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Abstract

Background: Populations of Atlantic salmon display highly significant genetic differences with unresolved molecular
basis. These differences may result from separate postglacial colonization patterns, diversifying natural selection and
adaptation, or a combination. Adaptation could be influenced or even facilitated by the recent whole genome
duplication in the salmonid lineage which resulted in a partly tetraploid species with duplicated genes and regions.

Results: In order to elucidate the genes and genomic regions underlying the genetic differences, we conducted a

genome wide association study using whole genome resequencing data from eight populations from Northern
and Southern Norway. From a total of ~4.5 million sequencing-derived SNPs, more than 10 % showed significant
differentiation between populations from these two regions and ten selective sweeps on chromosomes 5, 10, 11,
13-15, 21, 24 and 25 were identified. These comprised 59 genes, of which 15 had one or more differentiated
missense mutation. Our analysis showed that most sweeps have paralogous regions in the partially tetraploid
genome, each lacking the high number of significant SNPs found in the sweeps. The most significant sweep was
found on Chr 25 and carried several missense mutations in the antiviral mx genes, suggesting that these populations
have experienced differing viral pressures. Interestingly the second most significant sweep, found on Chr 5, contains
two genes involved in the NF-KB pathway (nkap and nkrf), which is also a known pathogen target that controls a large
number of processes in animals.

Conclusion: Our results show that natural selection acting on immune related genes has contributed to genetic

divergence between salmon populations in Norway. The differences between populations may have been facilitated
by the plasticity of the salmon genome. The observed signatures of selection in duplicated genomic regions suggest

that the recently duplicated genome has provided raw material for evolutionary adaptation.
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Background

In addition to being one of the most highly prized fresh-
water fish for recreational fishing, the Atlantic salmon
(Salmo salar L.) is one of the most economically import-
ant aquaculture species worldwide. Its natural distribution
is throughout the North Atlantic, ranging from Long Is-
land Sound to Ungava Bay in the west and from Northern
Portugal to the Barents Sea in the east [1]. This
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distribution is the result of postglacial colonization of
ecosystems that became available when the glacial ice
retreated about 10,000 years ago [2].

Atlantic salmon is characterised by highly significant,
hierarchically structured population genetic divergence,
with the largest differences observed between the European
and North American lineages [3-5]. This divergence is also
observed on a regional scale, presumably as a consequence
of the colonization process associated with the retreat of
the glacier [6, 7]. Moreover, local scale differentiation ex-
ists, for example between neighbouring rivers [8—10] and
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among tributaries within the same river which might be
explained by restricted gene flow, genetic drift and
adaptation [11-13].

Atlantic salmon exhibit a relatively complex life history
that includes spawning and juvenile rearing in freshwater
followed by extended ocean migrations to the feeding
grounds [14]. As a consequence, salmon go through sev-
eral distinct transitions that are characterized by changes
in behaviour and physiology [15]. They are also able to
adapt to varying local conditions throughout their range
of environments [16], exemplified by their ability to in-
habit rivers with a wide range of temperatures, from Spain
to the colder Arctic latitudes [17]. Previous studies have
shown differences in temperature and climate to be as-
sociated with genetic differences between salmon popu-
lations [7, 18], and latitude also seems to be correlated
with allele frequencies of markers relevant to immune
response in American and European Atlantic salmon
populations, possibly due to temperature induced differ-
ences in pathogen-driven selection or other environmental
factors [19-21].

In the wild, Atlantic salmon are constantly confronted
with a range of pathogens, and have consequently devel-
oped numerous innate and adaptive immune mechanisms
to overcome infectious challenges [22]. Recent studies
suggest that the prevalence of parasites and infectious dis-
eases is increasing in wild populations partly due to global
warming [23, 24]. Given the commercial relevance of
Atlantic salmon and the recent release of a reference
genome [25], particular effort should be made to iden-
tify genes targeted by natural selection in wild Atlantic
salmon populations that ultimately can lead to opti-
mized aquaculture practices. The potential relevance of
these findings for the Atlantic salmon farming industry
is exemplified by the identification of Infectious Pan-
creatic Necrosis (IPN) Virus resistance [26] and age at
maturity associated genes [27, 28]. A relatively recent
whole genome duplication occurred in the salmonid
lineage some 80 million years ago [29], resulting in a
partly tetraploid genome undergoing rediploidization.
Consequently the genome contains many paralogous
regions that could provide raw material for evolution as
paralogous genes and regions can diversify and acquire
new functions [30].

