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Abstract

Background: Copy number variation (CNV) represents an important source of genetic divergence that can produce
drastic phenotypic differences and may therefore be subject to selection during domestication and environmental
adaptation. To investigate the evolutionary dynamics of CNV in the yak genome, we used a read depth approach
to detect CNV based on genome resequencing data from 14 wild and 65 domestic yaks and determined CNV
regions related to domestication and adaptations to high-altitude.

Results: We identified 2,634 CNV regions (CNVRs) comprising a total of 153 megabases (5.7 % of the yak genome)
and 3,879 overlapping annotated genes. Comparison between domestic and wild yak populations identified 121
potentially selected CNVRs, harboring genes related to neuronal development, reproduction, nutrition and energy
metabolism. In addition, we found 85 CNVRs that are significantly different between domestic yak living in high-
and low-altitude areas, including three genes related to hypoxia response and six related to immune defense. This
analysis shows that genic CNVs may play an important role in phenotypic changes during yak domestication and

adaptation to life at high-altitude.

Conclusions: We present the first refined CNV map for yak along with comprehensive genomic analysis of yak CNV.
Our results provide new insights into the genetic basis of yak domestication and adaptation to living in a high-altitude
environment, as well as a valuable genetic resource that will facilitate future CNV association studies of important traits

in yak and other bovid species.
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Background

Copy number variations (CNVs), a form of genomic
structural variation, are defined as duplications or dele-
tions of DNA fragments that range in size from at least
50 base-pairs (bp) to more than several megabase-pairs
(Mb), causing a different copy number of specific gen-
omic regions among individuals of a species [1-4].
CNV represents an important source of genetic vari-
ation complementary to SNP data, but which affects a
higher percentage of genomic sequences and has
potentially stronger effects on phenotypic diversity and
evolutionary adaptation, through changing gene dosage
and transcript structure, and regulating gene expres-
sion and function [5].
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As a common feature of vertebrate genomes, the foun-
dational studies of CNV have been conducted in
humans. Around 2,057,368 CNVs that correspond to
over 24,032 CNV regions have been identified in
humans and these may account for >9.5 % of the human
genome, with over 12 % of gene sequences involved in
CNV regions [6]. CNVs that underlie complex traits
such as obesity, diabetes, Alzheimer’s disease and Aut-
ism spectrum disorders have been detected in human
patients [5]. In recent years, advances in genomic tech-
nologies have made it increasingly feasible to screen
comprehensively for CNVs, and so interest in CNV
detection has extended to livestock species, with consid-
erable advances being made [7-9]. CNV maps have been
constructed for cattle [10], horse [3], goat [11], sheep
[12], pig [13], dog [14] and chicken [15], providing a very
valuable resource for evolution and genetic improvement
research in livestock. In addition, there is growing
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evidence for CNVs associated with phenotypic variation,
disease susceptibility, environmental adaptation and pro-
duction traits in livestock species. For example, the copy
number variation of the AMY2B gene probably allowed
dogs to thrive on a relatively starch-rich diet during their
domestication [16]. The ASIP CNV allele is almost
entirely associated with different coat colors in different
goat breeds [17] and in Tibetan sheep [18]. The most
recognizable chicken pea-comb phenotype is attributed to
a duplication near the SOX5 gene [19]. A CNV involving
the AKRIC gene is considered possibly responsible for tes-
ticular androgen synthesis and sexual development in
horse [3]. The DNA dosage and EST expression of CNVs
overlapping with the Ntnl gene may influence meat qual-
ity in pigs [20]. In bovid species, several important genes
related to clear phenotypic changes and breed differences
have been modified by CNVs: the copy number variations
of the HSFY and ZNF280BY genes are associated with
male reproductive traits in Holstein bulls [21]; PLA2G2D
located in a CNV region is associated with aspects of body
size in Chinese bulls such as heart girth and hucklebone
width [22]; hereditary myopathy of diaphragmatic muscles
in Holstein-Friesian cattle has been linked to deletion of
the HSPA1B gene [23]; and the APOL3 gene involved in
lipid transport is highly duplicated in beef breeds [24].
These studies reveal that many beneficial CNVs may have
been artificially selected in livestock during domestication
and could be associated with or affect important traits of
economic interest. However, only a few studies provide a
comprehensive characterization of the evolutionary im-
pact of CNVs comparing a wild and domestic population.

