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Abstract

Background: Network medicine is a promising new discipline that combines systems biology approaches and
network science to understand the complexity of pathological phenotypes. Given the growing availability of
personalized genomic and phenotypic profiles, network models offer a robust integrative framework for the analysis
of "omics" data, allowing the characterization of the molecular aetiology of pathological processes underpinning

genetic diseases.

Methods: Here we make use of patient genomic data to exploit different network-based analyses to study genetic
and phenotypic relationships between individuals. For this method, we analyzed a dataset of structural variants and
phenotypes for 6,564 patients from the DECIPHER database, which encompasses one of the most comprehensive
collections of pathogenic Copy Number Variations (CNVs) and their associated ontology-controlled phenotypes. We
developed a computational strategy that identifies clusters of patients in a synthetic patient network according to

their genetic overlap and phenotype enrichments.

Results: Many of these clusters of patients represent new genotype-phenotype associations, suggesting the
identification of newly discovered phenotypically enriched loci (indicative of potential novel syndromes) that are
currently absent from reference genomic disorder databases such as ClinVar, OMIM or DECIPHER itself.

Conclusions: We provide a high-resolution map of pathogenic phenotypes associated with their respective
significant genomic regions and a new powerful tool for diagnosis of currently uncharacterized mutations leading

to deleterious phenotypes and syndromes.

Background

Genomic Structural Variations are one of the main
sources of human genome variation. Copy Number Vari-
ations (CNVs) naturally occur in the genome of healthy
individuals [1, 2], some of them leading to disease [3].
CNVs consist of thousands to millions of bp deletions,
duplications, insertions or inversions, recurrent in the
population either by inheritance or spontaneous occur-
rence (de novo) [4]. Although the discovery of CNVs was
relatively recent, a plethora of genetic association studies
have been carried out to understand their evolutionary

* Correspondence: armando.reyes@embl.de; ranea@uma.es
"Universidad de Mélaga, Andalucia Tech, Departamento de Biologia
Molecular y Bioquimica, Facultad de Ciencias, and IBIMA (Biomedical
Research Institute of Malaga), E-29071 Mélaga, Spain

Full list of author information is available at the end of the article

( ) BiolMed Central

[5], functional [6] and phenotypic effects [4]. It has been
estimated that two genomes can differ approximately
about 0.4 % due to CNVs [7] and that these variations
have a considerable impact on human health. Several
known chromosome imbalances causing complex gen-
omic disorders have been characterized by different
medical conditions such as developmental [8, 9], neuro-
psychiatric [10-12], cancer [13], autoimmune diseases
[14] and idiopathic learning disability [15]. However,
recent genome wide association studies suggest that the
lack of data for individual’s medical records is an import-
ant limitation to fully understand the genetic basis for
many genomic disorders [16, 17]. Initiatives such as the
Personal Genomes Project (PGP) [18], Genomics England
(http://www.genomicsengland.co.uk/) and the Precision
Medicine program [19] aim to provide descriptive records
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and associated genomic data accessible for research.
These datasets, however, are still unavailable or pose
different challenges when looking into genetic associ-
ation studies: e.g., lack of sizable data (e.g., PGP) or
too restrictive access (e.g., Genomics England). These
shortcomings may encourage genetic association stud-
ies to oversimplify complex phenotypic profiles of in-
dividuals, focusing on the most representative clinical
features [20]. This makes it more difficult to
characterize pathophysiological associations between
clinical features observed in studied individuals [20].
New systematic and standardized methods are thus
required that make use of limited accessible clinical
genotype and phenotype profiling datasets to enhance
our understanding of the genetic impact of CNVs on
human health [21]. The present work uses individual
clinical and genetic information stored in the DE-
CIPHER Database [21], a database of sub-microscopic
chromosome abnormalities (deletions and duplica-
tions) observed in clinic with a potential pathogenic
association. Data currently stored by DECIPHER add
up to more than 45,000 patients (march 2015), of
which more than 10,000 have given consent to share
their medical data [22] under an ethically regulated
data access protocol. We focus our study on a subset
of these data of 9,186 unbalanced CNVs from 6,564
patients that included a heterogeneous set of patho-
phenotypes, including developmental delay, intellec-
tual disability and congenital malformations. Network
analyses has been used in previous studies to
characterize affected pathways by CVNs in cancer
[23]. Here we applied network medicine approaches,
phenotypic enrichment analyses and genetic associ-
ation studies to build patient networks to explore the
similarities between reported genetic microvariations
(CNVs) and pathological phenotypes. We represented
patients as nodes connected with edges to other pa-
tients whose CNVs overlap. Our resulting networks
allowed the systematic identification of genetically re-
lated clusters of patients by finding cliques [24, 25].
A phenotypic enrichment analysis of patient clusters
was performed to identify overrepresented phenotypes
for each cluster. We named Phenotypically Enriched
Locus (PEL) an affected genomic location showing
significant associations with phenotypes. Significant
genotype-phenotype associations were retrieved through
the comparison of patients (cases) and healthy (controls)
datasets, using a case—control association analysis.
The combined use of these methods allowed us to
build a high-resolution genotype-phenotype map
that identifies a) already known, b) potentially
novel genomic disorders and c) the additive pheno-
typic effects found in some proximal structural
variations.
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Methods