Based upon the analysis of microsatellite and SNP
markers, several studies have demonstrated that there are
highly significant genetic differences between Atlantic
salmon populations located in the north and south of
Norway [31-33]. However, the genomic regions and
genes behind the differences have not been investigated
in detail, and consequently, the potential adaptive sig-
nificance of this genetic divergence remains elusive.

Recently, a genome wide association study (GWAS)
based upon whole genome resequencing data revealed a
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selective sweep in Atlantic salmon strongly associated
with age of maturation [27]. Using a similar methodo-
logical approach, the present study aimed to identify genes
and genomic regions diverging between Atlantic salmon
populations in the north and south of Norway. In order to
achieve this objective, salmon populations inhabiting the
four rivers Tanaelva, Lakselv, Altaelva and Reisaelva from
Northern Norway and the four rivers Gloppenelva,
Eidselva, Suldalsligen and Ardalselva from Southern
Norway were chosen for resequencing using DNA
pools (n =30 fish per river, Fig. 1). The major finding in
this study was the observation that diversifying natural se-
lection has acted on immune related genes causing adap-
tive divergence between populations in the north and
south of Norway.

Results and discussion

Whole genome sequence data from eight selected riv-
ers along the Norwegian coast (Fig. 1) was mapped to
the most recent Atlantic salmon reference genome
(AKGDO00000000.4). This yielded a 26.7x average depth of
coverage of uniquely mapped reads per river. SNP calling
revealed 4,450,990 high quality SNPs. To quantify the gen-
etic difference between populations of the chosen rivers,
Hudson’s estimator for Wrigth’s fixation index (Fst) [34]
was calculated (Additional file 1: Table S1). A phylogenetic
tree was made using this distance matrix to illustrate and
confirm the reported large genetic difference between the
northern and southern populations of Atlantic salmon in
Norway (Fig. 1). Statistical analysis using the Cochran-
Mantel-Haenszel test for different allele frequencies be-
tween northern and southern Atlantic salmon populations
revealed 474,410 SNPs with significantly different allele
frequencies (0.1 % FDR, Fig. 2a). Genomic regions sub-
jected to recent positive selection are expected to have
lower heterozygosity than other regions, and if the selective
pressure differs between populations, higher Fsr is ob-
served [35]. An approach calculating Fsrand heterozygosity
in 50 kb sliding windows has previously been used to iden-
tify genomic regions under selection (selective sweeps) [36].
This method was used to find selective sweeps which differ
between northern and southern salmon populations in
Norway (Additional file 1: Figure S1). The combined Fsr/
heterozygosity approach suggested 10 selective sweeps that
differed between the two geographical regions. The sweeps
ranged from 75,000 to 575,000 bp in size, and were found
in chromosomes 5, 10, 11, 13-15, 21, 24 and 25 (Table 1).
These sweeps contained in total 59 genes involved in a
number of different biological processes including cell div-
ision, cytokinesis, angiogenesis, development, transcrip-
tional regulation and immune response. For a detailed list
of gene ID and short description of function see Additional
file 1: Table S2.
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Fig. 1 Geographical overview of sampled salmon populations. Resequenced genomes of Atlantic salmon from four populations in Northern Norway
and four populations in Southern Norway were analyzed in this study and are shown as black dots on a map. A phylogenetic tree based on pairwise
calculations of fixation index (Fsy) illustrates the genetic distances between the sequenced populations. 19 additional populations from rivers
along the Norwegian coast were analyzed using genotyping assays and the geographical sampling locations of these are indicated according
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The high number of SNPs and genes in the selective
sweeps complicates the task of pin-pointing the most
important genetic differences. Therefore, we focused on
missense mutations that induce amino acid changes in
proteins, since these are more likely to confer a differ-
ence in biological function. Within the identified sweeps
20 significantly differentiated missense SNPs were found,
comprising 15 different genes dispersed in 6 selective
sweeps (Table 2). Three missense mutations were ob-
served in the sweep on Chr 10, all in a single gene, anin,
encoding an actin-binding protein required for cytokin-
esis. Three genes on Chr 13 harbor missense mutations:
trpc2, involved in chemosensory transduction, and inter-
estingly knockout mice display changes in their sexual,
aggressive, and parenting behaviors [37]; rrml, an enzyme
essential for the production of deoxyribonucleotides; rb1,
which promotes GO-G1 transition when phosphorylated
by CDK3/cyclin-C acts as a transcriptional repressor of

