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Abstract

Background: CRISPR (clustered regularly interspaced short palindromic repeats) RNAs provide the specificity for
noncoding RNA-guided adaptive immune defence systems in prokaryotes. CRISPR arrays consist of repeat sequences
separated by specific spacer sequences. CRISPR arrays have previously been identified in a large proportion of prokaryotic
genomes. However, currently available detection algorithms do not utilise recently discovered features regarding
CRISPR loci.

Results: We have developed a new approach to automatically detect, predict and interactively refine CRISPR arrays.
It is available as a web program and command line from bioanalysis.otago.ac.nz/CRISPRDetect. CRISPRDetect discovers
putative arrays, extends the array by detecting additional variant repeats, corrects the direction of arrays, refines the
repeat/spacer boundaries, and annotates different types of sequence variations (e.g. insertion/deletion) in near identical
repeats. Due to these features, CRISPRDetect has significant advantages when compared to existing identification tools.
As well as further support for small medium and large repeats, CRISPRDetect identified a class of arrays with
‘extra-large’ repeats in bacteria (repeats 44–50 nt). The CRISPRDetect output is integrated with other analysis tools.
Notably, the predicted spacers can be directly utilised by CRISPRTarget to predict targets.

Conclusion: CRISPRDetect enables more accurate detection of arrays and spacers and its gff output is suitable for
inclusion in genome annotation pipelines and visualisation. It has been used to analyse all complete bacterial and
archaeal reference genomes.

Keywords: Phage resistance, Plasmids, Horizontal gene transfer, Cas, CRISPR, Small RNA targets, crRNA, Bioinformatics,
Repeat elements

Background
CRISPR-Cas (clustered regularly interspaced short palin-
dromic repeats-CRISPR associated) systems are adaptive
immune systems in prokaryotes that provide protection
from foreign genetic material, such as bacteriophages
and plasmids. Specificity is provided by short noncoding
RNAs (termed crRNAs; CRISPR RNAs) that recognise
the invading DNA or RNA. These noncoding RNAs are
derived from CRISPR arrays that possess near identical
direct repeats, typically 21–48 bases long, punctuated by
short non-identical ‘spacers’ that provide the immune
‘memory’ of these systems. [1–6]. CRISPR-Cas function
requires a suite of Cas proteins encoded by cas genes,

which are often located nearby the CRISPR loci (for re-
views see [4–11]).
Analysis of CRISPR-Cas systems requires the detection

of CRISPR arrays and their entire complement of spacer
sequences. The computational recognition of CRISPRs
has been approached in a number of different ways.
Initially, CRISPRs were predicted by genomic pattern
matching programs such as PatScan [12]. Then, to facilitate
CRISPR prediction and analysis, a number of tools were
developed, including both command-line executable pro-
grams (e.g. CRT [13], MINCED [14] and PILER-CR [15])
and web-applications (e.g. CRISPRFinder, CRISPI) [16, 17].
Recently, CRISPR prediction has been extended to metage-
nomic data [18–20].
The current prediction approaches have limitations, par-

ticularly in distinguishing CRISPRs from other types of
repeats. In addition, many arrays show some mutation
(substitutions or insertion and/or deletions), particularly at
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the 3’ end. Better approaches are needed to identify and
represent these events. A drawback of the existing methods
is that predictions do not fully utilise the available bio-
logical information. Current methods mainly rely on se-
quence similarities (and sometimes length distribution) in
the repeats and spacers with predefined parameters, and
do not search for key features of CRISPRs. For example, in-
sertion, deletion and multiple point mutations may occur,
then be propagated through subsequent repeats during du-
plication, or a portion or whole repeat and/or spacer could
be deleted through recombination [21–26]. Furthermore,
most of the existing programs fail to detect short or de-
generate CRISPR arrays. Setting the parameters with
high sensitivity may include these but will also lead to
the identification of many non-CRISPR genomic re-
peats. Finding the true positives from such a large list
of short CRISPR-like regions is laborious.
CRISPR arrays expand by duplication of the repeats

and acquisition of spacers from the invading DNA [27].
This repeat duplication and spacer integration typically
occurs at the leader end (AT-rich sequence containing
the promoter) of the array [28, 29], although internal
spacer acquisition can occur [30]. Repeats and spacers
can also be lost by mutation, through small and large in-
sertions or deletions, or recombination [21, 22, 26]. In
addition, modelling has indicated there is a dynamic flux
between acquisition and loss, driven by mutation and se-
lection [31].
Most commonly used prediction tools do not assign

strand or directionality to CRISPR arrays as part of the
automated prediction process, resulting in roughly half
of arrays being reported in the incorrect orientation. How-
ever, recent tools allow determination of CRISPR direction
as a post-prediction step on arrays (CRISPRDirection), or
repeat direction after array prediction (CRISPRstrand)
[32, 33]. These developments have shown that the re-
peats can indicate the direction of CRISPR transcrip-
tion [32–34]. For example, conserved sequence motifs
(notably ATTGAAA(N)) at the 3’ of some repeats, are
an indicator of the transcriptional direction [32, 33].
Therefore, it is important to accurately predict the repeat/
spacer boundaries while predicting CRISPRs to correctly
assign direction. In addition to sequence motifs, CRISPR-
Direction uses a range of predictive factors to determine
array direction [32]. Defining direction is important to ac-
curately identify spacers, since they are used to find their
cognate DNA or RNA targets (termed protospacers) [35].
Since spacers are short (i.e. often ~30 nt), it is difficult to
identify true targets and every additional correctly anno-
tated nucleotide (nt) assists target detection. In Type I,
Type II and Type V systems, the bases at one end of the
spacer are usually part of a ‘seed’ sequence, that is critical
for base-pairing, target recognition and interference
[36–40]. Similarly, it is important to correctly identify the