The yak (Bos grunniens) is the only major livestock that
can survive the extremely cold, harsh and oxygen-poor
conditions and take full advantage of the limited grassland
resources on the Qinghai-Tibetan Plateau (QTP) [25]. Yak
were domesticated by the early nomadic people from wild
yak more than 7,300 years ago [26]. Nowadays, there are
more than 14 million domestic yaks, providing necessities
for Tibetans and other nomadic pastoralists in high-
altitude environments; in addition, there are still 15-20
thousand wild yaks roaming the northwestern QTP [27]. It
should be noted that the domestic yak is the only large ani-
mal that still coexists with its wild ancestors in a similar
environment, as wild progenitors of other domestic live-
stock are now extinct or geographically dispersed [25, 28].
Therefore, the wild and domestic yak provide a good
framework for studying effects of CNV in large livestock
domestication [29]. Indeed, a more comprehensive under-
standing of CNVs at the whole-genome level could provide
additional evidence for unraveling the genetic basis of yak
domestication. However, as far as we know, there is only
one published dataset reporting only 161 CNV regions
based on just two yak individuals using the cattle-specific
Nimblegen3x720K CGH array [22].
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Although comparative genomic hybridization (CGH)
and SNP arrays are routinely used for CNV identifica-
tion, the performance of these methods are heavily
depending on the marker density and the specially
designed non-polymorphic probes [30-32]. The advent
of next-generation sequencing (NGS) technologies
and complementary analysis has provided innovative
approaches to systematically screen CNVs at a
whole-genome level, especially in non-model organ-
isms [3, 30, 33]. Among different analysis programs
to detect CNVs using sequence data, the read depth
(RD) method have become a major approach due to
its stronger ability to estimate the exact copy num-
bers and identify CNVs in complex genomic regions
[33, 34]. Thus, the recent completion of the yak gen-
ome and population genome studies now allow for a
comprehensive screening of CNV [26, 35, 36].

Here we describe the first genome-wide and systematic
analysis of CNVs in yak using NGS genome re-sequencing
data from wild and domestic yak. This CNV map was
constructed for three main reasons. First, to develop and
enrich new genomic variations in order to facilitate fur-
ther research on yak and other bovid species and make it
available to the scientific community. Second, to deter-
mine genes affected by CNV that differ between wild and
domestic yak, and evaluate whether extensive CNV is
related to domestication. Third, to compare the CNVs in
individuals from different altitudes and assess the evolu-
tionary impact of CNVs in adaptations to life at high
altitude.

Results and discussion

CNV discovery and data set statistics

We used whole genome re-sequenced data from our
previous study, based on 14 wild and 65 domestic yaks
from widely spaced locations across the QTP (Fig. 1),
representing three highly diverged mitochondrial line-
ages and broad genetic diversity [28]. A total of 1.56 Tb
of sequences with an average depth of 6.7x were used
(Additional file 1) [26]. Mapping these reads to the yak
reference genome [35] revealed that at least 93 % of the
genome was covered by reads from a single individual,
and, on average, 98 % of the reference genome was cov-
ered, indicating that the data are sufficient and of high
enough quality for CNV detection [37].

Using the CNVnator software based on the RD
method [37], we detected a total of 98,441 CNV events
from the 79 individuals (Fig. 2 and Additional file 2).
The average number of CNVs per individual was 1,246
(ranging from 954 to 2,952) with an average of 291 gain
and 955 loss events. The size of the CNVs identified var-
ied from 1.5 kb to 1,226.0 kb with an average size of
15.6 kb and a median size of 8.0 kb. Specifically, only
1.8 % of all CNV calls were present in a single individual
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Fig. 1 Geographical distribution of the yak samples used in this study. The sampling locations and altitudes for wild (blue) and domestic (red) yak were
mapped using ArcGIS software. Geographic (ESRI: www.esri.com) and altitude (WorldClim: www.worldclim.org) parameters were obtained from freely
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Fig. 2 CNV size interval distribution. Average CNV size is 15.6 kb and the median size is 8.0 kb
.
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(Additional file 3). The results of CNVs identified and
the location information for each individual are listed in
Additional file 2.