Case and control datasets

Cases

Rare CNVs (frequency of <1 %) from patients with low
prevalent genomic disorders were downloaded from DE-
CIPHER database (08/05/2014; http://decipher.sanger.a-
c.uk/) through its Data Access Agreement. This dataset
contains genotype-phenotype annotations of consented
DECIPHER patients, including chromosome locations,
type of structural variant (gain or loss), mode of inherit-
ance (de novo, inherited from unaffected parent, inher-
ited from affected parent and unknown) and clinical
phenotypes observed by expert physicians. When avail-
able, patients in DECIPHER are assigned phenotypes
from the Human Phenotype Ontology (HPO), a standard
controlled vocabulary of pathological terms [26]. Pa-
tients not annotated with HPO phenotypes were re-
moved from our study. To reduce heterogeneity among
collected patient data from DECIPHER, we only selected
CNVs originated from array CGH technology, which
corresponds to the majority of the database’s genotypic
data. A final dataset of 6,564 patients with 9,186 CNVs
presenting 1,860 non-redundant HPO terms was chosen
for this study (Additional file 1: Table S1). Access to DE-
CIPHER genomic coordinates of chromosomal microde-
letions, microduplications and associated phenotypes
were obtained through a Data Access Agreement. All
data shared by the DECIPHER database have signed a
consent form obtained by the submitting clinician.
Those who carried out the original analysis and collec-
tion of the data bear no responsibility for the further
analysis or interpretation of it by the Recipient or its
Registered Users.

Controls

CNVs from healthy individuals were retrieved from the
Database of Genomic Variants (DGV, http://dgv.tcag.ca/)
[27], which provides a curated collection of human
structural variations in control data from multiples stud-
ies. DGV offers information about CNVs of individual
samples such as chromosome locations, type of struc-
tural variation (gain or loss) and reference (PubMed
ID) of the study and the platform used in the analysis.
The control structural variants dataset ("GRCh37_hgl9_var-
iants_2014-10-16.txt") was downloaded from DGYV. This
dataset combines CNV data from diverse studies. Using
DGV as the control dataset has the caveat that it does not
distinguish unrelated from related samples (i.e., the same
patient CNV retrieved from different studies). Although
in practice this overrepresentation of the same patient
may seldom happen, it may still overestimate the number
of so-called independent CNVs, affecting our final results.
This overestimation of the frequency of CNVs in controls
drove us to make a stricter assessment of the statistical
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significance of our predicted pathogenic CNVs. The types
of effects this inflation of non-pathogenic CNVs may
cause include an increase of the number of false negatives
(i.e. true pathogenic CNVs that overlap with an over-
estimated number of control CNVs) and a reduction of
the number of false positives (i.e. false pathogenic CNVs
overlapping with an over-estimated number of control
CNVs). Therefore, we have considered CNVs from DGV
only as a quantitative control for preventing misclassifica-
tions of CNVs as pathogenic.

