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Abstract

Background: High throughput protein expression studies can be performed using bead-based protein immunoassays,
such as the Luminex® xMAP® technology. Technical variability is inherent to these experiments and may lead to
systematic bias and reduced power. To reduce technical variability, data pre-processing is performed. However, no
recommendations exist for the pre-processing of Luminex® xMAP® data.

Results: We compared 37 different data pre-processing combinations of transformation and normalization methods in
42 samples on 384 analytes obtained from a multiplex immunoassay based on the Luminex® xMAP® technology. We
evaluated the performance of each pre-processing approach with 6 different performance criteria. Three performance
criteria were plots. All plots were evaluated by 15 independent and blinded readers. Four different combinations
of transformation and normalization methods performed well as pre-processing procedure for this bead-based
protein immunoassay.

Conclusions: The following combinations of transformation and normalization were suitable for pre-processing
Luminex® xMAP® data in this study: weighted Box-Cox followed by quantile or robust spline normalization (rsn),

asinh transformation followed by loess normalization and Box-Cox followed by rsn.
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Background

Bead-based protein immunoassays using the Luminex®
XMAP® technology are subject to variability caused by
both biological and technical effects. While systematic
effects resulting from differences in biological conditions
are of interest, technical variability should be reduced to
the minimum. The highest proportion of technical vari-
ability is systematic and potentially introduced during
different protein processing steps [1, 2].

In the ideal experimental setting, all samples would be
processed in a single run, and, depending on the aim of
the study, all analytes would be measured simultaneously
or each analyte separately. However, technical limitations
do not permit such an approach.
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Bead-based immunoassays are a technological derivative
to conventional immunoassays such as ELISAs, where
antigen/antibody reactions are measured. The solid phase
of the ELISA plate is reduced to multiple, small fluores-
cent color-coded bead particles, which allows the conduc-
tion of multiplex experiments by simultaneous incubation
of different bead species with samples. The analytical
readouts are fluorescence signals reading each bead
color (attribute channel) together with the signal from
fluorescence labeled antibodies or proteins (quantitative
measure).

Currently, 500 different bead colors can be differenti-
ated, allowing for the simultaneous analysis of 500 ana-
lytes with the Luminex” xMAP® technology. Furthermore,
well-plate layouts and robotic automation requirements
typically restrict the number of used samples per batch to
96 or 384. In consequence, any large-scale analysis needs
to be run in batches, which can introduce technical vari-
ability on the sample level and the analyte level [3].

The presence of technical variability generally affects
downstream statistical analysis. For example, the power
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for detecting biological effects may be reduced or effect
estimates may be biased. As a result, the reduction of
technical effects is mandatory for reliable protein expres-
sion analysis, and a suitable pre-processing strategy is re-
quired for minimizing technical variability.

The most important steps for data pre-processing are
transformation and normalization of raw data after ini-
tial quality control [4]. The optimal pre-processing ap-
proach should be carefully selected prior to data analysis
based on both the employed technology and the actual
data [5] because the pre-processing method may greatly
influence downstream analysis. As a result, microarray
gene expression data are pre-processed differently [6]
than RT-PCR data [7] or data from genotype microar-
rays [8, 9]. Several authors compared methods to find
optimal techniques for data pre-processing of different
Omics-type-of data [5, 10-14]. However, pre-processing
methods have not been compared for the Luminex®
XMAP* technology.

The aim of this paper therefore is to identify an ap-
propriate approach for the pre-processing of multiplex
data generated with the Luminex® xMAP® technology.
The analytical setting investigated here, is based on the
reaction of the presence of human autoantibodies in
patient serum to identify their binding partners. For
this purpose we couple recombinantly produced human
proteins to different, color coded beads and let them
simultaneously react with individual serum samples.
We used control sera and sera of patients having the
autoimmune diseases multiple sclerosis and neuromy-
elitis optica for demonstration purposes. In summary,
the assay is a multiplexed direct immunoassay with
autoantibodies (IgG) as target analytes.

