other leaves, but this may be due to
a batch effect; all samples in cluster F have only MiSeq
data, resulting in overall lower depth than all other
samples sequenced.

Differential expression analysis

The RNA sequencing of both control and stressed green
ash tissues enables an initial inquiry into the regulation
of transcripts under each of six types of stress: EAB
feeding, cold, drought, heat, mechanical wounding and
ozone (Table 2). Statistically significant changes of either

increased or decreased transcript abundance between
stressed tissues and control conditions were determined
with a cutoff of p <0.05 using the package DESeq2 for
each type of stress. For the EAB test, the six genotypes
were sequenced invidually and used as biological repli-
cates. For the remaining stress tests, six biological repli-
cates were produced in the greenhouse, and the RNA
from each replicate was pooled prior to sequencing.

EAB is a primary threat to green ash trees. To under-
stand defense responses on a molecular level, six geno-
types of ash were assessed at two time points: pre-EAB
feeding and 8-weeks post-EAB larval hatch and feeding.
A Wald test of the data found 13,275 differentially
expressed PUTs, 6884 of which had lower expression
after feeding, and 6391 of which had higher expression
after feeding. This large difference includes the response
to EAB feeding but also includes seasonal changes and
other environmental factors that impacted the seedlings
during the 8 weeks of feeding.

The genotypes utilized for the EAB feeding bioassay
were selected for their differing response to EAB; four
were identified as putatively resistant to EAB. These ‘lin-
gering ash’ trees were found to have a healthy canopy
after EAB had caused over 95 % mortality of surround-
ing ash trees. The remaining two genotypes are both
known to be susceptible to EAB. For statistical analysis,
the resistant genotypes represented four biological repli-
cates and the susceptible genotypes were used as two
biological replicates. This allows for an additional com-
parison of interest, i.e. the difference in response by four
EAB-resistant green ash genotypes in comparison to two
EAB-susceptible genotypes. A principal components
analysis (PCA) of the PUT expression patterns among
the twelve samples suggests that susceptibility has a de-
tectable association with expression; 63 % of variance
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Fig. 3 Hierarchical clustering of tissues. The 55 green ash RNA samples were clustered by normalized read counts across all PUTs. Clusters (a—e) highlight
groups of samples originating from similar tissues and/or experimental treatments
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across samples corresponds to treatment. A secondary
variance component of 13 % separates resistant versus
susceptible genotypes (Fig. 4).

We performed a test for expression differences between
resistant and susceptible genotypes before larval feeding
to determine if the tree’s transcriptome patterns are differ-
ent prior to insect exposure. For pre-feeding samples, 899
PUTs are down-regulated and 742 PUTs are up-regulated
in the resistant genotypes relative to the susceptible. We
also tested for differences in resistant and susceptible

genotypes post-feeding to identify active plant defense re-
sponse patterns. In post-feeding samples, 580 PUTs are
less expressed and 545 PUTs are more expressed in resist-
ant genotypes. The candidate PUTs identified in this ex-
periment may prove useful for further studies regarding
the molecular mechanisms of natural resistance to EAB.
Plant response to insect herbivory is complex and may
be induced by detection of nonself compounds as well
as by signals sent from damaged cells [51]. Tissue dam-
age may also be caused wind, hail, and other mechanical
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Transcripts increasing in expression

Transcripts decreasing in expression

Test # transcripts  # Enriched GO # transcripts with  # transcripts ~ # Enriched GO # transcripts with
plant slim terms  putative function plant slim terms  putative function

EAB - Control tissues vs Infested Tissues 6391 12 5346 6884 10 5534

EAB - Susceptible vs Resistant, Pre-EAB Feeding 750 5 460 899 2 497

EAB - Susceptible vs Resistant, Post-EAB Feeding 545 1 336 580 2 351

Cold-stressed tissues vs control tissues 3196 9 2336 456 0 342

Drought-stressed tissues vs control tissues 13 2 12 82 7 66

Heat-stressed tissues vs control tissues 502 7 386 1114 8 984

Mechanically-wounded tissues after 5 h vs 237 5 208 252 3 217

control tissues

Mechanically-wounded tissues after 24 h vs 307 1 244 653 3 544

control tissues

Tissues at 4 levels of ozone across 3 time points® 3507 15° 342° a

Statistical tests were conducted for each stress condition to determine genes with increased or decreased expression (adjusted p-value < 0.01). These genes were
assessed for shared biological processes or molecular functions via ontology enrichment based on the subset of GO plant slim terms

