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Qiong Cheng4, Olga Glebova1, Ion Măndoiu3*, Nicole B. Lopanik2,5* and Alexander Zelikovsky1*

From 11th International Symposium on Bioinformatics Research and Applications (ISBRA ’15)
Norfolk, VA, USA. 7-10 June 2015

Abstract

Background: Assessing pathway activity levels is a plausible way to quantify metabolic differences between various
conditions. This is usually inferred from microarray expression data. Wide availability of NGS technology has triggered
a demand for bioinformatics tools capable of analyzing pathway activity directly from RNA-Seq data. In this paper we
introduce XPathway, a set of tools that compares pathway activity analyzing mapping of contigs assembled from
RNA-Seq reads to KEGG pathways. The XPathway analysis of pathway activity is based on expectation maximization
and topological properties of pathway graphs.

Results: XPathway tools have been applied to RNA-Seq data from the marine bryozoan Bugula neritina with and
without its symbiotic bacterium “Candidatus Endobugula sertula”. We successfully identified several metabolic
pathways with differential activity levels. The expression of enzymes from the identified pathways has been further
validated through quantitative PCR (qPCR).

Conclusions: Our results show that XPathway is able to detect and quantify the metabolic difference in two samples.
The software is implemented in C, Python and shell scripting and is capable of running on Linux/Unix platforms. The
source code and installation instructions are available at http://alan.cs.gsu.edu/NGS/?q=content/xpathway.

Background
For the past several years, RNA-Seq has revolutionized
biological research through the many advantages it pro-
vides. Because of RNA-Seq, it is easier to characterize
transcripts and their isoforms, to detect genes with-
out need of prior information in the form of probes or
primers, and estimate expression levels of transcripts with
good precision.
In contrast to microarray data, RNA-Seq data allows

frequency of expression of all transcripts without a pri-
ori knowledge of the gene sequence. RNA-Seq data can
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also account for all RNA transcripts producing enzymes
for a given pathway. When applied to metatranscriptome
data, the first challenge of pathway analysis is to decide
which metabolic pathways are active in the sampled com-
munity (i.e., pathway activity detection). Recent software
tools (MEGAN4 [1] and MetaPathways [2] using SEED
and KEGG (Kyoto Encyclopedia of Genes and Genomes)
[3] annotations) enable the organization of transcripts or
reads into ortholog groups and pathways by collecting all
transcripts or reads represented by at least one ortholog
group and providing that collection to the user. The par-
simonious approach MinPath [4] identifies the smallest
family of pathways covering all expressed ortholog groups.
A more elaborate Markov Chain Monte Carlo (MCMC)
approach takes into account the co-occurrences of genes
in more than one pathway for analyzing metagenomic
data [5]. Following pathway detection, the second major
challenge of pathway analysis is to infer pathway activity
levels to enable detection of differential expression. Few
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existing tools incorporate this step, which is the major
focus of this paper.
Methods that treat pathways as simple gene sets [6, 7]

are popular even though they do not use all information
available. In recent years, a number of pathway analysis
methods have been developed that combine knowledge
of pathway topology (e.g., gene position on the path-
way, gene-gene interactions, etc.) with gene expression
data based on comparative analyses (reviewed in [8]).
Such methods have been applied primarily to experi-
mental studies of single organisms. There are relatively
few analyses of complex metatranscriptomic datasets
that incorporate pathway-level inference of metabolic
activity.
The new analysis techniques presented here are suit-

able for investigating the underlying metabolic differences
between species living in separate environments based on
RNA-Seq data.
Our contribution consists of the following:

1. A novel graph-based approach to analyze pathway
significance. We represent metabolic pathways as
graphs that use nodes to represent biochemical
compounds, with enzymes associated with edges
describing biochemical reactions.

2. An implementation of an EM algorithm, in which
pathways are viewed as sets of orthologs.

3. The validation of the two approaches through
differential expression analysis at the transcripts and
genes levels and also through real-time quantitative
PCR experiments.