Building the genotype-based patient network

We designed a workflow to systematically identify all the
existing genotype-phenotype associations in the case
dataset (Fig. 1). First, the overlap between patient CNVs
belonging to the same class (either gains or loses) was
computed using the GRCh37/hgl9 reference genome.
For the purposes of this study, we assumed that two
patient CNVs overlap if at least they share one common
base pair. The resulting genetic relationships were used
to build the network, where nodes are patients and
edges represent the overlap between patient CNVs

(Fig. 1).

Clustering of patients using cliques

Finding all the k-cliques associated with each patient pro-
vides all complete graphs from the resulting genotype-
based patient network. These cliques correspond to sets
of variable numbers of nodes where all are connected to
all by edges [24]. To find all the cliques associated with
each node from the patient network, we used the algo-
rithm of the function “cliques_containing_node” available
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in the Python package named NetworkX. The minimum
size of cliques was limited to three patients (k nodes > 3)
but no limitation was applied to maximum size clique de-
tection. We then merged into one clique all those contain-
ing identical sets of patients with the aim of getting a
unique list of cliques resulting from the patient network.
This list of unique cliques is of high interest for our ap-
proach because it allows the systematic identification of
the whole set of patients sharing similar genotypes by
mining directly the clusters of the network. Taking into
account that CNV lengths can be very variable across the
case population, a large patient CNV can overlap with
other patient CNVs at different genomic regions. These
complex interactions in the patient network imply that
some cliques might not necessarily represent a cluster of
patients where all their CNV overlap. Thus, we selected
only those cliques that were fully represented by patients
with mutations on the same genomic region. The resulting
cliques were used as the list of clusters of patients to be
used for downstream analyses, i.e., phenotype enrichment
analysis.

Phenotype enrichment analysis

The Human Phenotype Ontology (HPO) was used as a
relational graph to identify common phenotypes among
all the clique patients. The hierarchical organization of
HPO terms (phenotypes) by parent—child relationships
allows the detection of phenotype enrichments when
their annotations co-occur at the same ontological level.
We used this relational graph to detect the common
phenotypes in a given cluster —or clique— of patients. To
systematically assess the phenotype significance in each
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clique, we used a hypergeometric test and adjusted the
P-values using Bonferroni. This test compares the fre-
quency of every HPO term in each clique (number of
observed cases in the sample) against their frequency in
the whole dataset of annotated patients (observed cases
in the population). To carry out this test, we used the
number of individuals per clique as the sample size, the
number of patients in the samples presenting a pheno-
type as the observed cases, and the total number of pa-
tients in DECIPHER database presenting the phenotype
as the population size. We selected clique-phenotype en-
richment associations by applying three different thresh-
olds: 1) P<0.05 from hypergeometric test, 2) counting
at least three patients annotated with the enriched
phenotype, and 3) if at least 50 % of the patients in the
clique are annotated with the enriched phenotype. Once
this selection process ended, we found that many of these
cliques were enriched with HPO terms that are closely
related in the ontology (ie. parent—child relationship),
producing some redundancy that does not add informa-
tion. In those cases, redundancies were removed by select-
ing the most significant (lowest P-values) HPO terms as
the representative ones.

Characterizing phenotypically enriched loci (PELs)