To this end, we compared 37 different combinations
of transformation and normalization for a real data set
of 384 analytes (i.e. antibody — antigen reactions) using
42 serum samples.

Methods

Biological experiment

Subjects

The data considered in this study consisted of 384 po-
tential auto-antigens measured for 42 serum samples.
The ethics committee of the Heinrich-Heine-Universitét
of Diisseldorf approved this study (vote number 2850,
January 22, 2007). All participants gave written informed
consent. The samples data were obtained from 12 mea-
surements from a pooled reference serum, 12 control
samples and 30 affected subjects (18 patients with mul-
tiple sclerosis, 12 patients with neuromyelitis optica).
The 42 patient samples were measured on four plates. A
reference serum was measured 12 times for each analyte.
Additionally, 12 measurements of a pooled serum sample
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were measured three times on four plates each. This was
used for estimating the repeatability of measurements. The
amount of antibodies was measured as signal intensities
using the Luminex® xMAP® technology in combination
with the FLEXMAP 3D° instrument in serums of cases
and controls.

Wet lab procedures

All 384 protein antigens were recombinantly produced in-
house, using E.coli and a SCS1 carrying plasmid pSE111,
containing an N-terminally located hexa-histidine-tag
[15, 16]. Each purified antigen was coupled to magnetic
carboxylated color-coded beads (MagPlexTM micro-
spheres, Luminex Corporation, Austin, Texas). The
manufacturer’s protocols were adapted to enable mul-
tiplexing using semi-automated procedures. All liquid
handling steps were carried out by either an eight-
channel pipetting system (Starlet, Hamilton Robotics,
Bonaduz, Switzerland) or a 96-channel pipetting system
(Evo Freedom 150, Tecan, Minnedorf, Switzerland). For
each coupling reaction up to 12.5 pg antigen and 8.8 x 10°
MagPlexTM beads per color were used. Finally, beads
were combined and stored at 4—8 °C until use.

Autoantibody profiling

Serum samples were diluted 1:100 in assay buffer (PBS,
0.5 % BSA, 50 % Low-Cross buffer (Candor Biosciences,
Wangen, Germany)), added to the bead mix of 384 pro-
teins and incubated for 20 h at 4-8 °C. After washing
with PBS/0.05 % Tween20 the beads were incubated
with a fluorescence labeled (R-phycoerythrin) detection
antibody (5 pg/ml, goat anti-human or goat-anti-mouse
Ig@G, Dianova, Hamburg, Germany) for 45 min at RT to
detect the target analyte, antigen-specific human IgG
species from human serum.

The beads were washed and then analyzed in a
FlexMap3D instrument (Luminex Corporation, Austin,
Texas). The instrument aspirates the beads containing
patient antibodies bound to the respective protein an-
tigens, and which have bound the detection antibody,
and analyses each individual particle by using a flow
cytometric technology. The analytical measure is the
median fluorescence intensity (MFI) for the particles
partitioned according to their respective identification
color. According to the manufactures recommenda-
tions, the MFI readout fulfilling a minimum bead count
criterion (>35 beads measured per bead ID) were exported
for data analysis.

Pre-processing procedure

The following steps were used for data pre-processing:
First, raw data were quality controlled. In brief, anti-
gens with a proportion of null values exceeding 19 %
and samples with a proportion of null values exceeding
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20 % were excluded. Signal intensities < 0 were set to
missing values. Second, we applied a transformation to
the quality-controlled data. Next, we imputed missing
data by median imputation [17] to the transformed and
quality controlled data. Finally, we applied a normalization
method to the data.

Transformation and normalization methods

We used the notation transformation_normalization to
label the used methods for the transformation and
normalization, which we applied as combinations during
the pre-processing procedure to the data. Here, trans-
formation is one of the following transformations: no
transformation (n0), log, transformation (log2), asinh
transformation (asinh), Box-Cox transformation (boxcox)
[18], Box-Cox transformation with weights (boxcox-
weights) [18] and variance stabilizing transformation (vst)
[19]. boxcox is the original Box-Cox transformation,

where the transformation y, is obtained as ,; = }% ifA=

0 and y, = log y if A = 0. The transformation boxcoxweights

uses the geometric mean y as a weight so that ,, = My;—:ll

if 1#0andy, =log (y)-yifA=0.