E2F1 target genes. Also in the Chr 14 sweep there are
three genes with missense mutations: adnp, a homeo-
domain containing DNA binding transcription factor;
¢psfl, encoding a component of the cleavage and polya-
denylation specificity factor complex; parp10, encoding
a ADP-ribosyltransferase involved in apoptosis, NF-kB
signaling, and DNA damage repair [38]. The sweep on
Chr 21 contains one gene, rnaseh2b, which is linked to
a chronic inflammatory disorder in humans [39].

The second most significant selective sweep was found
on Chr 5 (Fig. 2b) and included the stress and immune
response transcription factor genes nkrf and nkap; zbtb33
encoding a transcriptional regulator binding to methylated
CpG dinucleotides, and a gene with unknown function,
sowahc. Both Nkrf and Nkap are transcription factors
which regulate the NF-kB pathway in which Nkap acti-
vates many cell processes including inflammation, im-
munity, differentiation, cell growth and apoptosis, while
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Fig. 2 Identification of genomic regions under selection in Northern and Southern Norway. a Manhattan plot showing differentiated SNPs between
northern and southern populations of Atlantic salmon in Norway. The x-axis indicates chromosomal positions; the y-axis presents the negative
logarithm of the P-value for allele frequencies being different between the two geographical regions. SNPs in selective sweep regions identified using
FST/heterozygosity are indicated by red dots. SNPs above the dashed horizontal line (p < 1.0658e-4, 0.1 % FDR) have significantly different
allele frequencies between the two geographical regions. b and ¢ Magnification showing 500 kb of selective sweeps on Chr 5 and Chr 25.
SNPs are indicated as black dots and missense mutations are marked with red squares. The track labeled “"HET” shows the heterozygosity of
salmon from Northern (blue) and Southern Norway (green) in 3 kb windows. The track labeled “FST" shows the Fst between populations in
Northern and Southern Norway in 3 kb windows. In the bottom, identified genes are shown, with genes containing differentiated missense

mutations colored black. The x-axis shows the chromosomal positions given in kb
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Nkrf mediates transcriptional repression of certain
Nkap responsive genes. Since NF-kB signaling pathways
activate the immune system in the host, these proteins
are key targets for proteases expressed by invading
pathogens [40]. Functional studies of the Nkap protein
have revealed roles for this protein in T-cell maturation
[41] and mRNA splicing [42]. To our knowledge, no
previous studies have identified functionally significant
SNPs associated with any of the four genes located
within this sweep, however one of the SNPs found in
nkap is located in a highly conserved region necessary
for transcriptional repression. Here the valine is conserved
in other species representing the ancestral variant while
in Northern Norway methionine is most common
(Additional file 1: Figure S2). This finding may be re-
lated to differences in immune defense between salmon
from these two regions, a suggestion supported by the
fact that the NF-kB pathway is differently regulated in

IPN resistant salmon [43]. Further studies will reveal
how these SNPs modulate the function of NF-kB and
virus response or if other functional properties are as-
sociated with the selective sweep on Chr 5.