Pathways can also be regarded as a set of ortholog
groups on which we can apply a set cover. We will use a
binary ortholog group expression model to determine if
there is or not RNA-Seq evidence for the expression of a
given ortholog group in a given sample.
The validation step of these methods consists of extract-

ing the genes involved in our estimated differential path-
ways activity levels, and analyzing their expression lev-
els. We expect to see the differential pathway activity
confirmed at the protein and contigs level. We carry
this final analysis through the novel bootstrapping tool
IsoDE [9].
Our experimental study was performed with RNA-Seq

data from the marine bryozoan, Bugula neritina. Using
the two novel computational approaches we implemented,
we were able to find differentially expressed pathways
from the data. This result has been validated by quan-
titative PCR (qPCR) conducted using a housekeeping
gene also identified in the data. The housekeeping gene,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
was chosen to normalize the qPCR data, as is stan-
dard practice. Based on our results, we applied qPCR

experiments to quantify transcripts in the fatty acid
elongation pathway [3].
The rest of the paper is organized as follows. Our

formal models to analyze pathways and to infer path-
way activity are presented in the next section entitled
“Methods”. Following Methods is the Differential-analysis
section in which we present how we compute differen-
tial activity between pathways. We finish by presenting
and discussing our results on Bugula neritina data in the
“Results” Section. The paper is concluded with possible
future work.

Methods
In this paper we introduce a graph-based and an expec-
tation maximization approach to identify specific differ-
ences between biological systems on the level of ortholog
groups and pathways.
Figure 1 presents the entire flow of XPathway tools. In

the graph-based approach, we compute a p-value using
parameters extracted from the network to answer two
different statistical questions: (1) When and based on
what parameter can we say that a set of proteins signif-
icantly map to a pathway? (2) What is the probability of
finding such a mapping by chance given the data (tran-
scripts/reads/proteins) and a pathway topology? Finally,
significant metabolic pathways are selected by comparing
the p-value of the original pathway with the ones from
different bootstrapped samples. The expectation maxi-
mization method on the other hand uses the interaction
among identified ortholog groups to infer pathway activ-
ity. The last part of the flow consists of validating both
branches. First, we conduct differential expression anal-
ysis on all contigs extracted from pathways output by
both branches. Secondly, a qPCR experiment is carried
out on the contigs which have a fold change of 1.2 or
more.

Expectation maximization model of pathway activity
In this section we present an EM-based algorithm for
inferring pathway activity levels based on metatranscrip-
tome sequence data. Let w be a pathway that is considered
to be a set of enzymes represented by their ortholog
groups w = {p1, . . . , pk}. Since an ortholog group can
have multiple functions and participate in multiple path-
ways, the pathways can be viewed as a family of sub-
sets W of the set of all ortholog groups P. Below we
start by introducing a uniform binary pathway activity
model based on a discrete ortholog group expressionl
model.
The uniform binary pathway activity model is based on

the assumptions of uniformity, namely that each molecule
from an ortholog group participates in each active path-
way with the same probability (i.e., in equal proportions)
and of binary activity, which postulates that a pathway is
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Fig. 1 XPathway analysis flow. The branches represent the two approaches used to compute pathway significance in the case of graph-based on
the left and pathway activity level in the case of the expectation maximization approach on the right. Both methods are validated by computing
contigs/transcripts differential expressions and qPCR as the last step of the flow

active if the level of ortholog group activity exceeds a cer-
tain (possibly pathway dependent) threshold. Formally, let
δ(w) be a binary variable indicating the activity status ofw,
i.e., δ(w) = 1 if w is active and δ(w) = 0, otherwise. Also,
let the activity level of pathway w be the summation over
constituent ortholog groups g of their participation gw in
w. Since we assume that each ortholog group g is equally
likely to participate in each pathway containing it, it fol-
lows that gw =

(
1 + ∑

w′�p,w′ �=w δ(w′)
)−1

and the activity
level fw of pathway w is given by

fw =
∑
g∈w

gw =
∑
g∈w

1
1 + ∑

w′�g,w′ �=w δ(w′)
(1)

The binary activity status of w is computed from its
activity level fw and the threshold Tw as follows

δ(w) =
{
0 if fw < Tw
1 if fw ≥ Tw

(2)

The uniform binary model described by Eqs. (1)–(2) can
be solved using a simple iterative algorithm. The algo-
rithm starts with assigning activity status δ(w) = 1 to each
pathway w ∈ W , i.e., �0(W ) = {δ0(w)|w ∈ W } ← 1
and then repeatedly updates the activity level according
to (1) and the activity status according to (2). The pro-
cedure terminates when the status sequence �0(W ) =
1,�1(W ),�2(W ), . . . starts to oscillate �n+k(W ) =
�n(W ) or converges. In all our preliminary experiments,
an oscillation with period k = 2 is achieved in at most
10 iterations. Also the threshold Tw does not significantly
change the order of pathways sorted with respect to their
activity levels estimated as the mean fw after convergence.
The model is represented in Fig. 2.
Although the uniform binary model allows the compu-