The normalization method was one of the following:
loess normalization (loess) [20], global median norma-
lization (global) [21], quantile normalization (quantile)
[22], an improved quantile normalization (quanimpr), ro-
bust spline normalization (rsn) [23], z-score normalization
(zscore) or variance stabilizing normalization (vsn) [24].
vsn has a built-in transformation, and it was therefore ap-
plied directly to the quality controlled and imputed data.
The improved quantile normalization is a modification
of the common quantile normalization, which we have
developed to deal with very few large signal intensities.
Specifically, borrowing from the technique of dithering
in digital video and audio signal processing [25], noise
was added to the original dataset to reduce the influence
of the few strong signals on the normalization.

Evaluation criteria

We used 6 different criteria to evaluate the effects of the
pre-processing methods. Two of the six criteria were
based on empirical thresholds for statistical characteris-
tics describing the distribution of the data, one measures
variation of the signal intensities, and the remaining
three criteria were based on visual inspection of plots.
All evaluation criteria were graded as poor, fair or good
and scored with 0, 1 and 2, respectively, for all pre-
processing methods. Fifteen blinded readers rated the
plots independently. The readers rated the plots twice
ie, at two different time points, where plots of the pre-
processing methods were shuffled for the second run
to test intra-rater reliability. Plots could reach a score
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between 0 and 30 and were classified as good (2) for a score
between 21 and 30, as fair (1) for 11 to 20 and poor (0),
otherwise. As total score we added the scores of the 6 cri-
teria, and the pre-processing methods could reach a total
score between 0 and 12. The best pre-processing method
was the one with the highest score when the evaluation
criteria were summed. The evaluation criteria used are
described in detail in the following sections.

Mean-SD (standard deviation) plot

In Mean-SD plots ranked means are plotted against the
standard deviation. If the variability, i.e., standard devi-
ation of intensities, depends on the magnitude of mea-
sured intensities, data are not homoscedastic. This, in
turn, invalidates the use of many statistical methods,
such as the analysis of variance (ANOVA) [26]. The vari-
ation should therefore be independent of measured signal
intensities, thus independent of the mean in an optimally
pre-processed data set. We estimated the mean and the
standard deviation from the reference pool serum for each
pre-processing combination.

The rating instructions for the raters of this plot were
the following: If the scatterplot parallels the x-axis with
low variation and the standard deviation is stable over the
mean of signal intensities, the pre-processing method has
to be judged as good (2). The loess curve (orange) in the
plot should help to identify a potential trend; a trend
should be judged as poor (0). Plots with no trend to a
larger standard deviation for larger means but a variation
around the loess curve have to be judged as fair (1). Fig-
ure 1 shows the example plots, which were given to the
raters to help them with their decision.

Bland-Altman plot

The Bland-Altman plot [27] is generally used to plot the
difference of two measurements against their mean
where one is a new method to find out how much the
new method differs from the old one. Here, we plotted
all pairs of the 12 measurements in the reference pool
serum for each pre-processing method in one Bland-
Altman plot. The following rating instruction was given
to the blinded readers: The mean of the differences
should be close to zero with a small and constant vari-
ation around this mean. If these criteria are fulfilled, the
plot should be judged as good (2). A plot with a visible
trend or funnel has to be judged as poor (0). If neither
trend nor funnel but a mean difference deviating widely
from zero or an increased scatter is present, the plot has
to be judged as fair (1).