We defined a phenotypically Enriched Locus (PEL) as
the minimal common intersection among all the CNVs
of patients in every clique that is significantly enriched
with phenotypes (Fig. 1). We studied PELs’ incidence in
patients (cases) by comparing them to a healthy popula-
tion (control). Their statistical significance was assessed
using a Fisher's exact test from a contingency table. This
table consisted of a) the number of patients in a PEL
associated with an enriched phenotype versus the total
number of observed cases with that particular pheno-
type, and b) the number of healthy individuals —or sam-
ples from DGV dataset— with structural variants
overlapping to this PEL versus the rest of observed con-
trols (i.e., healthy population). We checked overlaps be-
tween PELs and individual control CNVs that
overlapped at least 1 bp. After applying the Fisher's
exact test, the P-values were adjusted using Benjamini
& Hochberg and only those PEL sites with P <0.05
were considered. This procedure allowed us to calculate
the statistical significance of associations between
enriched phenotypes (HPO-term) and a PEL compared
to frequency of CNVs from the healthy population on
the same locus. Finally, the penetrance of enriched phe-
notypes for each locus was calculated as the proportion
of individuals showing the enriched phenotype —cases-
over the healthy population —control-, by using a simi-
lar approach to the one recently published by Cooper
et al. [8, 28].
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Randomization analysis on case and control datasets

Five randomization analyses were designed to test differ-
ent null hypotheses: (i) Arbitrarily selected CNVs from
the control dataset without replacement and it was used
to test if the frequency of detected PELs is lower than
from a case population (DECIPHER) when using CNVs
from a healthy population (DGV). This randomization
analysis was named “random patient CNVs from DGV”.
(i) The second type of randomized case dataset was
generated from arbitrary genomic regions while keeping
the CNV length distribution and chromosome frequen-
cies from the case dataset and it was named “random
patient CNV location”. This randomized dataset was
used to test if the frequency of detected PELs is lower
when individual case CNVs are randomly distributed
across the genome compared to real patient CNVs from
DECIPHER. (iii) A similar approach as mentioned above
was used to generate the third type of randomized data-
set but using the control dataset (DGV) instead of the
case dataset. This randomization analysis, named
“random control CNV location”, was used to test if the
frequency of PELs is lower when individual control
CNVs are randomly distributed across the genome com-
pared to real CNVs from DGV. (iv) The fourth type of
randomization analysis was carried out by randomly
shuffling the patient-CN'Vs relations (named as “rewiring
patient-CNV”) to test if the frequency of PELs is lower
when using arbitrary phenotype-genotype relationships.
(v) Finally, randomized case datasets were built using ar-
bitrary phenotype descriptions of patients while keeping
the phenotype frequency, to ensure that the representa-
tiveness of phenotypes from the real data is preserved.
This randomization analysis was used to test that the
frequency of detected PELs is lower using arbitrary
phenotype descriptions for patients. We carried out one
thousand randomization experiments for each random-
ized dataset and counted the number of PELs as well as
the significances derived from the phenotypic enrichment
analysis (P-values < 0.05, hypergeometric test) and genetic
association study (P-values < 0.05, Fisher’s exact test).

Results and discussion

Phenotypic and genotypic features of patient population
The subset of 6,564 patients from the DECIPHER data-
base used in this study includes the CNVs and clinical
features (i.e., HPO phenotypic terms) observed by expert
physicians in these patients. Table 1 summarizes the data
analyzed for case (patients) and control (healthy popula-
tion) datasets. The distribution of different phenotypes
(HPO terms) associated with patients (Fig. 2a) showed
that almost half of patients were annotated with just one
HPO term, while the remaining cases showed more
complex phenotypic profiles with two or more associ-
ated terms. The distributions of de novo and inherited
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Table 1 Population dataset descriptions

All Cases Control
patients
Samples 10324 6564 5072°
Identified CNVs 14,226 9,186 495916
Type of CNVs:
Loss 7,554 5101 343489
Gain 6,672 4,085 152427
Average CNV length (Kb) 3,336 3,014 31
Type of inheritance:
De novo constitutive 14,501 2,454
Inherited from normal parent 9,345 1,945
Inherited from parent with similar 1,345 240
phenotype to child
Unknown 21,946 3,638