tation of pathway activity by assigning ortholog groups to
pathways, it does have some limitations hindering it for
capturing specific attributes of the metabolic network. For
example, the binary uniform model assigns only value 1
or 0, if the ortholog group belongs to a pathway or not,
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Fig. 2 Expectation maximization approach to compute pathway
activity. This bipartite graph consists of a set A representing
reads/contigs/ORF/proteins and the set B is for ORFs/proteins/
ortholog groups/EC (Enzyme Commission) numbers. The arcs
represent mapping between elements of both sets. For our binary
EM, the set A consists of contigs mapped to ortholog groups and the
weight of each arc is 1

respectively. This yes or no assumption is not always true
since there may be a fractional part of an ortholog group
belonging to different pathways. Moreover, the uniformity
model is not easily applicable to natural processes because
all assignments are never equally likely. Finally the model
is not completely stable but rather periodic with some
subsets of ortholog groups fluctuating between pathways.

Graph-based estimation of pathway significance
Ideally, a comprehensive pathway analysis method would
take into consideration the position and role of each gene
in a pathway, the efficiency with which a certain reaction
is carried out, and some limiting factors (e.g. dealing with
metagenomics data or not). With genome data, it is pos-
sible to consider pathways size, gene length and overlap
in gene content among pathways [5] to compute the rela-
tive abundance of pathways and pathway ranking, but this
approachmight not work with RNA-Seq data especially in
the absence of a genome reference.
Henceforth, in our second approach, each pathway is

viewed as a network of enzymes also called EC num-
bers (Enzyme Commission numbers) in order to compute
their statistical significance. Significance of pathway activ-
ity in a sample is measured by the randomness of the posi-
tions of matched enzymes in the corresponding KEGG
pathway graph. The randomness is measured using a
permutation model for finding significant pathway align-
ments and motifs [10].
This model assumes that the subset of expressed

enzymes in an active annotated pathway should be con-
nected. The enzyme permutation model finds the average

vertex degree in the subgraph induced by expressed
enzymes. Then the same parameter is computed for suffi-
ciently many random permutations of enzyme labels. The
statistically significant match should have density higher
than 95 % of permutations. Specific characteristics of the
graph taken into account in our analysis are:

1. Number of nodes. A node represents a protein that
got mapped during BLAST. KEGG usually assigns a
green color to those proteins in the graph.

2. Density = (Number of edges)/(Number of nodes − 1)
3. Fraction of 0 in and out-degree nodes. Let call this

number x. x is defined by:
x = ((number of nodes with out-degree = 0) +
(number of nodes with in-degree = 0)) / 2 * (number
of nodes)

4. We also consider other criteria such as (1) number
of green connected components, (2) Largest number
of nodes in a connected component and (3) Largest
number of edges in a connected component.

Using these metrics, we compute the density of the
induced graph composed of only mapped proteins. We
obtain the names of those proteins through EC numbers
on the graph. Below, we present two graph-based models,
the vertex label swapping and the edge swapping for ran-
dom graph generation, to analyze pathways. This model is
explained by the left side of Fig. 1.

Model 1: Vertex label swapping for random graph
generation
In this model, we keep the same topology but we allow
swapping of labels between two vertices (Fig. 3 presents
an example). One known issue of this approach is that ver-
tices with high degree always get connected. This might
lead to too many significant matches, thus increasing the
false positive rate. The vertex label swapping algorithm
can be represented as follows:

Algorithm 1 Vertex labels swapping algorithm for
random graph generation
1: G = (V ,E) ← Original Graph
2: i ← 1
3: j ← 1
4: for i ≤ m do
5: for j ≤ n do
6: randomly pick two vertices a and

b from V
7: if not (label(a) == label(b)) then
8: swap labels of a and b
9: end if

10: end for
11: end for
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Fig. 3 Vertex labels swapping model for random graph generation. We only swap vertices which have different labels. A label is an attribute of a
vertex representing a mapped or not protein

Model 2: Edge swapping for random graph generation
Because of the bias in the vertex label swapping model,
we also implemented edge swapping. Here, the idea is to
keep the in-degree and out-degree of each node the same,
swapping nodes only if these values do not change. We
keep vertex labels the same. Figure 4 presents an example
when we permute two edges.
The edge swapping algorithm can be represented as

follows:

Algorithm 2 Edge swapping algorithm for random graph
generation
1: G = (V ,E) ← Original Graph
2: i ← 1
3: j ← 1
4: for i ≤ m do
5: for j ≤ n do
6: randomly pick two edges a

(a0 →a1) and b(b0 →b1) from E
7: if not ((a0 == b0) or (a0 == b1) or (a1 ==

b0) or (a1== b1)) and not (a1→a0 or b1 →b0) then
8: remove edges a and b
9: create new edges: a0 →b1 and

b0 →a1
10: end if
11: end for
12: end for

Differential analysis of pathway activity and significance
Differential analysis of pathway activity
The goal of this analysis is to determine which path-
way needs to be considered more closely to understand
the difference in the metabolism of two organisms. For
this purpose, we use the pathway expression computed
from the binary model presented earlier. First we compute
expression of each pathway present in the set of path-
ways we get from KEGG for a given sample. Then we
compute the difference between the expression of each
pathway. Under this model, the pathways selected as hav-
ing differential activity are the ones where the ratio of
their expression is greater than a certain threshold. Table 3
presents our results on differential analysis of pathway
activity.