We further defined 2,634 regions with copy number
variations (termed CNVRs) by merging all overlapping
calls across multiple individuals into unique regions and
filtering the ones that were present in fewer than four in-
dividuals. These CNVRs occupied a total of 153 Mb or
5.7 % of the yak genome, substantially more than the re-
cent study in two yak individuals based on a CGH array
approach (33 Mb, 1.25 %) [38]. The length of the CNVRs
varied from 3 kb to 1,309 kb with an average of 58 kb.
Among all CNVRs, 234 (8.9 %) were found to be common
to all 79 individuals (Fig. 3 and Additional file 4). Accord-
ing to the type of CNVRs, they were divided into three
categories, including 785 gain, 1,575 loss and 274 both
(gain and loss within the same regions from different indi-
viduals) events (Fig. 3). Although it is difficult to compare
the CNVRs in different studies due to the different
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diversity of individuals and the technology used for detec-
tion, our study based on next-generation sequencing,
using 79 different wild as well as domestic yaks resulted in
better resolution and higher confidence in calling CNVRs
than past research [22]. Thus, most of the CNVRs discov-
ered in this study are novel compared to previous studies
and they represent the largest catalog of yak specific
CNVRs to date.

We evaluated the accuracy of individual copy number
variations predicted by performing a series of real time-
polymerase chain reactions (qPCR). The experimental
validation showed that 88 % of the CNVs (56/64) had an
accurate copy number and 100 % were in agreement
with the predicted patterns (Additional file 5). It should
be emphasized that not all true CNVs could be detected
by qPCR, especially some low-copy duplications with
lower sequence similarities. Thus, a 12 % false positive
rate is a conservative estimate in our CNV analysis,
representing a relatively low false positive rate in our
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Fig. 3 Genomic landscape of yak copy number variation regions and segmental duplications. The SDs are plotted as blue bars. The CNVRs are
illustrated above the SDs in green (loss), orange (gain) and purple (complex of gains and losses). The chromosome numbers (1-29, X) are shown
nearby correspond CNV landscape, and the bar height represents different sample numbers (<20, 21-40, 41-60, 61-78, > 78 )
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CNV calling and CNVR definitions [24, 39, 40]. We fur-
ther estimated the accuracy using 6 deep-coverage
(30x) yak genomes, including three domestic and three
wild individuals, revealing that 85 % of our original
CNV calls were supported by higher coverage genome
data. Moreover, considering that the quality of the
assembled reference as well as the annotated repeats is
crucial to discovering CNVs using the RD method, add-
itional experimental validation, such as qPCR from more
individuals, array comparative genomic hybridization
(aCGH) and fluorescent in situ hybridization (FISH), will
be required to obtain more accurate information about
the CNVs and to exclude false positives [3, 24].

SD detection and comparison with CNVRs

Segmental duplications (SDs) were shown to be one of the
catalysts and hotspots for CNV formation in many species
[3, 24, 41], and we tested whether the non-random associ-
ation between CNVs and SDs was preserved in yak. Based
on whole-genome assembly comparison (WGAC) [42]
and whole-genome shotgun sequence detection (WSSD)
[43] methods, we first identified 47,740 and 5,381 putative
segment duplication events, respectively. By merging these
two data sets, we finally predicted 50,800 segments, span-
ning 113.8 Mb of DNA sequence and comprising 4.3 % of
the yak genome (Additional file 6), a similar level to that
of the bovine genome (3.11 %) [44]. We subsequently
compared the overlap between the SDs identified above
and the CNVRs and found that 56 % of large CNVRs
(>15 kb) directly overlapped with SDs. Random simula-
tions further confirmed significant relationships between
5 Mb flanking regions of CNVRs and their overlap with
SDs (Additional file 7), consistent with the previously
studied CNVs that were enriched with SDs [10].