The table shows genotyped patients in DECIPHER database (All), the
genotyped and phenotyped patients from DECIPHER used in this work (Cases)
and the healthy individuals from the DGV repository (Control). The first column
indicates the distribution of data based on number of individuals, number and
type of CNVs and their type of inheritance. ® This is a pre-selection of CNVs from
DECIPHER that are potentially pathogenic. ® This number does not correspond to
individual samples
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patients were explored based on the complexity of their
phenotypic profiles (Fig. 2b). It is observed that the de novo
CNVs show a significant (P < 2.2E-16, Mann—Whitney U test)
bias toward more complex —or diverse— phenotype pro-
files than the inherited group (Fig. 2b). The distribution of
CNV lengths in patients is biased toward higher lengths
as compared with those of control CNVs, something that
should be expected if clinicians remove the non-
pathological CNVs (Fig. 2¢). Within the observed patient
dataset, those including de novo CNVs showed the highest
average length compared to the inherited set (Fig. 2d).
These results suggest a positive relationship between CNV
length and the complexity of annotated patient pheno-
types. This is not a surprising observation, since larger
CNVs affect more genes in the genome, producing an
additive effect to observed clinical features.

Analysis of phenotypically enriched loci (PELs)

We built a patient network, consisting of 6,324 nodes
(patients) connected by 89,526 interactions based on the
genetic overlapping between patient CNVs, and we cal-
culated some topological parameters (Table 2). The
resulting network showed low density, which means that
the portion of potential interactions is low compared to
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Table 2 Topological parameters and properties of patient

network

Network parameter Value
Nodes 6,304
Number of interactions 89,526
Clustering coefficients 0.801
Connected components 5
Network diameter 10
Shortest paths 39,482,458
Average shortest path length 3.706
Average degree 28403
Network density 0.005

the actual interactions in the network, and a high aver-
age clustering coefficient, which measures how nodes
(patients) tend to cluster together. In addition, we also
observed other properties such as a heterogeneous de-
gree distribution, a small average shortest path length,
and a high average clustering coefficient of network
nodes, available in Additional file 2: Figure S1. These
network properties suggest that the patient network
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appeared to show general features of most large real-
world networks in contrast to random networks.

From the patient network, we proceed to study PELs;
i.e,, significantly enriched genomic loci with phenotypes in
patient clusters. We designed network-based and enrich-
ment analyses to find genetically and phenotypically re-
lated clusters of patients (cliques; see Methods and Fig. 1).
In total, 1,042 locus-phenotype associations between 487
PELs and 195 enriched phenotypes (HPO terms) were
generated. We performed a genome-wide study of CNVs,
using as control a dataset of healthy population, to evalu-
ate the significance of genotype-phenotype associations in
PELs. A Fisher’s exact test (see Methods) related to previ-
ous works was applied [8]. However, our experiment de-
fined genetic associations to exploit patient network
relationships, evaluating each Jocus independently instead
of using sliding windows as previous works. In addition,
redundant and uninformative phenotypes were also
removed according to their parent—child relationships (see
Methods). Using this systematic approach, we reported 387
specific locus-phenotype associations between 336 PELs
and 115 different phenotypes (HPO terms; Additional file
3: Table S2). Almost 70 % (336 of 487) PELs were
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significantly more frequently mutated in patients compared
to healthy individuals (P<0.05, Fisher's exact test). We
denoted these as pathogenic PELs. Given the nature of col-
lecting pathogenic CN'Vs in DECIPHER, it is not surprising
that we obtained this high percentage (70 %) of potentially
pathogenic PELs.

To assess whether these Joci are potentially pathogenic
and that our results are not due to chance, we did several
randomization analyses with the aim of comparing real
and random results. Five different types of randomization
analyses were designed using randomized case and control
datasets to test if the frequency of detected PELs is lower
than real cases (Fig. 3a): (i) we generated random datasets
of mutations in patients from random sets of CNVs that
were selected from the control dataset (DGV), we used
random locations for (i) patient CNVs and (iii) control
CNVs by selecting random genomic regions while keeping
CNV length distributions and chromosome frequencies,
(iv) the rewiring of the patient-CNV relations, and, finally,
(v) the rewiring of phenotype descriptions of patients con-
serving the phenotype frequencies (see Methods).