precise ends of the spacers to enable accurate prediction
of important motifs flanking the protospacer, termed
protospacer adjacent motifs (PAMs) [41]. PAMs are es-
sential for target/non-target discrimination, so knowing
their precise location is critical for identifying biologic-
ally relevant targets.
Towards the leader-distal (3’) end of CRISPR arrays,

repeat mutations can accumulate. Furthermore, inser-
tions and deletions can occur, especially in the 3’ end of
CRISPR arrays [26, 42, 43]. These sequence deviations
(repeat degeneracy and the presence of partially deleted
repeats and/or spacers) mean that the 3’ ends of CRISPR
arrays are often incorrectly detected. PILER-CR is cur-
rently the only program that handles insertions and/or
deletions in repeats. The inability to detect these events
means that we still have limited knowledge about how
arrays degenerate to balance nascent spacer acquisitions
at the leader end. The directional incorporation of new
spacers implies a particular evolutionary history and can
be used successfully in strain typing and evolutionary
studies [44, 45]. Therefore, it would be informative if
CRISPR detection provided a potential extension with
lower repeat identity to test if degenerated, but still rec-
ognisable, repeats are present in the leader-distal end of
the array.
Here, we developed CRISPRDetect, a web-based and

command line tool, that enables accurate identification
of CRISPR arrays in genomes, their direction, repeat
spacer boundaries, substitutions, insertions or deletions
in repeats and spacers and lists cas genes that are anno-
tated in the genome. This data is combined into a search-
able database, CRISPRBank, currently version 1.0. Spacer
outputs from CRISPRDetect can then be directly used to
search for targets in viral and other sequence databases
using the linked tool, CRISPRTarget [35].

Implementation
Figure 1 shows a schematic overview of the CRISPR
identification and refinement process. Most existing
tools identify CRISPRs using a default word length (e.g. 11)
and minimum repetition (e.g. 3 or above). By default,
CRISPRDetect searches with >2 repeats and a word length
of ≥11 for a faster identification process, but it also allows
identification of CRISPR arrays with only two repeats
(i.e. 1 spacer) with a word size >5. CRISPRDetect uses
five main processes to analyse a putative CRISPR: 1. re-
peat detection to give putative CRISPRs, 2. removal of
CRISPR-like tandem repeats, 3. refinement, 4. deter-
mination of direction and similarity to characterised re-
peat families and 5. quality scoring.

Detection of putative CRISPRs
CRISPRs are initially identified as two short stretches
of identical sequences separated by a dissimilar short
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sequence. Since the shortest length of experimentally
verified CRISPR repeats are about 23 nt [46], by default,
we used a much shorter minimum word size of 11.
However, CRISPRDetect can be run with word sizes >5.
The minimum and maximum space (potential spacer
length) between words are calculated using the following
formulae.

Minimum space between repeating words
¼ 30 – repeating�word�length

Maximum space between repeating words
¼ 125 þ repeating�word�length

The idea of not using fixed minimum and maximum
lengths is to reduce user input as well as maintaining the
speed. As the shortest verified repeat length is longer than
20 nt, this approach will ensure that CRISPRDetect will

not miss any potential CRISPR. The default 11 nt word
size ensures that potential shorter repeat (e.g. ~ 23 nt)
with multiple base mismatches will be detected, while not
compromising on speed for a typical bacterial or archaeal
genome. This is done using regular expressions imple-
mented in PERL.

Removal of tandem repeats
The genomic regions containing the putative CRISPRs
were analysed to identify repeats. Using the repeating
word, the genomic regions are divided into sequence
segments with every segment beginning with the re-
peated word. These repeated words are then aligned
using ClustalW [47] and used to try and increase the ini-
tial repeat length of likely arrays as well as to eliminate
simple tandem repeats. For the “spacers” of the putative
CRISPRs that have <5 unaligned columns (i.e. are highly
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Fig. 1 The CRISPRDetect automated pipeline. The modules that make up the pipeline are shown. In some cases there is an iterative repeat of
processes, (iteration ‘0’ to i). See CRISPRDetect.pl for details. The interactive web implementation allows dynamic alteration of the parameters to
suit the particular CRISPR array and genome
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similar across the array), the putative CRISPR are
marked as clear tandem repeats and discarded.

Refinement of the putative CRISPR
CRISPRDetect supports eight independent refinement
subroutines. These methods are used by default and ap-
plied in the specified order. Figure 1 shows the sche-
matic diagram of the CRISPRDetect analysis pipeline,
which is detailed in the following sections. However,
each of these methods can be applied independently in
an interactive manner to one or all CRISPRs using the
CRISPRDetect web-server.