Differential analysis of pathway significance
Differential analysis of pathway significance is based on
the p-value described in the graph-based sub-section of
Methods.We randomly permute each pathway graph gen-
erating m different graphs. Note that even the smallest
pathway graphs contains at least 15 nodes and about 40
edges which is sufficient to generate default m = 200
distinct random graphs. A pathway is significant if the p-
value of the mapping is less than 5 %. The p-value is the
position of the original graph when placed in the sorted
list of all randomly generated graphs sorted first by “den-
sity” (largest to smallest) and then by the number of nodes
having 0 in-degree or 0 out-degree (smallest to largest).
A pathway is significant if its p-value is less than 5 %,

Fig. 4 Edge swapping model for random graph generation. Before swapping the edges, we check that the in and out-degree of the vertices
involved remain the same
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very significant if its p-value is less than 1 % and the most
significant if its p-value is less or equal to 0.5 %.
Let p1 be the p-value for pathway X in sample 1 and

let p2 be the p-value for pathway X in sample 2. We say
that pathway X is differentially significant between the
two samples if the probability computed by the equation
of probDiff (X) below is greater than 50 %.

probDiff (X) =
{

(1 − p1) ∗ p2 if p2 ≥ p1
(1 − p2) ∗ p1 if p2 < p1

For example, let us consider m = 200 randomly gen-
erated graphs and the vertex label swapping model. In
Fig. 5 representing part of the Fatty acid elongation path-
way (ko00062), the mapped enzymes (filled rectangles) in
sample 1 form a sub-graph with density = 1.875 and the
number of 0 in/out degree= 0.11 for that sub-graph. After
sorting the graph, the position of our original graph is the
first, hence p-value p1 = 0.5 % (most significant pathway
given the 200 graphs). In Sample 2, the mapped enzymes
(filled rectangles) form a sub-graph with density = 1.375,
number of 0 in/out degree = 0.22 for that sub-graph and
its position after sorting is 148. This results in a p-value
p2 = 74.5 % (not a significant mapping).

Based on the value of p1 and p2, probDiff (ko00062) =
.74 which is greater than 50 %. We conclude that ko00062
is differentially significant in the two samples.

Results and discussion
Data preparation
Bugula neritina is a colonial marine invertebrate found
in temperate waters around the world [11]. B. neritina
associates with an uncultured microbial symbiont, “Can-
didatus Endobugula sertula” [12] that has been shown
to produce bryostatins, bioactive compounds that pro-
tect the host larvae from predation [13, 14]. Because of
the pharmaceutical potential of the bryostatins, and the
inablilty to grow the symbiont in the laboratory, we chose
to examine host gene expression in the presence and
absence of the symbiont to understand more about the
molecular underpinnings of this relationship. In addition,
as the symbiont endows the larvae with high concentra-
tions of bryostatins compared to the adult [15, 16], we
also wanted to examine host gene expression in portions
of the colony that possess reproductive structures termed
ovicells, and those without ovicells.
Adult colonies of B. neritina growing on floating docks

were collected from four locations on the Eastern coast

Fig. 5 Pathway differential analysis. In sample 1, the mapped enzymes (filled rectangles) form a sub-graph with density = 1.475, the number of 0
in/out degree = 0.11 and p-value = 0.5. In Sample 2, the mapped enzymes (filled rectangles) form a sub-graph with density = 1.375, the number of
0 in/out degree = 0.22 and p-value = .74. Based on these p-value, we say that this pathways is differentially significant
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of the USA: Radio Island Marina and Yacht Basin Marina,
Morehead City (North Carolina) in March 2012, Oyster
public docks, Oyster (Virginia) in June 2012, and Indian
River Inlet, Delaware City (Delaware) in June 2012. The
colonies were rinsed in filtered sea water and preserved in
TRIzol reagent (Invitrogen, Carlsbad, CA) at −80 degree
celsius prior to RNA extraction. Total RNA was then
extracted from the preserved samples (RNeasy Mini kit,
Qiagen,Inc., Valencia, CA, USA). The RNA was purified
and treated with RNase-free DNaseI to remove any con-
taminating DNA. The purified total RNA was processed
according to standard operating procedure for prepa-
ration of mRNA library for sequencing (TruSeq RNA
Sample Preparation Kit, Illumina, San Diego, CA, USA).
The adapter-ligated cDNA library was hybridized to the
surface of Illumina flow cell and sequenced on an Illu-
mina HiSeq 2500 sequencing platform. The paired-end
reads were assembled de novo using Trinity software
package [17] and the assembled contigs were annotated
by performing blastx searches (Translated Query-Protein
Subject BLAST 2.2.26+) against the Swiss-Prot database.
The samples used for analysis include: Lane 1: symbi-