The most significant sweep was found on Chr 25 and
contained a cluster of five mx (myxovirus resistance)
genes known to be involved in defense against viruses.
Three of these mx genes contained missense mutations;
mxI-1, mxI1-2 and mx2-1 (Fig. 2c). These proteins are
dynamin-like GTPases induced upon virus infection
through the innate interferon system. It has been shown
that they can act broadly against both DNA and RNA vi-
ruses and specifically against certain viruses [44] and
studies in mouse, human and chicken have shown that
single missense mutations in Mx1 and Mx2 can confer
such specific responses [45-48]. It is possible that the
identified missense SNPs in the mx genes reflect specific
adjustments to different viral disease pressures between
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Table 1 Selective sweeps. Fsy and heterozygosity estimations in sliding windows were used to identify differentiated loci undergoing
selection in either northern or southern populations of Atlantic salmon in Norway. Genes carrying differentiated missense mutations are

shown in bold

Chromosome Chromosomal region Sweep length (bp) Genes in selective sweeps

5 22,475,000 - 22,800,000 325,000 tnmd, elf1, nkrf, sept6, sowahc, rp/39, upf3b, nkap, zbtb33,
atp1b4, lamp2, cul4b, mctsi, clgalticl, clic2

10 76,250,000 - 76,450,000 200,000 sept7, anln, prmt7, coq9, polr2c, dgatl, nedd4, adat], spire2

Il 19,225,000 - 19,300,000 75,000 numa’l

13 78,325,000 — 78,425,000 100,000 trpc2, rrm1, sicéa’, rb1, Ipar6

13 81,025,000 — 81,150,000 125,000 eda?2r, ar, ophnl

14 64,700,000 — 65,275,000 575,000 pardég, blocis4, nutf2, adnp2, txnl4a, pqglcl, kcng2, ctdpl, adcks,
cpsf1, parp10, st3gall, khdrbs3

15 46,925,000 - 47,200,000 275,000 mdgal

21 24,850,000 - 25,075,000 225,000 trim13, rnaseh2b, nrob1, illrapl1

24 34,225,000 — 34,525,000 300,000 edil3

25 47,075,000 — 47,225,000 150,000 stxbp5l, gtf2el, mx1-1, mx1-2, mx2-1, smcp-1a, mx1-3

northern and southern populations of salmon. We iden-
tified missense SNPs in all regions of the protein includ-
ing a SNP in the antiviral specificity domain in exon 13
(Additional file 1: Figure S3). This SNP represents a
structurally relevant amino acid substitution, where

arginine seems to be the ancestral variant and cysteine
the derived variant dominating in the northern popula-
tion (Chr 25 position: 47,120,121). Likewise, SNPs in this
domain have been associated with specific virus resist-
ance in chicken [49, 50] and pig [51]. SNPs in mx genes

Table 2 Missense mutations in selective sweeps. Several missense mutations were discovered in the selective sweeps. The table lists
resequencing derived reference alleles frequencies in the northern (N) and southern (S) populations of salmon in Norway. SNPs from

Chr 5 and Chr 25 selected for genotyping are shown in bold

Chr  Position -logi)P Reference allele  Ref/alt nucleotide  Ref/alt amino acid ~ Gene Description of gene
frequency (S/N)
5° 22,641,277 29.6 1.00/0.34 A (G) Phe (Ser) nkrf NF-kB repressing factor.
5 22,691,092 275 0.95/0.29 Gm Ala (Ser) sowahc Unknown function.
52 22,708,279 28.8 1.00/0.33 cm Val (Met) nkap NF-kB activating protein.
5° 22,719,453 19.4 0.79/0.27 T (A) Val (Glu) zbtb33 Transcriptional regulator.
10° 76,272,006 18.7 0.94/0.46 TG Asp (Glu) anin Actin binding protein.
10 76,272,245 184 0.96/0.49 C(A) Pro (GIn) anin Same as above.
10 76,278414 145 0.32/0.76 G (A Ala (Thr) anln Same as above.
13 78,341,469 24.1 0.97/043 G(A) Gly (Arg) trpc2 Transient Receptor Cation Channel.
13 78,349,376 203 0.98/0.40 TG Glu (Ala) mmil Ribonucleoside-diphosphate reductase.
13° 78,413,379 20.7 0.98/0.48 A GIn (Leu) b1 Regulator of entry into cell division.
14 64,739,123 20.0 0.55/0.01 T© Asn (lle) adnp2 Transcription factor.
14 64,988,859 11.9 0.36/0.79 A Asn (Lys) cpsfl Pre-mRNAs processing.
14° 65,006,543 206 0.38/0.94 A Q) Asp (Glu) parp10 ADP-Ribosyltransferase.
210 24,974,056 19.7 0.98/0.46 T(A) Met (Lys) rnaseh2b Non catalytic subunit of RNase H2.
25 47,105,598 26.0 0.84/0.03 A (G) Thr (Ala) mx1-1 Interferon-induced antiviral.
25 47,108,912 272 0.91/0.00 G (A Val (le) mxI1-1 Same as above.
25 47,111,137 180 0.79/0.06 G (A) Val (Met) mxI1-1 Same as above.
25% 47,120,121 33.1 0.83/0.06 cm Arg (Cys) mx1-1 Same as above.
25 47,147,348 272 0.22/0.98 G(M Pro (His) mx1-2 Same as above.
25 47,181,001 254 0.85/0.00 T© His (Arg) mx2-1 Same as above.