Gene content of CNV regions

Among the 2,634 CNVRs described above, 961 (36.5 %)
harbored a total of 3,879 protein-coding genes according
to the current yak genome (Additional file 8). These repre-
sent a valuable resource for future studies on the relation-
ship between CNV genes and phenotypic variation. Gene
ontology (GO) enrichment analysis indicated that CNVRs
harbored genes that were mainly involved in sensory per-
ception and olfactory receptor activity (Additional file 9),
such as the GO categories “olfactory receptor activity”,
“sensory perception”, “sensory perception of chemical
stimulus” and “sensory perception of smell”, which was
consistent with the observation that olfactory gene families
are large and associated with CNVs [10, 13, 39]. In
addition, gene families involved in sensory perception are
usually fast evolving due to their importance in the organ-
ism responding to rapid changes in the environment and
they have been repeatedly detected in CNV regions of sev-
eral livestock genomes. Our previous comparative genome
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study also found that gene families related to sensory per-
ception were substantially expanded in yak compared to
other mammals [35].

Population-differentiated CNVRs between wild and
domestic yak

To reveal the potential contributions of CNVs in the
process of yak domestication, we carried out a compara-
tive study to find the CNVRs with significantly different
copy number between domestic and wild yak. We identi-
fied 121 CNVRs potentially selected during domestica-
tion, containing 100 annotated protein coding genes
(Additional file 10).

Strong selection on reducing aggressive behavior and
neurological traits is often involved in the initial step of
animal domestication [45], and our previous domestica-
tion selective sweep analysis based on SNP data identi-
fied 38 genes related to these functions [26]. In this
study, we found eight more genes with high CN differ-
entiation between domestic and wild yak that are in-
volved in neuronal development and are associated with
behavior, further indicating that genes related to brain
and nervous system development might underlie the
processes that led to the successful domestication of the
yak. For example, GRIN2D is related to normal brain
development and associated with learning, working
memory and behavioral attention [46]; FTL encodes the
ferritin protein and mutations in this gene could lead to
behavioral abnormalities and cognitive impairment [47];
NTNS is highly expressed in neurogenic regions of the
adult brain and controls neurogenesis [48]; SHANK3 plays
a role in synapse formation and dendritic spine matur-
ation [49]; KCNJ14 has a function in controlling the excit-
ability of motor neurons [50]; CAII is abundantly
expressed in the brain and has a general role in the central
nervous system [51]; NTF4 encodes a neurotrophic factor
which controls neuron differentiation [52]; and ARSA is
related to many neurodegenerative diseases [53].

Another important consequence of livestock domesti-
cation is a change in their reproductive efficiency, such
as age of puberty, sperm production, ovulation rate and
embryonic mortality [54]. We found seven CNV-
associated genes involved in reproductive performance
traits. TSEG2, AKRIC3 and [ZUMOI are sperm-
specific expressed genes and have a role in spermato-
genic cell development and fertility [55-57]. LHB is
expressed in the pituitary gland and promotes sperm-
atogenesis and ovulation; mutations in this gene are
associated with polycystic ovary syndrome in women
[58]. SPACA4 encoded protein is retained on the inner
acrosomal membrane of spermatozoa and plays a role
in sperm-egg binding and fertilization [59]. FGF21
encodes fibroblast growth factor protein, which is
involved in embryonic development [60]. DMBTI
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encoding lactoprotein as a scavenger receptor protein
in milk, which can suppress various bacterial infections
in vitro and plays an important role in the innate im-
munity of breast-fed infants [61].

Previous studies have revealed that domestication leads
to relaxation of selective constraints in the yak mitochon-
drial genome, because the domestic yak and wild yak have
different energy demands and metabolic efficiency [62].
We found four genes, ND4L [63], SCO2 [64], COI [65]
and NDI [66], related to mitochondrial oxidative phos-
phorylation (OXPHOS) that exhibit marked CN variation
between wild and domestic yak, indicating that CNV may
affect genes involved in energy metabolism during yak
domestication.