otic; Lane 2: non symbiotic (aposymbiotic) [18]; Lane 3:
symbiotic, with ovicells; and Lane 4: symbiotic, without
ovicells. The symbiotic relationship was assessed in the
collected colonies by PCR analysis for the presence of the
bryostatin biosynthetic gene cluster gene, bryS [18, 19].
The reads were assembled into contigs by Trinity. We
conducted a Trinity assembly on the union of all reads -
about 221,818,850 2×50 bp reads in total. We obtained
166,951 contigs, after filtering with RSEM-isopct-
cutoff=1.00, also 76,769 ORFs, 37,026 BLAST hits of
translated ORFs against the SwissProt database and
around 12,748 proteins hits. This translates to 59.37 %
ORFs hits and 63.35 % contigs hits. Using IsoDE, we
were able to identify 1485 differential expressed genes
between the two different conditions, the symbiotic and
aposymbiotic B. neritina.

Pathway extraction and graph generation
By de novo co-assembly of RNA-Seq data and BLAST-ing
resulting contigs against protein databases, with a certain
confidence, we can infer the ortholog groups expressed
in the sample. This is an important attribute of KEGG.
We use KEGG to generate pathways from Trinity contigs
and proteins. From the pathway databases we can eas-
ily extract the enzyme information associated with each
pathway. We actually extracted all pathways along with all
mapped proteins.
KEGG represents proteins as KO numbers and we also

follow this representation. It uses KGML, an exchange
format of KEGG pathway maps, to interact with exter-
nal applications. The next step was to download all
KGML files associated with the pathways using the API

provided by KEGG. To convert KGML files to graph
of node and vertices, we implemented and ran a novel
tool called KGMLPathway2Graph. Mapping the output
of KGMLPathway2Graph with KO numbers from KEGG
analysis of our data, allowed us to compute patways with
significant p-values.

Results
Pathway expression differences in symbiotic and aposym-
biotic Bugula neritina (Lanes 1 and 2) are shown in Table 1
and in Table 2 respectively following vertex labels per-
mutation and the edges permutation models. We ran our
graph-based models Algorithm 1 with m = 200 graphs
each generated after n = 1000000 permutations of labels
or edges. This high number of permutations is neces-
sary to introduce sufficient differences in the generated
graphs. Table 3 presents the results on differential anal-
ysis of pathway activities between the same two Bugula
neritina conditions.
In Additional file 1, we present a summary of transcripts

differential expression (DE) analysis results using IsoDE
[9] and pathway activity inference results.

Validation
From our statistical analysis, we identified some pathways
that were differentially expressed (DE) by all methods. The
next step was to experimentally validate these results. The
first validation step is done through IsoDE, a software to
analyze differentially expressed genes. Through KEGG,
we are able to get all the proteins (contigs) participating in
a pathway. IsoDE then indicates which of those contigs are

Table 1 Vertex label permutation: the p-values of pathways are
computed from the symbiotic (Lane 1) and aposymbiotic (Lane
2) B. neritina data. This table presents the most significant
divergence in pathway results, using the criteria described in the
“Methods” Section, they are declared differentially significant

Pathway p-value from p-value from ProbDiff
symbiotic Bugula aposymbiotic Bugula

ko04146 .99 .05 .94

ko03008 .99 .05 .94

ko03013 .99 .05 .94

ko00983 .99 .05 .94

ko04530 .99 .05 .94

ko00062 .01 .75 .74

ko00400 .01 .99 .98

ko00071 .99 .01 .98

ko00100 .99 .01 .98

ko00910 .04 .99 .95

ko04122 .99 .03 .97

ko04713 .99 .01 .99
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Table 2 Edge permutation: the p-values of pathways are
computed from the symbiotic (Lane 1) and aposymbiotic (Lane
2) Bugula data. This table presents the most significant
divergence in pathway results, using the criteria described in the
“Methods” Section, they are declared differentially significant