Extending the repeat end
Mutations at the ends of repeats may result in part of
the repeat being included in the adjacent spacer se-
quences (e.g. Fig. 2C). CRISPRDetect progressively ex-
tends the repeat on both sides, comparing the bases
from adjacent columns with minimum column identity
by default of 75 % (range 0–100 %). Therefore for two or
three repeats perfect identity is required, for four to
seven one mismatch allowed, for eight two, and so forth.
Short repeats predicted initially may be bounded by a

single column with low (e.g. 50 %) identity, but followed
by columns with high identity. CRISPRDetect uses an
adaptive method to extend the repeat if required, where
instead of using only the primary column identity as a
cutoff (default 75 %), it also uses an additional lower,
‘alternate column identity’ permitted for one column.
The ‘alternate column identity’ is by default 50 % for
arrays <7 repeats and 40 % for longer arrays. It is applied
when a column has greater than the ‘alternative column
identity’ but is followed by two or more columns with
identity higher than the primary column identity (e.g. a
column with only 4/10 identical bases, followed by two
or more columns of 9/10. This has the added effect of ex-
tending the repeats of non-CRISPR tandem repeats split
by low identity columns, this eliminates the ‘spacers' and
identifies them as tandem repeats.

Selecting representative repeats
For most arrays there is very little dissimilarity among
repeats and a representative repeat is easily selected. It is
more difficult to identify a single representative repeat
for shorter CRISPRs, those with frequent mutation in
the repeats, or when more than one repeat sequence is
found in longer arrays. The precise representative repeat
is an important component of an array, as it helps to
identify the family, direction, true spacer lengths, as well
as the degenerated repeats at the end of array. This se-
lection is repeated after every major operation on the
array. CRISPRDetect selects the most common repeat as
the ‘representative repeat’, with the next most common
being the ‘alternative’ repeat.

Extend the array
This method progressively checks the flanking regions
of the CRISPR arrays in windows within a distance
equal to the length of the representative repeat plus
1.33 times the median spacer length for typical median
spacer lengths (>15 and < 70, 2.5 × repeat length out-
side this range). The permitted minimum gap between
newly identified repeats and existing repeats is 0 nucleo-
tides to address total spacer loss, and the default upper
limit is 125 nucleotides. The flanking region is compared
with the Smith-Waterman algorithm (EMBOSS/water)
with an increasing gap-penalty (starting from 5.5 to 10 in
steps of 0.5) to identify the best non-gapped alignment.
Once such an aligned region is identified, the region is ex-
tended either side accordingly, to match the representative
repeat length. It is then further checked to ensure that the
minimum repeat identity (default ≥67 %) is met (gaps, in-
sertions and deletions are equally penalized with -1), and
for all valid matches, a new repeat-spacer set is added to
the array. This process is by default a dynamic one with
the comparison being made to the adjacent repeat.

Refine the repeats
Initial repeat prediction may consist of additional bases
at the ends that correctly belong to the spacers. This is
due to situations where the first or last base of multiple
spacers is nearly identical in an array. CRISPRDetect
utilises a set of methods (comparison with a library of
known repeats, known motifs (e.g. ATTGAAA(N))
found in the end of repeats, repeat end region degener-
acy (default ≥20 % base mismatch)) to predict the cor-
rect repeat/spacer boundary. In the interactive mode,
users can trim both sides of the repeats by any number
of bases, as long as the repeat retains the minimum
word length specified in the parameters for initial array
prediction.

Trim the array - remove repeats that match poorly the
representative repeat
Highly degenerated repeats can be falsely included after
dynamically extending the CRISPRs, for example, if 2
repeats were added successively with 67 % identity the
final repeat would have 45 % identity to the first. Repeats
can be removed by requiring a minimum percentage
identity between the representative repeat and terminal
repeats. Trimming stops when a repeat has an identity
above the cutoff (default >66 %) or the minimum number
of repeats (default 3) specified is reached. This enables the
user to have a simple means to remove sequences that are
incorrectly assigned as degenerate repeats.

Correct gaps at repeat ends
After the initial repeat and spacer prediction, the repeat
may contain terminal gaps or additional bases from the
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spacer, which can also make the spacer prediction incorrect.
To refine the ends of the repeat, CRISPRDetect uses
matching bases from the initially predicted spacer. For ter-
minal insertions, the bases are labelled as insertions.

Representation of insertions in a small number of repeats
of an array
During alignment of the repeats, insertion of base(s)
may have been identified. This results in introducing
gap(s) in the visualisation of other repeats, including the
representative repeat. To avoid these visual gaps in
columns, CRISPRDetect denotes inserted bases as

insertions in the array, which prevents the need to insert
a gap character in the representative repeat (e.g. Fig. 3).