The progress of domestication of livestock would also
affect nutritional uptake, absorption and metabolism [67].
We found that seven interesting CNVRs harbored genes
related to nutrition metabolism and there were significant
differences in copy number between domestic and wild
yak. For instance, MOGAT2 [68], GYSI [66] and DHDH
[69] are involved in the metabolism of sugars (Fig. 4);
HSD17B14 [70] and CPT1B [71] are involved in lipid me-
tabolism; BCAT2 is involved in amino acid metabolism
[72]; and MIOX is involved in carbohydrate metabolism
[73]. In addition, we identified four genes (CHRM3 [74],
KLF6 [75], GPCI [76] and CHKB [77]) related to meat
production and quality, which is also an economically sig-
nificant trait that has been extensively considered during
the artificial selection process.

Taken together, our results suggest that some CNVRs
may have been under selection pressure during yak
domestication and these are associated with behavior,
physical characteristics and economically significant
traits. Consequently, additional functional experiments
are needed to verify the contributions of the identified
genes located in CNVRs to domestication.

Population-differentiated CNVRs between yak living at
high and low altitudes

In order to understand better the evolutionary impact of
CNVs in adaptations to high altitude, we compared the
CNVs between domestic yak living in high-altitude
(>4,000 m) and low-altitude (<2,500 m) areas. We found
85 CNVRs that are significantly different between these
two groups: 29 of them harbor 41 protein-coding genes
(Additional file 11). First, compared to the low-altitude
population, yak living at high-altitudes must overcome
the severe environmental challenges of hypoxia and an
increased risk of high-altitude illness, such as pulmonary
arterial hypertension and emphysema. We identified
three genes involved in the response to hypoxia — MRP4
[78], DCC [79] and DEXI [80] — for which the copy
number differed between high and low-altitude domestic
yak. The MRP4 gene encodes ATP-binding cassette
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(ABC) transporters, regulating intracellular levels of
cAMP and cGMP in arterial smooth muscle cells; inhib-
ition of MRP4 expression can prevent and reverse
hypoxia-induced pulmonary arterial hypertension [78].
The DCC gene encodes the Netrin 1 receptor, which
plays an important mediating function in protecting
against hypoxia-induced mitochondrial apoptosis [79].
DEXI expression was increased in emphysema tissues
and is associated with disease progression [80]. Second,
we found six CNV genes related to the immune system
that may be involved in high altitude adaptation.
ULBP17 encodes the immune system-activating receptor
on T-cells and is related to pathogen- and parasite-
resistance [24]. CIITA is a positive regulator of class II
major histocompatibility and mutations in this gene are
associated with diseases of the immune system [81].
CATHLI encodes cathelicidin, which is important in in-
nate immune defense against bacterial infection (Fig. 5)
[82], BoLA-DQA2, BoLA-DQA3 and BoLA-DQB are key
leukocyte antigen genes associated with the immune
response. These CNVRs that span potential genes influ-
encing the immune system may reflect the substantially
different diseases triggered by the parasites and arbo-
virus at high and low altitudes [83-85]. These results
suggest that CNV is an important type of genetic vari-
ation that may play a role in yak adaptation to high-
altitude environments.

Conclusions

We performed genome-wide CNV detection based on
whole genome sequencing data for 14 wild and 65
domestic yaks. A total of 2,634 CNVRs comprising 153
megabases of the yak genome were identified; this repre-
sents the largest source of CNVs identified and the
highest-resolution individualized CNV map constructed
for the yak genome to date. The inferred CNVRs contain
3,879 functionally annotated genes and further func-
tional analyses reveal CNVRs enriched for genes related
to sensory perception and responses to stimuli. Compar-
ing the different CNVs in wild and domestic yak sug-
gests that many genes overlapping with CNVRs play a
role in behavior, physical characteristics and economic-
ally significant traits. In addition, some novel genes,
including DEXI, DCC, and MRP4, were found to be cov-
ered by CNVRs related to adaptation to high-altitude
environments. Our study represents a comprehensive
genomic analysis of CNVs in yak and provides valuable
insights into the evolutionary dynamics of copy number
variation, in the context of domestication and high-
altitude adaptation. The database presented in this study
will provide an important genetic resource for future
work on phenotypic variation and breeding in both yak
and other bovid species.
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Methods