Volcano plot

In general, -log;o transformed p-values are plotted against
log, fold changes in volcano plots [28]. The p-values
are taken from the ¢-test. In this situation p-values
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Fig. 1 Examples for a good, a fair and a poor mean-standard deviation, Volcano and Bland-Altman plot. Mean-SD plot: orange line: loess curve;
good: scatterplot parallel to x-axis with low variation, sd stable over mean signal intensities; fair: no trend to larger sd for larger means but variation
around loess curve; poor. trend. Bland-Altman plot: blue line: zero line; green line: mean difference; orange lines: 95 % Cl; good: mean of differences close to
zero with small, constant variation around this mean; fair: neither trend nor funnel but mean difference deviating widely from zero or increased scatter;
poor: visible trend or funnel. Volcano plot: orange line: loess curve; good: visible funnel, both sides with similar length; fair: one side of the
funnel considerably shorter than the other; poor: no funnel shape

were estimated for cases versus control using the nonpara-
metric Wilcoxon rank sum test because antigen intensities
might not be normally distributed. Hence, rank-based
relative effects [29] as a nonparametric effect measure
were used instead of fold changes. The shape of the plot is
therefore a funnel and not the typical volcano shape as
relative effects and p-values for the Wilcoxon-test are
based on the same rank sums.

The evaluation instructions for volcano plots were the
following: For plots where a funnel is visible and both

sides are similar in length, the plot has to be judged as
good (2). If one side of the funnel is considerably shorter
than the other the plot has to be judged as fair (1). If the
plot has no funnel shape at all the plot has to be judged
as poor (0).

Skewness and tail length
Skewness and tail length were determined to assess simi-
larities to the normal distribution for the distribution of
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the signal intensities of all data. Both statistics are com-
puted through quantile estimators.

Skewness was estimated by log S = log% [30],

where ¥, denotes the g -quantile. For symmetric distri-
butions log S equaling zero, and it is negative or positive
for left-skewed and right-skewed distributions, respecti-

vely. Tail length was estimated by 7T = fesm=%ows [30]

X0.8757%0.125
which can take values between 1 and infinity [30]. The

larger 7, the longer the tail of a distribution. The normal
distribution has a tail length of T'=1.704.

Thresholds were taken from the literature for scoring
skewness and tail length [31]. A distribution was almost
symmetric if - 0.5 < log S < 0.5 and scored with 2. If log S
deviated more than 0.75 from O, it received a score of 0;
otherwise it received a score of 1.

Similarly, the tail length of the distribution was judged
to be good (2), i.e., close to the normal distribution, if
1.625 < T < 2. The score for tail length was 0 if 7<1.525
or T>2.1, and otherwise it received a score of 1.

Coefficient of variation

We used the coefficient of variation (CV) to judge re-
peatability by considering the 12 measurements from
the reference pool serum. A pooled measure was com-
puted for each pre-processing method in the following
steps:

1. Get CVs for each antigen in each pre-processed data
set separately.

2. Rank CVs for one antigen over all pre-processed
data sets; start with the smallest.

3. Sum these ranks (CV;) across all antigens for each
pre-processing method separately.

A small value for CV; indicates that this pre-
processing method has small CVs for the majority of
antigens; smallest possible CV; equals the number of
antigens, highest is the product of the number of anti-
gens and of the pre-processing methods.

Before scoring CV; it was transformed to percent-
ages CV;, and scored with 2 if CV,, <50 %, with 1 if

50% < CV;, <80%, and 0, otherwise.

QQ-plot

To illustrate the effects of the pre-processing we ran-
domly drew equally sized groups from one case group
and performed Mann—Whitney U tests. We repeated
this 25 times and plotted it in a QQ-plot. If the pre-
processing reduces variability between subjects the lines
in the QQ-plot should scatter narrowly around the
diagonal line.
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Software used

R version 3.1.1 was used together with Bioconductor
Version 3.0 for all computations and visualizations [32].
For both Box-Cox transformations we employed the R-
function boxcox (package MASS (7.3-40)) for estimating \.
Unweighted Box-Cox transformed data were obtained
from the R-function BoxCox (package forecast (5.9)). The
R-function bct (package TeachingDemos (2.9)) transforms
data with the weighted Box-Cox transformation but cannot
handle missing data. We therefore implemented this trans-
formation as an R-function. We used the function lumiN
from the Bioconductor-package lumi (2.18.0) to perform

Table 1 Methods for transformation and normalization identified
through literature search