“Transcripts responsive to ozone. A likelihood ratio test was used to identify any transcripts responsive to ozone treatment across multiple time points, allowing
PUTs with more complex patterns, for example initially up regulated, then down regulated, to be included

factors. To explore ash response specifically to wound-
ing, experiments were conducted on leaves, petioles and
twigs. Experimentation included single biological repli-
cates of tissues (leaf, twig) on an adult tree 24 h after
damage and six biological replicates of seedling tissues
(petiole, leaf) 5 and 24 h after being damaged. Using all
tissues types in the Wald statistical test, we identified
genes with significantly different abundances correlated
to mechanical wounding after 5 h and after 24 h. For 5 h
post mechanical wounding, we found 237 up-regulated
PUTs and 252 down-regulated PUTs. Additional dif-
ferentially expressed PUTs were found after 24 h: 307
up-regulated and 653 down-regulated. Some genes
were identified as differentially expressed at both time
points: 109 genes were down regulated at both time
ponits and 16 were up regulated at both time points.

Climate change stressors

The alterations of Earth’s climate will impose increased
abiotic stresses with implications for the adaptation and
survival of ash species. We conducted analyses of four
stressors expected to increase in severity in native forests
as part of climate change: heat, cold, drought, and ozone
(which also serves as a general oxidative stress for which
accurate dose-response investigations can be conducted
under controlled conditions). Experiments were con-
ducted with six biological replicates per condition: control,
heat, cold and drought conditions across leaf, petiole, and
root tissues of green ash seedlings. For all statistical tests
of differential gene expression, the three tissues were con-
sidered together to provide increased statistical power and
to discover transcripts implicated in whole plant response
to stress. Drought produced significantly fewer differen-
tially expressed PUTs than the other stressors, with 13

PUTS increasing in expression and 82 PUTs decreasing.
Heat stress induced up-regulation for 502 PUTs and
down-regulation for 1114 PUTs. Cold stress induced the
most changes of the three stress types, with 3196 increas-
ing PUTs and 456 decreasing. An additional oxidative
stress, increasing ozone, was assayed only for leaves, but
sampled across three time points (7 h, 14 days, 28 days)
and four ozone concentrations (atmosphere, 80 ppb,
125 ppb, 225 ppb). We used a likelihood ratio test (LRT)
to identify 350 PUTs that responded to changes in ozone
levels. Four experimental treatments involved a combin-
ation of mechanical wounding and ozone stress; neither a
Wald test nor a LRT vyielded statistically significant gene
associations for these samples versus control tissues. This
is surprising given that each treatment independently
showed differential gene expression. Possibly, crosstalk be-
tween ozone stress and mechanical wounding differs with
different ozone levels, and the differences in gene expres-
sion response in each library led to a lack of statistical
power in detecting additional differentially expressed
genes after wounding.

GO term enrichment across stress responses

For each list of differentially expressed PUTs from differ-
ent stress types, GO term enrichment was performed in
order to identify molecular pathways and processes in-
volved in stress response in green ash (Fig. 5). Expected
functions were found in many experiments, such as
genes in the category “response to abiotic stimulus” dur-
ing drought and cold and “increased response to stress”
under mechanical wounding and heat stress conditions.
Many GO terms were identified in more than one stress
condition, indicating overlap in the stress response path-
ways despite different stimuli. Unfortunately, many of
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the PUTs could not be functionally annotated and thus
were not included in the GO term enrichment analysis.
More information about these PUTs or their homologs
in other plants is likely to illuminate additional pathways
and biological processes of interest in response to envir-
onmental stresses relevant to climate change.

Genes shared across multiple types of stress

The detection of basal level stress response genes provides
an opportunity to identify genes responding to multiple in-
dependent stressors. For most experiments, the biological
samples were pooled at the sequencing level, reducing
statistical power to detect underlying variability. However,
the genes consistently detected as differentially regulated
across multiple stresses are good candidates for further re-
search in green ash defense response. No PUTs were found
to be consistently up or down-regulated across all six stress
types (ozone, drought, heat, cold, mechanical wounding,
and EAB feeding). Two PUTs were down-regulated across
4 stresses, and although both had sequence similarity to

plant genes in the protein database, their functions
are as of yet uncharacterized. Seventy-six PUTs were
up-regulated and fifty-seven transcripts were down-
regulated across different combinations of three different
stress treatments (Table 3).