Data sets

The whole genome sequencing data were obtained from
our previously study (Additional file 1, which were depos-
ited in the European Molecular Biology Laboratory
(EMBL/EBI) Nucleotide Sequence Database under the ac-
cession number PRINA285834). Briefly, the muscle sam-
ples were obtained from 14 wild yaks and 65 domestic
yaks of diverse breeds from widely spaced locations across
the QTP. DNA was extracted using a standard phenol/
chloroform extraction method; paired-end sequencing
libraries with an insert size of 500 bp were sequenced
using an Illumina HiSeq 2000 platform.

Sequence quality checking and read alignment

Using a custom Perl script, we filtered out the low qual-
ity reads based on the following criteria: (i) reads with
>10 % unidentified nucleotides (N); (ii) reads for which
more than 65 % of the read length had a Phred quality
value <7; (iii) reads with more than 10 bp aligned to the
adapter, allowing 2 bp mismatches; and (iv) duplicate
reads. Reads were also trimmed if they had three con-
secutive base pairs with a Phred quality value of 13 or
below, and discarded if they were shorter than 45 bp.
The pair-end sequence reads were mapped to the B.
grunniens reference genome using BWA-MEM (0.7.10-
r789) with default parameters. SAMTOQOLS [86] was
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used to sort and index the resulting Binary Alignment
Map (BAM) format files. In order to reduce the inaccur-
acy alignment, the Genome Analysis Toolkit [87] was
used to realign reads located in regions around indels
[36] after assigning read group information pertaining to
library, lane and sample identity in the Picard software
(http://broadinstitute.github.io/picard/, version 1.92).

CNV detection and CNVR definition

CNVs were detected through read-depth analysis, in
which the number of copies presented is inferred from
sequence depth of whole genome sequencing data [13].
By combining the established mean-shift approach,
multiple-bandwidth partitioning and GC correction,
CNVnator was used to detect CNVs. It has been

suggested that this approach is superior to other
methods with respect to accuracy of the copy number
estimate and the precision of sensitivity and specificity
[34]. For each individual, the realigned BAM file was
processed in CNVnator. Following the authors’ recom-
mendations, we choose the optimal parameters for dif-
ferent individuals, and trimmed the boundaries of CNVs
on the basis of 500-bp bins to avoid bias caused by dif-
ferent coverage. The fraction of reads that can map to
two or more locations was denoted 0. All CNV calls
with q0 >50 % were filtered out, followed by any
remaining CNV events whose RD significantly differed
from the average genome RD (t-test corrected for mul-
tiple hypotheses testing; p < 0.05). Previous studies have
shown that RD based analysis have reduced power and
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reliability to detect small CNVs events [37, 88]. To
reduce the false positive discovery rate and avoid misin-
terpreting the results, we only retained the CNVs longer
than 1.5 kb for further analysis [13, 39]. In consideration
of the fact that the yak is diploid, to reflect homozygous
and heterozygous deletions, we normalized the copy
number to 2.

The copy number variation region (CNVR) is defined
as a combined region of overlapping CNVs on the gen-
ome. CNVRs are merged from different samples with
any amount of overlap by extending the boundaries of
the overlapping CNVs [89]. Here, all the CNVRs were
defined using a custom Perl script. To reduce the false
positive discovery rate further, only the CNVRs present
in more than four samples were used for functional and
comparative analysis, thus minimizing the bias caused
by uniformity of sequencing coverage.

gPCR and high depth resequencing validation

To evaluate the accuracy of our copy number assignments,
we randomly selected eight gain and eight loss genic
CNVRs. Thirty-two different individuals were randomly
selected to validate these CNVRs by quantitative PCR
(qPCR). A segment of bovine basic transcription factor 3
(BTF3) gene was chosen as a reference location for all
qPCR experiments, because neither CNVs nor SDs over-
lapping this gene were found in our dataset nor in any pre-
vious studies of bovid species [24, 90]. Primers for qPCR
validation were designed using the Primer3 webtool
(http://frodo.wimit.edu/). The amplicon length was set to
100-200 bp, and the regions with GC percentage were
between 30 and 60 % (Additional file 5).