Pathway p-value from p-value from ProbDiff
symbiotic Bugula aposymbiotic Bugula

ko04146 .99 .05 .94

ko03008 .99 .05 .94

ko03013 .99 .05 .94

ko00983 .99 .05 .94

ko04530 .99 .05 .94

ko00400 .01 .99 .98

ko04122 .99 .03 .97

ko04713 .99 .01 .99

ko00130 .01 .75 .74

ko00120 .01 .99 .98

ko00072 .99 .01 .98

ko00120 .99 .01 .98

ko00230 .04 .99 .95

ko00627 .99 .03 .97

ko00770 .99 .01 .99

ko00980 .99 .03 .97

ko04630 .99 .01 .99

also DE. From those DE contigs, we extracted the genes to
be tested via quantitative PCR (qPCR), the next validation
step.
The goal of qPCR is to quantify the level of expression

in the symbiotic and aposymbiotic B. neritina. It is used
to validate the gene expression given by IsoDE. Primers
were designed using Primer 3 Plus [20]. Total RNA from
recently collected symbiotic and aposymbiotic B. neritina
colonies was converted to cDNA using Superscript III
(Invitrogen, Carlsbad, CA, USA) using random hexam-
ers according to the manufacturer’s instructions. cDNA
was subjected to qPCR analysis after and expression in
the samples was compared using the ��Ct method [21].
The glyceraldehyde-3-phosphate dehydrogenase gene, a
housekeeping gene identified from the B. neritina tran-
scriptome (contig m.4423) was used for normalization
[22, 23]. The expression of three genes identified as being
differentially expressed in symbiotic and aposymbiotic
animals from the fatty acid elongation pathway (ko00062)
were compared.
Using IsoDE, nine gene pathways were chosen from

KEGG and 2485 top differentially expressed contigs were
taken from the list of all contigs. Within the selected path-
ways, there was a total of 637 contigs extracted. Each gene

Table 3 Pathway activities levels with ratio

Pathway Expression Expression Ratio between
from symbiotic from aposymbiotic pathway
Bugula Bugula expressions

ko00300 2.75 0.38 7.27

ko00290 4.26 1.71 2.49

ko04712 1.77 0.77 2.30

ko00903 1.88 0.84 2.25

ko01220 2.24 1.10 2.04

ko00981 2.00 1.00 2.00

ko04744 3.55 1.82 1.95

ko00626 1.48 0.76 1.93

ko00624 1.17 0.67 1.76

ko00072 2.17 1.25 1.74

ko00730 2.50 1.50 1.67

ko04730 3.80 2.40 1.58

ko00363 2.92 1.88 1.56

ko05150 2.13 1.38 1.55

ko04112 3.00 2.00 1.50

ko05219 1.67 2.50 0.66

ko00625 1.00 1.98 0.50

ko00984 1.00 2.00 0.50

ko00592 1.25 3.02 0.42

ko00965 0.66 1.66 0.40

ko00940 1.42 3.71 0.38

ko00460 0.60 2.02 0.30

ko00944 0.17 1.17 0.14

Expression represents the expression level of the pathway activity in symbiotic
(Lane 1) and aposymbiotic (Lane 2) B. neritina data. This table presents pathways
with a ratio of 1.5 or higher in their activity level or pathways with a ratio of 0.66 or
lower from the opposite direction. Using the criteria described in section 2, they are
found to significantly differ in activities level

in these contigs was checked for fold change 1.2 or higher.
Next, the number of genes that had significant fold change
was compared to the total number of genes in the pathway.
The fatty acid elongation pathway (ko00062) was chosen
for further investigation by qPCR [3].
The fatty acid elongation pathway contains fourteen

(14) KEGG mapped contigs and three (3) of those
were found significantly differentially expressed. They
are very-long-chain 3-oxoacyl-CoA reductase (DHB12),
3-ketoacyl-CoA thiolase (fadA) and 3-ketoacyl-CoA thi-
olase B, peroxisomal (THIKB). Once all the contigs in
the pathway were checked, additional information was
compiled: KEGG pathway and protein numbers, contig
number, UniProt accession number and predicted fold
change between symbiotic and aposymbiotic B. neritina
[24]. qPCR primers were designed using Primer 3 Plus
and ordered from Integrated DNA Technology [20]. The
primers were tested using cDNA at concentrations from 1
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ng/μL to 0.1 pg/μL. In order to use ��Ct method, every
primer had to have the same efficiency and efficiency
around 100 % [21].
RNA was extracted from symbiotic and aposymbi-