Mechanical wounding is one component of the stress
caused by insect feeding. We identifed six PUTs with
statistically significant changes in both wounding experi-
ments and in the EAB response (Fig. 6). One transcript,
comp54917_c0_seql, had increased expression across both
stresses and five transcripts had consistently decreased
expression (comp52211_c0_seq2, comp59636_c0_seql,
comp27672_c0_seql, comp47794_c0_seql, and comp649
71_cl_seql0). No functional annotation information was
found for the up-regulated transcript or for two of the
down-regulated transcripts. The remaining three down-
regulated transcripts are an NRT1/PTR and two beta-
glucosidases. The NRT1/PTR family of genes has ni-
trate transmembrane transport activity and is involved
in auxin transport, a known phytohormone signaling
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system induced by biotic stress. Comp47794_c0_seql
and comp64971_cl_seql0 are both beta-glucosidase
genes, which have involvement in herbivory response as
well as other forms of stress response [52, 53]. These
results suggest that these genes may be important in re-
sponse specifically to tissue damage.

Among three of the climate change stress agents (cold,
heat, drought), three PUTs were found to be increased,
two of which have homology to the REVEILLE gene,
known for its involvement in circadian rhythm and as a
negative regulator of cold tolerance [54]. The third up-
regulated PUT is an ascorbate-specific transmembrane
electron transporter, also referred to as cytochrome
b561, which is critical to ascorbate recycling. Ascorbate
synthesis and signaling have a known role in oxidative
stress tolerance and are induced by multiple types of
abiotic stress [55]. In a different combination of climate
change stressors (heat, cold, ozone), a shared up-regulated
PUT is germacrene-D synthase. Germacrene-D is a ses-
quiterpene, which are known to act as mediators in plant-
environment interactions. Sesquiterpenes are known to be
involved in herbivore defense in trees [56, 57], although
they have been implicated in plant abiotic stress response
as well [58]. For the same climate change stresses
(heat, cold, ozone), four PUTs are commonly down-
regulated. One down-regulated PUT resembles Arabi-
dopsis gene YLS9, which is involved in the innate
immune system and is induced by biotic stresses such
as viruses [59].

The remaining PUTs with shared expression patterns
across three conditions spanned both biotic and abiotic
stresses. More differentially expressed transcripts were
shared among cold, EAB feeding, and ozone treatments
than any other combination of stresses, with 54 up-
regulated and two down-regulated transcripts in com-
mon. Many of the genes regulated in common have pre-
viously been identified in stress response in other plants.
Transcription factors are critical to inducing down-
stream transcriptional changes, and in green ash trees
we identified three PUTS with strong homology to Ara-
bidopsis WRKY transcription factor family members 30,
31, and 33: comp52191_c0_seql, comp64498_c0_seq7,
and comp60267_c0_seql, respectively. WRKY’s have di-
verse biological functions but are particularly associated
with response to biotic and abiotic stresses; they are
thought to contribute to early signaling to activate adap-
tive responses [60]. Another shared PUT that is likely to
be involved in early signaling (comp57076_c0_seql) is a
mitogen-activated protein kinase (MAPK), which have
been characterized across a number of plant species to
express immediately upon abiotic or biotic stress to in-
duce immune responses [61]. Two scarecrow-like (SCL)
transcription factors were found to be up-regulated in
cold, mechanical wounding and EAB exposure. SCLs
have been previously identified in response to salt and
drought [62], particularly in root tissues [63].

Downstream of initial transcription factor and signaling
cascades, phytohormones are well characterized signaling
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Table 3 Transcripts with significantly different expression across
multiple types of stress

Stressors Increased or decreased Total overlaps
expression

Heat/Cold/EAB Increased 1
Heat/Cold/Ozone Increased 1
Heat/MW5hr/Ozone Increased 1
Cold/MWS5hr/EAB Increased 3
Cold/EAB/Ozone Increased 54
MWS5hr/MW24hr/EAB Increased 1
MW24hr/EAB/Ozone Increased 1
Heat/Drought/Cold Decreased 4
Heat/Drought/EAB Decreased 5
Heat/Cold/EAB Decreased 19
Heat/Cold/Ozone Decreased 4
Heat/MW5hr/Ozone Decreased 1
Heat/MW24hr/EAB Decreased 2
Heat/MW24hr/Ozone Decreased 1
Heat/EA/Ozone Decreased 7
Drought/Cold/EAB Decreased 1
Cold/EAB/Ozone Decreased 2
MWS5hr/MW24hr/EAB Decreased 5
MWS5hr/MW24hr/Ozone Decreased 6
Heat/Drought/Cold/EAB* Decreased 1
Heat/Cold/EAB/Ozone* Decreased 1