Allele frequencies from genotyping are illustrated in Fig. 4
PAllele frequencies from genotyping are illustrated in Additional file 1: Figure S5
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have also been investigated in another fish species, the
turbot [52], however, properties related to protection
against viruses were not investigated in this study. In
rainbow trout (Oncorhynchus mykiss) genetic variation
in mx between strains in exon 3-6, was correlated with
susceptibility to infectious hematopoietic necrosis virus
(IHNV) [53]. This virus also infects Atlantic salmon
and our discovery of a missense mutation in exon 6 sug-
gests that salmon could have adapted to the IHNV
(Additional file 1: Figure S3). In addition, different
strains of rainbow trout display variable susceptibility
to this virus [54]. In this study we cannot elucidate the
functional significance of the acquired SNPs in mx in
Northern Norway, however, further studies will reveal
whether any of these changes have been involved in
host-virus adaptation [55].

We also investigated whether the selective sweeps on
Chr 5 and Chr 25 had paralogous regions in the partially
tetraploid salmon genome [56]. In silico analysis showed
that both sweeps have paralogous regions located on
other chromosomes. The Chr 5 sweep has a paralogous
region on Chr 9 (Additional file 1: Figure S4, position
51,349,279 to 51,849,279), which did not contain any dif-
ferentiated SNPs. The synteny is conserved in other
species, and the existence of only one copy in zebrafish
(Danio rerio), combined with the observation that mis-
sense mutations on Chr 5 are not present in the paralo-
gous genes on Chr 9, indicate that the mutations arose
after the salmonid specific whole genome duplication
(WGD). Based upon this observation, it is possible to
speculate that the WGD provided paralogous regions
where one copy was free to sub- or neo-functionalize,
much like the theory for duplicated genes [57] which has
been suggested to be important for evolutionary adap-
tation and innovation in salmon [58], in teleosts [59]
and in general [30]. A similar picture is seen for the
sweep on Chr 25 where the paralogous region harbors
a cluster of three mx genes on Chr 12 (position
66,552,602 to 67,052,602), but carries no differentiated
SNPs or missense mutations. While the sweeps on Chrs
11, 15, 21 and 24 have no clear paralogous regions, the
sweeps on Chr 10, Chr 14 and the two sweeps on Chr
13 also have paralogous regions with very few significantly
differentiated SNPs, on Chr 16, 27 and 4, respectively
(Fig. 3). Similarly, in our recent discovery of the loci in
Chr 25 controlling age at maturity [27] we investigated
the two paralogous regions in Chr 21, both of which were
without SNPs associated with the trait. Together, these
findings indicate that the partially tetraploid stage may be
beneficial for adaptation, since one gene copy or gene
cluster can keep the original function while the other can
adapt to a new situation such as novel disease pressures.