Identify mutated repeats in sequences initially predicted to
be long spacers
When a substantial portion of a repeat and/or a repeat-
spacer junction is deleted, the repeats fail to retain the
minimum percentage identity and could be erroneously
added to the next spacer, making these spacers appear
unusually long. CRISPRDetect looks for such cases
where the spacers are longer than the median spacer
length with a user given minimum percentage identity

(See figure on previous page.)
Fig. 2 CRISPRDetect predictions for E. coli K-12- text output. CRISPRDetect identifies two CRISPR arrays in a K-12 genome, corresponding to the
well characterised CRISPR 2.1 and 2.3 loci. This genome is provided as one of the test sets at http://bioanalysis.otago.ac.nz/CRISPRDetect/.
CRISPRDetect output. E. coli arrays - both arrays are reverse-complemented in the CRISPRDetect prediction (based on matches to reference repeat
and other features by CRISPRDirection) a CRISPR 2.1 The array section of the CRISPRDetect output is shown, showing base differences e.g. a. TT
mutations in the repeat toward the predicted 3’ end. b. The full output is shown, and specific features are in bold. For CRISPR 2.3 the reference
repeat match also permitted inclusion of the experimentally verified last base (G) in the repeat, although it varies in two of six repeats (the first
and last, bold). The score is high (8.14) and the components are shown below. The Directional analysis gives a ‘HIGH’ confidence for the
reverse orientation as shown. The cas genes identified in the ‘.gbk’ file are listed as are the signature genes for any family present (only I-E in
this example). c. CRISPRFinder prediction for E. coli CRISPR 2.3 for comparison. Prediction obtained from CRISPRdb predicted by CRISPRFinder

Fig. 3 CRISPRDetect web output. An example of a predicted and automatically refined array from Cronobacter sakazakii ES15, which has 16 repeats, the
last of which has degenerated. Options A-I are available for further interactive application of the selected processes to the selected array (Array 2 from this
genome, array 1 is hidden). The array is shown in a standard format with substitutions in the repeat sequence shown. Insertions in one a repeat is
indicated at the right. The quality score is high 8.87 (>4.0; max 13) and the score would be detailed in the next lines (as in Fig. 2, not shown). A link to
CRISPRBank and initial analysis is shown in the top right and indicates that this exact repeat is found in five genomes (Cronobacter species). The annotation
file in GFF can be downloaded for visualisation or further analysis (e.g. Fig. 6)
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between the representative repeat and the whole spacer,
revealing not only partial repeat deletion, but also partial
and/or total spacer deletion. These insertions and dele-
tions are labeled in the output.

Predicting direction
The direction of a CRISPR is predicted using the
CRISPRDirection algorithm [32]. The arrays predicted
in the reverse direction are automatically reverse
complemented (i.e. they are displayed in the forward
orientation, with the leader at the 5’ end). In the
CRISPRDetect output, those that have been reversed
are labelled accordingly.

Predicting CRISPR-Cas Type
To give an indication of the CRISPR-Cas Type (e.g. Type
I-E), two independent methods are used. Firstly when
the representative repeat matches a known repeat that
has been associated with a particular Type of CRISPR-
Cas system (from a reference set [32]) the Type is indi-
cated in the output. The reference set of validated re-
peats is also utilised in correcting repeat boundaries,
scoring and validation of the arrays (later sections).
Second if genomic annotation information is available
(e.g. Genbank formatted files from Genbank/genomes),
CRISPRDetect utilises the presence of annotated signa-
ture Cas genes (and synonyms) in the genome. The out-
put lists all of the CRISPR-Cas Type(s) reported in the
Genbank file.

Scoring the quality of the predicted arrays
A scoring system gives each predicted array a score
based on known biological properties. Each parameter
has a positive or negative score and these are summed.
These scores are detailed in Additional file 1: S1 and in-
clude: 1. the presence of annotated cas1 or cas2 genes in
a gbk or gbff file (+1, or 0); 2. a close match to known or
confidently predicted repeats (+3); 3. specific sequence
motifs at the 3’ end (+3); 4. a metric for identity within the
repeats (+1); 5. a penalty for dissimilar repeats (-1.5); 6.
metrics for the representative repeat length (-3 to +1); 7.
metric for spacer length (0 to -3); 8. a penalty metric for
identity among the spacers (-3 to +1) and 9. a penalty
metric for dissimilarity among the repeats (-1 to +1). Each
of these scores is listed in the output. A final score for
each CRISPR array is determined by summing all the
scores from the individual methods. The CRISPRs with
negative scores are discarded, and the remaining CRISPRs
are listed in order of position on the genome. Arrays with
scores above 4.0 were classified as good quality based on
comparison to the scores of arrays from experimentally
validated species.

Results and Discussion
Overview
We aimed to develop a tool for improved detection of
CRISPRs. CRISPRDetect was constructed to facilitate
the identification and visualisation of the correct orien-
tation of CRISPRs, spacer-repeat boundaries, substitu-
tion, insertion and deletion mutations, repeat similarity
and the presence of cas genes in the genome. We define
‘true’ CRISPRs as experimentally determined arrays and
‘putative’ CRISPRs as those predicted computationally
by CRISPRDetect or other methods. Putative CRISPRs
are classified by CRISPRDetect as ‘good’, based on qual-
ity scoring criteria (≥4.0), or ‘Questionable’ (≥0 and <4.0)
(Additional file S1). The most common repeat for each
array is termed the representative repeat. The overall
CRISPRDetect process is shown in Fig. 1.
CRISPRDetect was run on 2806 complete bacterial