For two genes, a decrease in expression under stress was found in four of the
seven experiments (*). A set of 151 PUTs were identified as significantly
differentially expressed in three of the seven experiments; 72 were more
expressed under stress while 59 were less expressed under stress
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mechanisms that mediate plant defense. In the green
ash stress libraries, we identified both up and down-
regulated PUTs with associations to phytohormone
signaling. Two up-regulated PUTs, comp68432_c0_seql
and comp52044_c0_seql, resemble AZF2 and ZAT10 in
Arabidopsis respectively. Both of these genes are impli-
cated in jasmonate (JA) signaling [64] and act to inhibit
plant growth under abiotic stress conditions including
drought and cold [65—67]. Another transcription regula-
tor, ZAT11 (comp51423_c0_seq2) was also increased in
response to multiple types of stressors and functions to
repress transcription during stress, for example in metal
exposure [68], drought, cold and high salinity [65]. A
down-regulated PUT, comp54600_c0_seql, is homolo-
gous to the transcription factor bHLH14 that acts to nega-
tively regulate JA responses, and its down-regulation is
important for effective JA-mediated plant defense re-
sponse for biotic stress [69]. Other phytohormones are
also likely involved in green ash defense; down-regulated
comp61040_c0_seq5 resembles a Gibberellin (GA) 20 oxi-
dase, which functions in the formation of bioactive GA.
GA is known to function in pathogen defense, and in the
case of this particular gene, knockouts in rice demon-
strated increased transcription of defense genes and im-
proved resistance to pathogens [70, 71].

Accumulation of harmful, cell-damaging reactive oxygen
species (ROS) may be generated by both biotic and abiotic
stresses. In the course of defense response, ROS molecules
can also act as a signaling mechanism for stress tolerance.
Thus ROS levels must be tightly controlled by molecular
mechanisms to balance these two roles. PUTs involved in
ROS were detected in the green ash defense responses.
PUT comp45637_c0_seql, up-regulated in defense re-
sponse in green ash, is a metallothionein-like protein,
which can scavenge ROS molecules. Metallothionein type

MW Up
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EAB Up

MW Up MW Down

Fig. 6 EAB and mechanical wounding venn diagram. Venn diagrams of increased (a) and decreased (b) differentially expressed genes shared
among three experiments: emerald ash borer damage, 5 h after mechanical wounding, and a day after mechanical wounding
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2 proteins have been associated with response to heat stress
in rice [72], oxidative stress in cork oak [73], and heat and
drought stress in the halophyte Salicornia brachiata [74]. A
reticuline oxidase-like protein, comp53767_c0_seql, is
also up-regulated; the most closely related homolog in
Arabidopsis is up-regulated in response to oxidative stress
as well [75]. Other up-regulated PUTs (comp62432_c0_
seq4, comp50698_c0_seq3) have identity to an oxidore-
ductase and a stellacyanin, both involved in cellular redox
reactions.

Conclusions

The reference transcriptome generated for green ash,
with extensive functional annotation and annotated
SSRs, is a valuable genomic resource for the threatened
ash species. The identification of green ash PUTs differ-
entially expressed under stress conditions provides infor-
mation for candidate gene selections that may be
leveraged for future tree improvement or within genetic
association or QTL studies. Our approach was to com-
pare samples from different tissues and from different
stresses to identify candidates for general stress re-
sponse, being that are shared among biotic and biotic
stresses. Future studies may use our publically available
reference transcriptome to examine individual stresses
in greater depth, and the specific molecular responses to
each stress with greater statistical power. For example,
we found evidence of significant transcriptional differ-
ences between EAB-susceptible and EAB-resistant green
ash both prior to EAB attack and after larval feeding.
This suggests that assays of additional susceptible and
resistant genotypes over detailed time courses should
provide important insights into mechanisms of natural
resistance to EAB infestation in native ash species.
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Additional file 1: Raw and trimmed RNASeq data. For each of the 55
green ash libraries, statistics are provided for each Illumina instrument
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primer sequences. (XLSX 40 kb)

Additional file 4: Differential expression results. Each differential
expression experiment is included as a separate table and includes a
transcript name and all output from DESeq?2 including log fold change
and adjusted p-values. Annotation information available for each
transcript has been added. (XLSX 3320 kb)
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the combination of stresses and the second column contains a tab
separated list of transcripts common among that stress group. (CSV 1545 kb)

Additional file 6: GO term enrichment results. Results for each GO
enrichment performed are included with a corrected p-value for each
term. (XLSX 85 kb)

Additional file 7: InterProScan results. InterProScan [34] queries
sequences against 16 member databases enabling protein classification
by family as well as by conserved domains; the number of annotations
and the percent of sequences receiving annotations varied across the
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