Transformation

Name Abbr. in paper  Reference
Hyperbolic area sine* asinh [37]
Box-Cox* boxcox [11
Log2* log2 [5, 38]
Linlog [12]
No*** no -
Variance stabilizing* vst [5, 38]
Weighted Box-Cox** boxcoxweights -

Normalization

Name Abbr. in paper  Reference
Contrast [10]
Cyclic loess [10]
Global mean 391
Global median* global [39]
Housekeeping genes [17]
Improved quantile** quanimpr -
Invariant set [10]
Locally weighted scatterplot smoothing®  loess [5]
Peng's method [13]
Quantile* quantile [5, 10, 38]
Qspline [10, 40]
Robust quantile [10]
Robust spline* rsn [5, 38]
Scaling/constant [10]
Spiked controls [17]
T-quantiles [13]
Tukey's biweight scaling [13]
Variance stabilizing* vsn [5, 40]
Z-score* zscore [41]

Methods used in this work are marked with at least one asterisk. Own developed
methods are marked with two asterisks. We have chosen the methods with three
asterisks to test their effects on the data
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quantile normalization, loess normalization, vsn and rsn.
All plots were generated using the R package ggplot2
(1.0.1).

Results

A systematic literature search was used to identify
methods for transformation and normalization (Table 1).
Search criteria were combinations of “transformation”,
“normalization”, “preprocess”, “comparison”, “microarray”
and modifications of them. We only included methods
which were already implemented in the statistical software
R [33] or simple to implement. Furthermore, we aimed at
investigating the effects of no transformation. In total, we
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applied 37 different combinations of 6 transformation
methods and 7 normalization methods to the data. We
excluded 4 of 384 antigens during the quality control for
further studies because values were missing for at least 8
of 42 patients (19.05 %).

Scores for the visual ratings and the statistical charac-
teristics are provided in Fig. 2 for the 37 different com-
binations of transformation and normalization methods
for 6 different evaluation criteria. Each criterion was
either assessed as poor, fair or good, corresponding to
the letter sizes small, medium and tall in Fig. 1. We
considered the first of the two runs for the plot evalu-
ation for the sum of scores. The following four pre-

\ no log2 \ asinh \ \ boxcox \ bcweig \ vst |
a
T s C T s C E,
v BV mBV &
o
2
T s ¢C TS C T s C 8
M BV v BV v BV §
°
T s C T s C g
M B \/ vmBV @
Tsc TSc TSc TsC a3
M BV v BV M BV M B YV |[3
o]
s C TSC TSC s C |g
M oB V MB Vv MB Vv BV §
N
TsC TSC TSC s C &
M BV M B V M B V B V %
<
)
S
Total quality score <9 9 . 10. 11 . 12
Tail length  Skewness CV  Mean-SD  Bland-Altman  Non. Volcano
Good T S C M B \%
Fair T S C M B \
Poor T s c M B v
Fig. 2 Total quality scores of the 37 different pre-processing methods over all 6 evaluation criteria. Single quality scores take the values 0
(poor, small letter), 1 (fair, medium-sized letter) and 2 (good, tall letter) per criterion. bcweig: boxcoxweights; CV: Coefficient of variation; Mean-SD:
mean-standard deviation
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processing methods obtained the maximum total score
of 12:

1. Asinh transformation with loess normalization,

2. Box-Cox transformation with robust spline
normalization,

3. Weighted Box-Cox transformation with quantile
normalization and

4. Weighted Box-Cox transformation with robust
spline normalization.

In general, pre-processing methods without a trans-
formation and methods with a variance stabilizing
transformation (VST) reached small total scores. The
improved quantile normalization reached only a
higher total score in combination with the log, trans-
formation. Global median and z-score normalization
had a highest total score of 9 in combination with
either log, transformation or asinh transformation but
failed, otherwise. Figure 3 shows the QQ-plot of the
raw data, and Fig. 4 the QQ-plots of the four best
pre-processing methods. Additional file 1: Figure S1
shows a selection of QQ-plots with pre-processing
combinations with smaller total quality scores. Finally,
(Additional file 1: Figures S2—S38) shows the QQ-plots of
all 37 combinations of the investigated pre-processing
methods.
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Discussion