and archaeal genomes from GenBank/genomes (5262 se-
quences). This set of genomes was chosen to be compar-
able to that available for CRISPRFinder/CRISPRdb
online (Feb 2016). Using the default settings, a total of
3901 CRISPRs were found, of these 3870 (97 %) were
classified as ‘good’ arrays with a score of ≥4.0, repeats ≥3
and minimum repeat length ≥23. These arrays are fur-
ther analysed here. There were 16,607 arrays flagged
‘Questionable’ with scores ≥ 0 and <4.0. Of these, 160
were further flagged as ‘Potential tandem repeats’.
CRISPRDetect modules performed iterative refinements

on the arrays (see Implementation and specific examples
below). Of the repeats in 3870 arrays, 12 % were not iden-
tical to the representative repeat, with 50 below 70 %, and
399 below 80 % identity. About half (as expected) were
corrected in direction by CRISPRDetect and 1300 of these
were corrected with high confidence (32). One hundred
and sixty arrays were flagged as likely direct repeats (not
having a repeat-dissimilar spacer structure) and are all
‘questionable’ arrays.
We compared these 3870 ‘good’ arrays to those pre-

dicted by three existing programs using their default pa-
rameters. A table of features in CRISPRDetect compared
with CRT, PILER-CR and CRISPRFinder is presented in
Additional file 1: Table S2. CRISPI was not tested as it
is available online in an interactive mode only. CRT pre-
dicted 3681, PILER-CR 3743 and CRISPRFinder 2750
good CRISPR arrays (Fig. 4).
All programs predicted 1782 common arrays (Fig. 4).

CRISPRDetect showed the highest concordance with
PILER-CR and CRT (an additional 1407 arrays in
common). Compared with the other methods CRISPR-
Detect predicted an additional 345 arrays. All arrays with
scores >0 could be further analysed if desired (http://
bioanalysis.otago.ac.nz/CRISPRBank/). Arrays can be se-
lected for analysis by using a user selected cutoff score
(e.g. 0.25, 3.0, or 5.0).
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Arrays predicted using CRISPRDetect with similar set-
tings to those used by CRISPRdb (CRISPRDetect score
≥4.0, repeat ≥3, min repeat length ≥23) were found in
75 % of archaeal genomes (124 of 165) and 45 % bacterial
genomes (1179 of 2641). For CRISPRFinder/CRISPRdb
the percentages of archaeal and bacterial genomes with
predicted ‘convincing’ CRISPR structures are currently
83 % and 45 %.
Each of the other programs reported arrays that were

not predicted when using the default settings for CRISPR-
Detect (Fig. 4). There were only 10 arrays predicted by the
other three tools and not by CRISPRDetect. These arrays
had between 3 to 5 repeats and all were predicted by
CRISPRDetect, but had lower confidence scores. These ar-
rays had scored lower, typically due to high similarity in
spacers, or high numbers of mismatches in the repeats.
We used CRISPRDetect to determine the range of

sizes of repeat and spacers (Fig. 5a-b). To minimize po-
tential skew from overrepresented strains belonging to
the same species in the databases, one strain from each
species was analysed, and the length of the representa-
tive repeat and average spacer length determined. When
compared with the same analysis performed on all ar-
rays, there is no significant difference in the distribution
(Additional file 1: Figure S3). The length of most repeats
(96 %) are 24-37 nt and they can be classified into three
major size ranges (small 24–25 nt, medium 28–30 nt,
and large 36–37 nt) [46]. In contrast, there was a wide
variation in spacer length across all genomes, but 97 %
of the spacers are 29–43 nt (Fig. 5b). The most common
spacer lengths are 32–37 nt in bacteria and 35–40 nt in
archaea. These repeat classes are differently represented
in archaea and bacteria. Small repeat (24–25 nt) are
common in archaea (39.7 % of repeat) but not in bac-
teria (1.7 % of repeat). In bacteria, the large class is more
common (25.8 % vs 11.5 %). Each range contains some
repeat similar to experimentally determined CRISPR re-
peats. A new class including forty-four ‘extra large’ bacter-
ial repeats (44–50 nt) is well supported by our predictions

(Fig. 5a). This class was previously noted as associated with
Type II-C proteins [48, 46]. Most are in the order Flavo-
bacteriaceae within the Phylum Bacteroidetes and include
Capnocytophaga canimorsus (NC_015846) 47 nt, 113 re-
peat; Riemerella anatipestifer species (e.g. NC_018609)
47 nt, 11–13 repeats; Weeksella virosa (NC_015144) 50 nt,
21 repeats. These arrays typically are adjacent to annotated
cas1, cas2 and cas9 genes, and approximately half of these
repeat have similar sequences at the 3’ end (UYACAAC).
To see if prior analyses had omitted short repeats of genu-
ine CRISPRs, we lowered the length restriction during
detection. CRISPRDetect predicted 29 short repeats in
bacteria and archaea with sizes <23 (the lower limit in
CRISPRdb [46]). However, all but one are short arrays with
typically less than 5 repeats, further experimental evidence
would be required to determine if these are functional.
Across all CRISPRs, the array with the greatest number of
repeats is from the marine bacterium Haliangium ochra-
ceum with 588 repeats of 36 bp (and two arrays nearby of
190 and 37 repeats with identical repeats).
It is possible for CRISPR arrays with only 1 ‘repeat’

and a portion of the leader to function for adaptation
[27, 49, 50]. For common putative CRISPRs with only 2
repeats, they are flagged as ‘questionable’ by CRISPRFinder,
and are not predicted by default by CRT or PILER-CR, as
they would introduce many false positives. CRISPRDe-
tect is able to discriminate between false positive and
genuine CRISPR arrays by characterising the repeat
and other scores. CRISPRDetect predicted an additional
770 arrays with just two repeats with score ≥1.5. Al-
though none of these putative CRISPRs had a known
reference repeat, 168 had the signature ATTGAA(N)
sequence at the 3’ end so are likely new or divergent re-
peat sequences.