In this study, the initial resequencing was based only
upon males. This is because it allowed reusing sequence
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data from our previous work [27]. The targeted SNP
analysis, used to validate the results from resequencing
in a larger independent set of rivers, was conducted using
both males and females (Figs. 1 and 4). Genotyping of
mixed sex salmon from 19 rivers (=20 salmon/river)
along the Norwegian coast (Fig. 1) for five missense SNPs
on Chr 5 and 25 confirmed strong genetic differentiation
between salmon populations from the north and south of
Norway (Fig. 4). Populations from northern rivers (1-9)
displayed allele frequencies in the range 0-0.7, while those
from southern rivers (11-19) were close to fixation for
one allele at these two loci. Salmon from river 10, Malselv,
shows intermediate frequencies, which corresponds well
with what has been reported in the literature [31, 32].
These results also confirm allele frequency estimations
from the pooled resequencing (Table 2). In addition, we
designed Sequenom assays for five other missense SNPs
in other regions; one SNP each for sweeps on Chrs 10, 13
and 21, and two SNPs in Chr 14. Genotyping was per-
formed for all 19 rivers (Additional file 1: Figure S5). The
allele frequencies showed the same clear difference be-
tween the northern and southern populations. For the
SNPs on Chr 14 there appears to be an additional genetic
shift between the rivers 14, Stjordalselva and rivers south
of this. In addition to the data produced within the
present study, resequencing data from a recent publica-
tion was downloaded and compared to our results [28].
The downloaded data include three individually se-
quenced salmon from 4 southern and 3 northern salmon
rivers in Norway. These data corroborate our resequen-
cing and genotyping results (Additional file 1: Table S3).
Our surveyed SNPs therefore also represent robust and
good genetic markers for distinguishing northern and
southern populations of Atlantic salmon in Norway. Fu-
ture studies on an extended set of populations may reveal
if these are also robust markers for detecting genetic
structuring in other parts of the distribution range of the
species.

Atlantic salmon aquaculture involves rearing domesti-
cated fish that originate from commercial breeding pro-
grams. Forty wild populations from both the north and
south of Norway were sampled when establishing the
national breeding programs for salmon [60]. However,
analyses of genetic markers demonstrate that there is a
dominance of salmon from Southern Norway in the do-
mesticated lines currently in production [61]. Genetic
analyses of farmed salmon escapees in Norway have un-
covered genetic introgression into native salmon popula-
tions in both Northern and Southern Norway, but the
biological consequence remains unknown [32, 61, 62].
Consequently the results from the present study, where
adaptive genetic divergence between wild salmon from
populations located in the north and south of Norway
was revealed, it is likely that the potential negative
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genetic impact of domesticated salmon introgression is
greater in populations located in northern regions, since
the farmed fish originate mostly from wild Southern
Norway populations.

Conclusion

In this study we performed a GWAS by genome rese-
quencing with the aim to screen the Atlantic salmon
genome for genetic differentiation between the northern
and southern populations in Norway. By investigating
eight rivers we uncovered ten particularly striking
sweeps including two clusters of immune related genes
harboring missense mutations. A feasible interpretation
is that different populations of Atlantic salmon have his-
torically been exposed to different selection pressures in
the form of pathogens. Some of these adapted alleles
could be advantageous for aquaculture production which
is currently hampered by a number of diseases, including

virus infections [63]. Future studies should include gene
editing of immune genes found in these selective sweeps
[64, 65] in combination with viral exposure experiments.
Within these experiments, viruses relevant to salmon
aquaculture should be the primary focus since finding
specific resistance alleles can be of significant value to
the industry and could also be used for protecting wild
fish against high disease pressures posed by open cage
aquaculture [66]. Upon finding the protective alleles, se-
lective breeding on individuals with beneficial haplotypes
could lead to increased welfare for aquaculture salmon,
decreased disease pressure on wild populations and
could also be economically favorable for the industry.
On the other hand, further studies should investigate the
impact of genetic introgression from fertile aquaculture
escapees on the adaptive genetic properties in wild pop-
ulations. To reduce the risk of this unwanted loss of
local adaptation and alteration of fitness-related traits, a
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sustainable solution would be the use of sterile fish in
aquaculture, especially in Northern Norway. Future stud-
ies should also investigate whether paralogous regions of
selective sweeps have undergone positive selection or not,
as the latter scenario would suggest an evolutionary mech-
anism which provides higher adaptive possibilities when a
genome is partially tetraploid.