The best four approaches for pre-processing the Luminex®
xMAP° data identified in this work were a weighted
Box-Cox transformation followed by a quantile, a ro-
bust spline normalization (rsn), an asinh transformation
followed by a loess normalization and a Box-Cox trans-
formation followed by an rsn. Our findings demonstrate
that data transformation is necessary prior to downstream
analysis, as all combinations without prior transformation
reached considerably bad evaluation scores. Unexpectedly,
the VST was rated poorly in this study although this ap-
proach performed well in gene expression studies [5, 6].
In the future, it would be helpful if other groups replicated
our findings using independent data. The results of the
QQ-plots show how the results in one case group behave
after pre-processing. The scattering of the test statistics
around the line in the QQ-plot of the raw data (Fig. 3) is
much larger than in the QQ-plots of the four best
methods (Fig. 4). In comparison, the QQ-plots of log2_rsn
and vst_loess show a larger scattering and the QQ-plots of
boxcox_global and boxcoxweights_zscore scatter largely
and are inflated (Additional file 1: Figure S1).

To ensure all important information are stored for pro-
teomics experiments for further data handling, a standard
reporting guideline for minimum information about a
proteomics experiment (MIAPE) has been developed
for methods, such as gel electrophoresis and mass

70-

60-

Sample Quantiles
(ox)
o

40-

30-
3 -2 -1

Raw data

Theoretical Quantiles
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Fig. 4 QQ-plots, four best pre-processing combinations (a)-(d). QQ-plots of test statistics of the Mann-Whitney U test, drawn subsamples of the
two case groups, 25 replications Loess and quantile normalization performed well in combination with all transformations but no transformation
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length and the coefficient of variation for all pre-processing methods. Additional file 1: Figure S39 - S75 shows the resulting plots for all 37 pre-processing
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evaluated using the correlation coefficient for the total quality scores which was 0.99 between both rounds.
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spectrometry [34]. However, MIAPE standards are
lacking for the Luminex® xMAP® technology. Such a
development would be important for future reports of
experiments based on the Luminex” xMAP® technology.
At this stage our aim was to provide data handling recom-
mendations to allow for later in-depth analysis of the

different steps in laboratory work including Luminex-
based data generation. To allow for this, we here produced
first data sets following recommendations from Luminex
both for multiplex assay setup and raw data collection.

A limitation of the transformation methods in our
study is the usage of the same method for all antigens
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within the transformation step except for both Box-Cox
transformations. If each antigen is transformed separ-
ately, results might be different. This should, however,
be investigated in future studies. Another limitation of
this study is the small sample size (42 samples in total).
As a result, the power of group comparisons is limited.
However, this sample size has been used in very early
stages of several biomarker studies.

As demonstrated by Ziegler et al. [35], the coefficient of
variation varies with the strength of gene expression and
decreases with increasing expression levels. For that reason
removal of transcripts with low intensity values from
expression data with a detection call algorithm [36] is often
used. In this study, we followed standard manufacturer
recommendations and used data only if there were at least
35 beads. The dependency of the coefficient of variation on
the number of beads warrants further investigation.

In summary, our investigation about appropriate
data transformation and normalization methods for the
Luminex® xMAP* technology has shown that either one
of the four following data pre-processing approaches is
appropriate: a weighted Box-Cox transformation followed
by a robust spline normalization, an asinh transformation
followed by a loess normalization, a Box-Cox transform-
ation followed by an rsn and a weighted Box-Cox trans-
formation followed by a quantile normalization.

Conclusions

We identified four adequate transformation methods for
antigen intensities obtained by the Luminex® xMAP®
technology using simple graphical and statistical charac-
teristics. The suitable methods are a weighted Box-Cox
transformation followed by a quantile or robust spline
normalization (rsn), an asinh transformation followed by
a loess normalization or a Box-Cox transformation
followed by an rsn.
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