Algorithms to refine the structures of arrays
The abovementioned benefits of using CRISPRDetect
over other currently available software are nicely illustrated
by analysis of Escherichia coli (NC_010473, 4.6 Mb).
CRISPRDetect predicts two ‘good’ CRISPRs near 2.9 Mb
on the genome (scores 7.90 and 8.14; maximum possible
score of 13) (Fig. 2a–b). These arrays are well characterised
experimentally [51, 52]. All previous programs made array
predictions in the incorrect (reverse) orientation and
inaccurately predict the repeat boundary for CRISPR2.3
(aka CRISPR II) by missing an incompletely conserved
repeat base G on the 3’ end (Fig. 2c). This G has been
experimentally shown to be an incompletely conserved
part of the repeat [51]. CRISPRDetect automatically
corrected the direction (using CRISPRDirection [32])
and the repeat boundaries (Fig. 2b). The boundaries
were automatically corrected in the step where the rep-
resentative repeats are compared to the library of known
repeats (CRISPRBank, see Implementation section). The

Fig. 4 Comparison of the number of CRISPR arrays predicted by three
existing methods compared with CRISPRDetect. Arrays with three or
more repeats, and for CRISPRDetect a good quality score (>4.0) and ≥23
base repeat were counted
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orientation and boundary corrections result in the precise
spacer length and sequence identification, facilitating ac-
curate subsequent analyses of protospacers, their target
strand and their PAMs. Finally, identification of the likely
CRISPR-Cas types (Type I-E in this case) was made by
the presence of signature cas genes [7] in the annotated
genome (Fig. 2b).

Insertion/deletion in repeats and spacers
Insertions, deletions and substitutions can occur in re-
peats and may be copied into new repeats during spacer
acquisition [50]. CRISPRDetect detects repeat mutations,
including insertions, deletions and substitutions. Of the
existing tools, only PILER-CR represents substitutions in
the repeat. In the cases of deletion (shorter repeats), the
other tools usually incorrectly assign part of the spacer
as part of the repeat in order to maintain the consensus
repeat length. PILER-CR does not consistently predict
the cases where the repeat-spacer junction has muta-
tions within a few bases (<6) of the end of repeat. Fur-
thermore, in PILER-CR, insertions are represented in
one repeat, which creates a gap in all other repeats and
the representative repeat. In CRISPRDetect, this is re-
solved with a new output notation (Fig. 2, and Fig. 3
CRISPRDetect online help). Insertions/deletions are
listed to the right of the repeat-spacer unit, with their lo-
cation denoted (e.g. C [3167138] means an insertion of
the nucleotide C at position 3167138, Fig. 3; likely dele-
tion of spacers is also denoted Additional file 1: Figure
S4 and Figure S5). The deletion notation eliminates the
need to artificially introduce gaps into multiple repeats,
especially the representative repeat. In other cases, inser-
tion of multiple bases towards the centre of a repeat
may cause splitting the entire CRISPR into two or more
short CRISPRs, which results in the inability to detect
internal spacers. For example, in Carboxydothermus
hydrogenoformans, a CRISPR array is split in two by
PILER-CR (of 12 and 68 spacers), which CRISPRDetect
corrects, leading to the identification of three extra
spacers (83 spacers total, NC_007503-1949573-
1944006). These CRISPR splitting events also complicate
the analysis of leader regions, and the accurate assess-
ment of the evolutionary history of acquisition events,
since they would be analysed as two arrays rather than
one. Partial deletions in spacers were detected by previ-
ous programs. However, these programs do not support
the identification and visualization of complete spacer
loss.

Identification of degenerated repeats in the spacer
sequence
If repeats degenerate, they may not be recognised and
can be included in subsequent spacers, resulting in er-
roneously long spacers. CRISPRDetect addresses this by
searching for variant repeats with a lower identity
threshold in all spacers with length 1.2-fold greater than
the median spacer length in that array. If degenerate re-
peats are found, these are represented as repeats. For ex-
ample in an atypical 8 repeat array from Salmonella
enterica (Additional file 1: Figure S5), PILER-CR detects
six repeats, with degenerated repeats being included as an
unusually long 5th spacer (CRT and CRISPRFinder also
make incorrect assignments, Additional file 1: Figure S5).
CRISPRDetect predicts this array including 8 repeats (3 of
the 8 repeats have small deletions at the repeat-spacer
junction) with 5 typical spacers and 2 missing spacers at
the 5’ end.