Methods

Samples and sampling

Scales from 30 Atlantic salmon males per river were selected
from a sample set of 26,000 samples collected in coastal
fisheries in Northern Norway. In the Kolarctic Salmon pro-
ject (http://prosjekt.fylkesmannen.no/Kolarcticsalmon), the
multilocus genotypes of all individuals were compared to a
genetic baseline consisting of over 180 rivers from Northern
Russia and Norway and were assigned to river of origin.
Samples that were assigned with high probability to four riv-
ers in Northern Norway; Altaelva, Reisaelva, Lakselv and
Tanaelva were generously made available to this study. 30
salmon males from each of four different rivers in Southern
Norway, including Ardalselva, Eidselva, Gloppenelva
and Suldalslagen were sampled and resequenced in a
recent study [27]. In addition to these, we also used
male and female salmon DNA from 19 rivers along the
Norwegian coast. These included 20 parr individuals from
each of the rivers Grense Jakobselv, Neiden, Bergebyelva,
Komagelva, Kongsfjordelva, Langfjordelva, Borselva, Stab-
burselva, Repparfjordselva, Malselv, Laukhelle, Alvsvagvass-
draget, Argirdsvassdraget, Stjordalselva, Jolstra, Lyseelva,
Bjerkreimselva, Storelva and Enningdalselva (represented

by numbers in Fig. 1). With the exception of Enningdalselva
where the sample was obtained from scales collected by
recreational fisheries, these samples were obtained from
fins collected by electrofishing of juvenile salmon from
mulitple locations in the rivers.

DNA extraction and sequencing

DNA from the 19 rivers for genotyping was extracted
from scales or fin samples using Qiagen DNeasy Blood
and Tissue Kit (Qiagen, Hilden, Germany) according to
manufacturer’s recommendations. From salmon belong-
ing to the four populations in Northern Norway total
DNA was extracted from scales using Qiagen DNeasy
Blood and Tissue Kit. Equal amounts of DNA from ten
individuals were pooled to make three pools per river,
totaling 30 individuals from each river. Paired-end libraries
were constructed using the Genomic DNA Sample Prepar-
ation Kit (Illumina, CA, USA) according to manufacturer’s
instructions and sequenced on the Illumina HiSeq2000
platform (Illumina, CA, USA) at the Norwegian Sequen-
cing center (https://www.sequencing.uio.no, Oslo, Norway)
with each pool sequenced in separate lanes.

Sequence mapping and SNP calling

To ensure high quality sequences, sequenced reads
were inspected with FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Adapter sequence re-
moval and quality trimming was done with Cutadapt
[67], resulting in 1,077,839,448 (SD 40,407,492) paired
reads on average per river. Sequenced reads were
mapped to the most recent release of the salmon genome
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(AGKDO0000000.4) using Bowtie2 (v.2.1.0) [68] without
soft clipping (end-to-end mode). To increase the sensitiv-
ity of the mapping, seed length (-L parameter) was set to
18 and the interval between extracted seeds (~i parameter)
was set to S,1,1.5 corresponding to the function f (L) =1 +
1.5*sqrt (L), where L is the read length. Additionally, the
maximum number of mismatches per seed (—-N parameter)
was set to L,0,0.1, corresponding to the function f (L) =0 +
0.1*L, where L is the read length, and minimum alignment
score (——score-min parameter) was set to L,-0.6,-0.4, corre-
sponding to the function f (L) = -0.6 + -0.4*L, where L is
the read length. To remove ambiguously mapped reads the
mapping quality threshold was set to 20. To obtain higher
sequence coverage, the three sequenced pools per river
were merged to a single BAM file using SAMtools merge.
SNPs were called using SAMtools mpileup [69] and the
output was parsed using the PoPoolation2 package
(mpileup2sync.jar) [70] with a minimum base quality
threshold of 20. For a SNP to be included in the final
set of high quality SNPs, minimum coverage of 10 and
maximum coverage of 50 (99 % percentile) was re-
quired for each river. In addition, the total number of
observed minor alleles was required to be at least 8. Re-
cently published whole genome resequencing data from
individuals [28] was downloaded and mapped to the
reference genome. The data included three salmon from
each of the rivers Tanaelva, Repparfjordelva, Altaelva,
Namsenelva, Argardsvassdraget, Nausta and Jolstra, where
the first three represent populations in Norhtern Norway
and the last four represent Southern Norway. Accession
numbers for the samples are shown in the caption of
Additional file 1: Table S3.