otic B. neritina colonies. Following the Direct-zol RNA
MiniPrep protocol (Zymo Research Corp., Irvine, Califor-
nia, USA), 50 mg of B. neritina tissue was homogenized
and RNA was extracted. Then the RNA was further puri-
fied using the OneStep PCR Inhibitor Removal Kit (Zymo
Research Corp., Irvine, California, USA). To eliminate
any contaminating genomic DNA, a DNase I treatment
was performed according to the manufacturer’s protocol
(DNase I Recombinant, RNase-free, Roche, Mannheim,
Germany). Finally, the RNA was further purified with
the RNA Clean-up and Concentrator Kit (Zymo Research
Corp., Irvine, California, USA). The concentration of
RNA was quantified in triplicate using a Nanodrop
spectrophotometer.
Both symbiotic and aposymbiotic cDNA were synthe-

sized using the Superscript III protocol (Superscript III
First Strand Synthesis System for RT-PCR, Invitrogen
by Life Technologies, Carlsbad, California, USA) with
random hexamers. qPCR primer efficiencies were deter-
mined using qPCR. All qPCR reactions were performed
using 7500 Fast Real-Time PCR system (Applied Biosys-
tems) with hot-start Taq polymerase, SYBR Green flu-
orescent dye and ROX passive reference dye (Maxima
SYBR Green/ROX qPCRMaster Mix (2X), Life Technolo-
gies, Carlsbad, California, USA). The efficiencies for each
primer pair were calculated using the slope of amplifica-
tion curve in the equation E = 10(-1/slope) [25].
The expression levels of three genes, fadA, DHB12, and

THIKB were measured in symbiotic and aposymbiotic B.
neritina with G3P acting as an endogenous control. The
reactions were run in triplicate for symbiotic and aposym-
biotic cDNA along with a negative template control. The
Ct averages and standard deviations were calculated to
find the Ct differences between the target gene and the
control (�Ct) and �Ct standard deviation. ��Ct was cal-
culated by subtracting the symbiotic or aposymbiotic�Ct
by the symbiotic �Ct. This resulted in symbiotic ��Ct
equal to 0 to compared the fold change between symbiotic
and aposymbiotic expression levels.
As presented in Table 4, the fold change predicted by

differential expression analysis, using IsoDE, for these
three genes indicated that expression was higher in the
aposymbiotic B. neritina. fadA had a predicted fold
change of 2.91, while DHB12 had a value of 1.90 (non-
significant difference), and THIKB equaled 2.84. qPCR
analysis showed that when aposymbiotic gene expres-
sion was compared to symbiotic gene expression, fadA
had 6.88 higher expression in aposymbiotic B. neritina.
DHB12 had 0.66 times lower expression and THIKB
had 2.52 higher expression, indicating that computational

Table 4 Experimental quantification of fatty acid elongation
gene expression by qPCR in symbiotic and naturally
aposymbiotic B. neritina

Genes fadA DHB12 THIK

Fold change of gene expression in
aposymbiotic B. neritina compared
to symbiotic by FPKM analysis

2.91 1.90 2.84

Gene expression in symbiotic
B. neritina by qPCR analysis

2.46 4.34 4.34

Gene expression in aposymbiotic
B. neritina by qPCR analysis

29.32 2.85 10.95

Fold change of gene expression in
aposymbiotic B. neritina compared
to symbiotic by qPCR analysis

6.88 0.66 2.52

method closely predicted expression in independent bio-
logical samples.

Discussion
Although the EM and the graph-based methods worked
on the same data generated by KEGG, the input to each
approach were very different. For example, the Trinity
output of sample1 on KEGG generates about 306 path-
ways. All of these pathways were considered for EMmeth-
ods while only a small subset of 80 was used as input
to each of the graph-based model. Different factors con-
tributed to this reduced number of pathways analyzed in
the edge/vertex swapping model: (1) We were not able to
extract the KGML of all pathways from from KEGG; (2)
We were not able to convert all KGML to actual graphs
and (3) Some graphs did not carry enough mapping to
be significant (we excluded pathways with less than 3
ortholog groups mapped).
Consequently, the graph-based approaches yield con-

siderable fewer differentially expressed pathways than EM
methods although results from both models in the graph-
based approaches were very consistent. Also, the graph-
based analysis appears to be more stringent selecting only
the pathways which are the farthest apart according to our
statistic criteria.
Looking at the overall small number of differential path-

ways, we can say that B. neritina with or without the
symbiotic relationship still exhibits very similar metabolic
reactions. As shown in Table 5, the over all difference
in the pathway activity and differentially expressed tran-
scripts between the two samples is very small.