Genomic DNA was extracted and purified from tissue
using the standard phenol-chloroform method [91].
Using the CFX96 Real-Time PCR System (BIO-RAD),
we performed the qPCR experiments in a total reaction
volume of 20 pl, which contained 50 ng of template
DNA, 10 mM primers and the reagents in the SYBR
Green PCR kit (Takara). The copy number differences
were determined using a standard AACt method and
compared to the diploid reference gene BTF3 as previ-
ously described [24].

We also used a high-depth (30x) re-sequencing dataset
based on three domestic and three wild yaks to estimate
the accuracy of our original identified CNV events. We
calculated the coefficient of variation (cv%) between the
high-depth-sequencing predicted and our original pre-
dicted copy numbers. The difference was considered to
be acceptable if cv % was <0.25.

Segmental duplication detection and association with
CNV distribution

Using the yak_1.1 yak genome assembly, we applied two
well-established computational approaches, whole-genome
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shotgun sequence detection (WSSD) and whole-genome
assembly comparison (WGAC) to detect putative segmen-
tal duplications. Briefly, WGAC identifies paralogous
sequences >1 kb in length with >90 % sequence identity,
and WSSD identifies genomic regions that exhibit sig-
nificant depth of coverage by aligning whole-genome
shotgun sequencing reads to the reference genome
sequence. The final SD dataset was obtained by mer-
ging these two results. Association between CNVs and
SDs was tested by random simulations using a custom
Perl script as previously published [10].

Gene content and gene ontology

By searching for the coordinate of each CNVR in the yak
genome assembly and gene annotation, we assessed the
gene contents of each CNVR. Only the genes that were
primarily comprised of CNVRs (>50 %) were retained.
Functional classification of GO categories was performed
using the Blast2GO program [92]. Enrichment analysis
was performed and the hypergeometric test was used to
calculate the statistical significance of enrichment. The P
values were adjusted by FDR and the adjusted P value cut-
off was 0.05. GO terms associated with the CNVRs and
whole genome background were plotted by WEGO
(http://wego.genomics.org.cn/cgi-bin/wego/index.pl).

Comparison between different populations

We carried out two comparative studies to identify CNV
genes with high differentiation between populations. One
was domestication related, including 65 domestic and 14
wild samples; the other was high-altitude adaptation
related, only including domestic yak living at high
(>4,000 m, eight samples) and low-altitude (<2,500 m, 14
samples) areas. With the aim of identifying population-
differentiated CNVRs more accurately, two statistical
measures were used during comparisons: a metric analo-
gous to Fst (the fixation index) named Vst [93] and the
student’s t-test. For each locus, the Vgr was calculated
using the formula Vst = (V1—Vs)/Vr as previously pub-
lished. Here, V1 is the total variance in CN between the
two populations and Vs is the average of the variance
within each population, weighted for its sample size [39].
The distributions of CNs between different groups were
also compared using the student’s t-test. Only loci exhibit-
ing significantly different CNs based on these two statis-
tics (top 5 % of all the Vgt values and P-value < 0.05) were
considered to be population-differentiated CNVs, repre-
senting a rigorous criteria to identify differential CNVRs
between populations. All these statistics were calculated
using the R package.

Heatmap analysis
We performed heatmap analyses based on the depth of
each sample. For each individual, the depth of every base


http://frodo.wi.mit.edu/
http://wego.genomics.org.cn/cgi-bin/wego/index.pl

Zhang et al. BMC Genomics (2016) 17:379

was computed using the “depth” command in SAM-
TOOLS [86]. As the estimated copy number, the ratio of
the average depth of each window to the effective depth
of each individual was then calculated. The pheatmap R
package was used to plot these effective copy number
values for all individuals.
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