Statistical analysis

Pairwise fixation index (Fst) between all eight sequenced
populations was calculated for all high quality SNPs
using Hudson’s estimator for Fst [34]. Fst values were
averaged over all SNPs in each population to generate a
distance matrix using Fsr as genetic distance. This matrix
was converted to a newick tree using NEIGHBOR from
the Phylip package [71] and a phylogenetic tree was
created with NJplot [72]. To find SNPs with significantly
different allele frequencies (0.1 % FDR) between popula-
tions from Northern and Southern Norway the Cochran-
Mantel-Haenszel test for repeated tests of independence
from the PoPoolation2 package (cmh-test.pl) [70] was
used. The FDR threshold was determined using the
method described in [73]. Allele counts for each river
were merged to get the total allele count per SNP in
Northern and Southern Norway, corresponding to 120
individuals per geographical region. From this, Fst values
between the northern and southern populations were esti-
mated using the Fsr calculation from the PoPoolation2
package (fst-sliding.pl) for each SNP, with —pool-size
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parameter set to 120. Genomic regions with low values of
heterozygosity may indicate SNPs under selection. There-
fore heterozygosity values were estimated for north and
south of Norway, separately, for each SNPs as 2 * (major
allele frequency * minor allele frequency). Sliding windows
of 50 kb with steps of 25 kb was used to find genomic re-
gions with high Fst values and with low heterozygosity
values in either Northern or Southern Norway. This ap-
proach is similar to one used to discover genomic regions
under selection in other animals [36]. To identify putative
selective sweeps it was required that the average Fst value
of the window was at least 0.17 (above 99.9 % percentile)
and that average heterozygosity of the window in either
Northern or Southern Norway was at most 0.15 (below
5 % percentile) (Additional file 1: Figure S1). The thresh-
olds were chosen with focus on capturing the outliers in
the FST and heterozygosity distributions. Putative sweeps
were extended to the sides for as long as the neighboring
windows had either average Fst of at least 0.17 or hetero-
zygosity of at most 0.15 in either Northern or Southern
Norway. If identified sweeps were less than 50 kb apart
these were joined to avoid fragmentation of the putative
selective sweeps. Genomic windows containing more than
10 % ambiguous bases (Ns) in the reference assembly
were discarded to exclude regions with high levels of
uncertainty.

SNP annotation

Genes in the sweep regions were obtained from the offi-
cial genome annotation (NCBI Salmo salar Annotation
Release 100). Missense mutations in selective sweep re-
gions were identified by manual inspection of the coding
sequences. Amino acid sequences of five mx genes found
in a selective sweep on Chr 25 were aligned to the ho-
mologs Mx1 and Mx2 from human and MxD and MxG
from Zebrafish using BLASTP (default parameters).
Functional domains in the Mx proteins were assigned
using domain information for human Mx1 from Uni-
Prot. Amino acid sequences from four genes containing
missense mutations in a selective sweep on Chr 5 (nkrf,
sowahc, nkap and zbtb33) were aligned to homologous
zebrafish and Northern Pike genes using BLASTP with
default parameters. Synteny between genes in the sweep
on Chr 5 and other animals was found using the UCSC
genome browser (https://genome.ucsc.edu) to inspect
the syntenic regions of zebrafish, human and mouse.
Paralogous regions of the sweeps were identified using
TBLASTN (default parameters) with the genes in the
sweeps against the salmon genome.

Genotyping

Twenty salmon from 19 rivers along the Norwegian
coastline (n=380) were genotyped using ten of the
most significant missense mutations on a Sequenom


https://genome.ucsc.edu

Kjeerner-Semb et al. BMC Genomics (2016) 17:610

MassARRAY iPLEX platform (San Diego, CA, USA).
Primers and extension primers are listed in Additional
file 1: Table S4. The genotyping primers were designed
to not target any paralogous genes in the genome.

Additional file

Additional file 1: Tables S1 to S4, Figs S1 to S5. Supplemental
Materials. (DOC 2321 kb)
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