Table 5 Percentage of differentially expressed contigs with fold
change (FC) of 2 and 1.5 respectively

FC = 2 FC = 1.5

Pathway 8 % 12 %

Contigs 13 % 28 %
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Because working with non-model organisms, such as
B. neritina, is more challenging due to the lack of
tools for genetic manipulation, for future work, we
plan on the following. First, run XPathways tools in
other organisms, including model organisms to further
verify their efficacy and second, extend the model to
handle not only metabolic pathways put also signaling
pathways.

Conclusions
XPathway tools are able to efficiently infer pathway activ-
ity as well as pathway significance, using an expecta-
tion maximization and a graph-based approach, respec-
tively. Rather than trying directly to identify differentially
expressed genes from RNA-Seq data for a non-model
organism, XPathway tools allows to more accurately pre-
dict differential expression of genes using the wealth of
information collected in the KEGG database for related
organisms. Our experimental comparisons on Bugula ner-
itinaRNA-Seq data with or without the symbiotic bacteria
enabled the identification of metabolic pathways with
differential activity. The qPCR experiment successfully
validated our findings.
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Acknowledgements
This work has been partially supported by awards IIS-0916401, IIS-0916948,
DBI-1564559, DBI-1564899, and DBI-1564936 from NSF, a Collaborative
Research Grant from Life Technologies, and the Molecular Basis of Disease
Area of Focus Georgia State University.

Declarations
This article has been published as part of BMC Genomics Volume 17
Supplement 5, 2016. Selected articles from the 11th International Symposium
on Bioinformatics Research and Applications (ISBRA ’15): genomics. The full
contents of the supplement are available online https://bmcgenomics.
biomedcentral.com/articles/supplements/volume-17-supplement-5.

Funding
Publication costs for this work were funded by the corresponding authors’
institutions.

Availability of data andmaterials
XPathway tools have been implemented in C and Python and can be run on
any platform with Python or C compiler on the machine. KEGG database is
publicly available. The source code and installation instructions are available at
http://alan.cs.gsu.edu/NGS/?q=content/xpathway.

Authors’ contributions
YTT prepared the testing data used to generate the experimental results,
implemented and tested the algorithms involved in XPathway. YTT also
contributed to designing the algorithms and wrote part of the manuscript. SS
ran the IsoDE to compute transcript differential expression and wrote part of
the manuscript. QC developed, implemented and tested the algorithms for
converting KEGG pathway to graph. MM, KB and AR implemented and ran the

qPCR experiment, from the selection of the genes to the lab analysis. Igor M.
and OG participated in validating the XPathway algorithms. Ion M. ran Trinity
and Blast and also contributed to designing the algorithms. NL provided the
data and designed and supervised the qPCR analysis. NL also wrote part of the
manuscript. AZ contributed to designing the algorithms and the experiments,
writing the manuscript and supervised the project. All authors read and
approved the final manuscript.

Competing interests
Authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Department of Computer Science, Georgia State University, 34 Peachtree St.,
30303 Atlanta, GA, USA. 2Department of Biology, Georgia State University, 100
Piedmont Ave., 30303 Atlanta, GA, USA. 3Computer Science & Engineering
Department, University of Connecticut, 06269 Storrs, CT, USA. 4Department of
Pharmacology, University of Miami, Miami, FL, USA. 5Current address: School
of Earth and Atmospheric Sciences, School of Biological Sciences, Georgia
Institute of Technology, 311 Ferst Dr., 30332 Atlanta, GA, USA.

Published: 31 August 2016

References
1. Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC. Integrative

analysis of environmental sequences using MEGAN4. Genome Res.
2011;21(9):1552–60.

2. Konwar KM, Hanson NW, Pagé AP, Hallam SJ. MetaPathways: a modular
pipeline for constructing pathway/genome databases from
environmental sequence information. BMC Bioinforma. 2013;14:202.

3. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 2000;28:27–30.

4. Ye Y, Doak TG. A parsimony approach to biological pathway
reconstruction/inference for genomes and metagenomes. PLoS Comput
Biol. 2009;5(8):e1000465.

5. Sharon I, Bercovici S, Pinter RY, Shlomi T. Pathway-based functional
analysis of metagenomes. J Comput Biol. 2011;18(3):495–505.

6. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette
MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set
enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):
15545–50.

7. Efron B, Tibshirani R. On testing the significance of sets of genes. Ann
Appl Stat. 2007;1(1):107–29.

8. Mitrea C, Taghavi Z, Bokanizad B, Hanoudi S, Tagett R, Donato M,
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