Improving arrays by adjusting the repeat ends
CRISPRDetect uses a library of reference repeats (part of
CRISPRBank) to automatically refine predicted repeat
(Fig. 2a–b). This can be used in both an automatic and
interactive way. If the new representative repeat matches
a known reference repeat, then the repeat is extended or
trimmed to have the reference length as described
above for E. coli (Fig. 2a–b). In addition, if the repre-
sentative repeat contains a known repeat boundary motif
(e.g. ATTGAAA(N) 3’), then the 3’ end of the repeat is ad-
justed. This motif was found in 1070 arrays. Additionally,
the web interface has the option to interactively increase
or decrease the repeat length in an interactive array based
on expert knowledge of the user.

Identification of degenerated repeats and/or spacers
beyond the end of an array
Repeats beyond the end of the array may degenerate by
mutation and not be recognised. CRISPRDetect applies a
lower match threshold to extend arrays. At the default
settings this is set stringently, and arrays in the reference
databank are predicted with this stringency (CRISPRBank).
However, this is user-tuneable in both the automatic and
interactive versions of the program. This allows users to in-
vestigate the decay of CRISPRs. Array extension is useful
for analysing closely spaced arrays, separated by deleted or
degenerate repeats or insertions. CRISPRDetect supports
an extension, permitting repeat detection with identity as
low as 35 % (Additional file 1: Figure S6, and Figure S7a, b).

(See figure on previous page.)
Fig. 5 Sizes of CRISPR array repeats and spacers. a Distribution of sizes of the representative repeats for each array, the percentage of each length is
shown separately for bacteria (blue) and archaea (yellow). Four size ranges- small, medium, large, and extra large are indicated. b Distribution of the
median spacer size for each array. In (a) and (b) CRISPR arrays with ‘good’ scores (≥4.0) and three or more repeats from one strain for each species
from Genbank/genomes were counted. For the same analysis including all strains, see Additional file 1: Figure S3
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It also supports a ‘dynamic adaption’method, where instead
of using the global representative repeat, the nearest neigh-
bouring repeat is used as a reference. One advantage of this
method is that it allows dynamic adaptation where a repeat
mutation has been propagated at one end of the array
(Additional file 1: Figure S7c).

False positive predictions from tandem repeats
Other types of tandem repeats may be mis-identified as
CRISPR arrays. No arrays with scores above 4 are flagged,
there are 160 arrays with scores below 4 flagged as tandem
repeats, (mean score 0.7). Additional file 1: Figure S8a pro-
vides an example of a predicted five repeat CRISPR (by
CRT) with degenerated repeats being denoted as four
spacers, CRISPRDetect does not predict this as an array.
However, some likely arrays have a number of exactly iden-
tical spacers, followed by few non-identical spacers. For ex-
ample, seven identical spacers are present in a 24 repeat
array in Methanocaldococcus jannaschii, which is identified
by CRISPRDetect (Additional file 1: Figure S8b and Figure
S9).

Array orientation
Previous tools did not predict array orientation, until we
developed CRISPRDirection, which corrects CRISPR orien-
tation with ~94 % accuracy [32]. CRISPRDirection has a
separate confidence score in the CRISPRDetect output
(e.g. in E. coli, Additional file 1: Figure S4). An alterna-
tive would be to use CRISPRstrand [33], which predicts
orientation using repeat but is not currently available as
a command line program.

Internal database of CRISPRs (CRISPRBank)
As yet, there are no dynamically interactive CRISPR
prediction tools to enable users to refine arrays. Al-
though, CRISPRFinder and CRISPI are supported by
some post-processing tools and a database (CRISPRdb),
interaction between the prediction program and the
database is not available. CRISPRDetect addresses this
by incorporating a database of pre-computed CRISPRs
(CRISPRBank) generated from all complete bacterial
and archaeal genomes. Users can test newly predicted
CRISPRs with a minimum score (default 4.0) during
initial prediction, or once the output is generated. The
representative repeat of each array can be directly
searched in the CRISPRBank database, showing occur-
rences in other genomes. CRISPRBank currently contains
24,717 possible CRISPRs (score >0) with detailed informa-
tion including family, direction and scores (the range of
scores are shown in Additional file 1: Figure S10).

CRISPR-Cas Type indication
In CRISPRDetect and CRISPRBank predicted Types are
indicated. This is based on the presence of signature cas

genes (when annotated in the input Genbank format file)
[7] and by similarity to repeat from known Types. In the
output, CRISPRDetect lists the cas genes annotated, to-
gether with the sets of signature cas genes that were iden-
tified (Fig. 3). However, the lack of annotated cas genes in
an output does not mean they are absent and further user
analyses are advised. Analyses to find missing cas genes
could include more sensitive searches for the cas genes, or
use of the recently published compilation of cas genes [53]
or CRISPRmap/CRISPRstrand analysis [33]. Proposed up-
dates of the classification of CRISPR-Cas systems would be
able to be incorporated into CRISPRDetect [48, 54, 55].

Scoring the quality of the arrays
The ‘quality’ of the final prediction is scored by a set of
rules in CRISPRDetect. It scores each array with nine dif-
ferent CRISPR properties that includes both positive (e.g.
length of repeat) and negative scores (e.g. a small penalty
for the dissimilarity of the repeats) (Materials and Methods
and Additional file 1). Arrays that score below a user given
cutoff score are flagged as ‘questionable’. Arrays with
scores <0 are not reported. These parameters are adjust-
able in both the automatic and interactive version. The
presence of a known repeat gives an additional score (+3),
therefore such repeats often have scores >6 (Additional
file 1: Figure S10). However, many arrays score as good
arrays (≥4) without a previously predicted repeat. The
scores for all the predictions >0 from CRISPRDetect,
and the scores for the arrays with experimentally con-
firmed repeats are shown in Additional file 1: Figure S10.
CRISPRDetect defaults to a conservative score of 4.0, but
lower values e.g. 3.0 could also be used for greater sensi-
tivity (Additional file 1: Figure S10).

Direct link to CRISPRTarget for spacer analysis
From the CRISPRDetect output webpage, spacers can be
sent directly to CRISPRTarget for target prediction in
foreign DNA (e.g. the bacteriophage division of Gen-
Bank) [35]. CRISPRTarget uses a flexible algorithm that
takes the formatted and predicted spacer sequences from
CRISPRDetect (will also accept other formats) and uses
these to search databases for targets.

Repeat analysis
CRISPRDetect shows any repeats that have an exact
match in CRISPRBank. If desired, these repeat could be
further analysed by CRISPRmap [33, 34]. CRISPRmap
can classify the repeats based on sequence and structural
similarity into one of 40 families or 33 structured motifs.
This can then be used to predict the phylogenetic distri-
bution of the family that the repeat matches.

Biswas et al. BMC Genomics  (2016) 17:356 Page 11 of 14



Use in prokaryotic genome annotation pipelines
CRISPRDetect produces a gff output, which can be used
for genome annotation or visualisation. Currently,
CRISPR arrays may be annotated using a combination of
modified CRT and PILER-CR (e.g. DOE-JGI Metagenome
Annotation Pipeline v.4 [56, 57] and NCBI [58]).
PROKKA also uses a modified version of CRT (MINCED)
[14], whereas RAST uses Perl regular expressions to find
repeat >24 [59]. Typically ncRNA predictions (e.g.
CRISPR) are made then excluded from subsequent CDS
prediction. CRISPRDetect could be incorporated into
these pipelines in place of existing software using a high
stringency (e.g. score >4) to avoid false positives and sub-
sequent missing CDS predictions. For semi-automated
finishing of genomes the gff output can be read into edi-
tors/viewers for example Artemis [60] or the Integrative
Genomics Viewer (IGV) [61]. An array from the green-
house gas producing archaea Methanobrevibacter rumi-
nantium is shown in Fig. 6. The gff output is displayed
alongside the RefSeq annotation of this genome. The fine
structure of the array is shown in the likely orientation.
The RefSeq pipeline annotation [58] broadly described as
a ‘repeat-region’ is shown in light blue above.

Conclusions
CRISPRDetect was designed to address limitations in current
CRISPR prediction tools, and to include additional informa-
tion that is now available. We focused on the prediction of
CRISPR arrays by analysing both the CRISPR properties and
distinguishing these from ‘CRISPR like’ repeats which can
easily be predicted incorrectly as a CRISPR. CRISPRDetect,
in combination with CRISPRBank and CRISPRTarget, now

provides an integrated resource for the detection and analysis
of CRISPRs (CRISPRSuite). We expect this suite will replace
most existing CRISPR prediction tools.
The enhanced annotation of arrays reveals orientation,

precise repeat-spacer boundaries, small and large mutations
(substitution, deletion and insertions) in spacers and re-
peats, and additional features. This can be interrogated
using a web interface, or be incorporated into genome an-
notation pipelines for improved gene annotation, where it
would be included along with protein and other noncoding
RNA predictions. We are now investigating these new fea-
tures revealed by CRISPRDetect to generate further bio-
logical insight into CRISPR-Cas evolution and function.

Availability of data and materials
Project name: CRISPRDetect
Project home page: http://bioanalysis.otago.ac.nz/

CRISPRDetect/
Operating system(s): Platform independent
Programming language: PERL
Other requirements: Local installation- EMBOSS-water

and seqret, RNAfold, clustalw, blastn, cd-hit-est
License: GNU GPL
Any restrictions to use by non-academics: no

Additional file

Additional file 1: CRISPRDetect Additional files 1–10. (PDF 1633 kb)

Abbreviations
CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR
associated; crRNA: CRISPR RNA; DR: direct repeat; PAM: protospacer adjacent
motif.

Fig. 6 CRISPRDetect results on a genome browser. Genome feature format (gff) visualised in a genome browser (Artemis) [60]. This region has an
array followed by an operon that includes some CRISPR associated genes. The figure shows a section of the RefSeq annotated version of
Methanobrevibacter ruminantium genome [62]. The top line shows the annotation from the RefSeq file in GenBank (gbff) format. In the NCBI
annotation pipeline the arrays are predicted by a combination of CRT and Piler-CR. These are annotated as a ‘repeat_region’s on the genome
(light blue). The CRISPRDetect gff output file has been added to this annotation. Each repeat and spacer is shown in the indicated orientation
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