We found that the number of PELs identified by
using the real data (336) was substantially higher
compared to that resulted from the different
randomization experiments (Fig. 3a). In addition, the
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derived from the genetic association study are also
higher in real than in randomized datasets (Fig. 3b).
The small differences with respect the control dataset
with random CNV locations suggest that there is a
portion of CNVs in the control population (DGV)
that are randomly distributed across the genome,
something that might be expected in natural genetics
populations (Fig. 3b). Overall these results reveal the
existence of a fraction of PELs in DECIPHER that are
consistently pathogenic, where both the number of
resulting PELs and the median significance of Fisher’s
exact test are higher when using real data compared
to random datasets (Fig. 3a and b, respectively).

We then studied which annotations from diverse
biomedical ontologies are associated with these loci
using GREAT [29]. It was found that these regions
are significantly enriched for human phenotypes
(Fig. 3c), reinforcing the probable clinical implication
of mutations affecting these genomic regions. In
addition, we also found that these PELs are enriched
for cis-regulatory domains involved in biosynthetic
processes, regulatory elements and embryonic mor-
phogenesis (Fig. 3d). The experimental and functional
characterization of these genomic regions might im-
prove our current understanding of the molecular

significances  (P-values <0.05, Fisher’s exact test) basis of these genomic disorders.
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(patients), the colors represent the frequency of the observations. e Relationship between the PEL length and their number of overlapped controls
(DGV), the colors represent the frequency of the observations
J
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Pathogenicity of PELs

With the aim to validate the resulting phenotype-
genotype associations, we searched how many patho-
genic PELs match with known genomic disorders in
ClinVar [30]. For this we selected 2,243 pathogenic or
likely pathogenic CNVs associated with any OMIM
phenotype and other 75 genomic regions described as
DECIPHER syndromes. We then studied if our method
retrieves genomic syndromes from ClinVar or DE-
CIPHER. First, we looked for those PELs overlapping
known syndrome from both databases (Additional file 4:
Table S3 and Additional file 5: Table S4 for ClinVar and
DECIPHER respectively) and having the same type of
mutation as the described for syndromes (i.e. deletions
or duplications). The number of syndromes was deter-
mined and real results were compared versus random
results (Fig. 4a and b, for ClinVar and DECIPHER re-
spectively). From the real datasets, we counted a total of
93 and 15 syndromes overlapping PELs from ClinVar
and DECIPHER respectively. These numbers are higher

than the ones obtained from the randomization
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experiments (Fig. 4a and B), with the exception of those
using control CNVs with random locations across the
genome. The distributions of the randomizations were
similar in ClinVar and DECIPHER but with considerable
differences in the number of syndromes (Fig. 4a and b).
Although a higher number of known syndromes could
be expected, it should be taken into account that DE-
CIPHER includes several cohorts of patients with rare
genomic disorders that have not been well characterized.
This means that some cohorts of patients that have been
already diagnosed for well-characterized syndromes have
probably not been sent to the DECIPHER database. To
study how the length of PELs could be affecting our ap-
proach, we compared their length distributions across
the different subset of PELs (Fig. 4c). The average length
of PELs overlapping known syndromes is slightly shorter
than those classified as potential novel syndromes, and
the length of raw CNV from DECIPHER are consider-
ably longer (Fig. 4c). Subsequently, we compared the
length of PELs and the number of patient CNVs and
control CNVs overlapping these PELs (Fig. 4d and e, for

a Patient-Patient Network (common genotypes)

Fig. 5 Genetic and phenotypic relationships between patients. a Network of the patients associated with the 336 pathogenic PELs. It includes 830
patients (nodes) and 9606 pairwise relationships supported by genotype-phenotype associations (edges). Grey nodes indicate that patient PELs are
associated with at least one known syndrome and red nodes indicate that patient PELs do not overlap with any known genomic syndrome. b
Examples of known and novel PELs. Patients of PEL 52 that coincide with deletions associated with pulmonic stenosis (MIM 265500). PEL 1 and 2 are
patients showing coincidences with the 1314 deletion syndrome in which the most representative clinical feature is retinoblastoma (MIM 180200).
PEL 52 is not associated with any known syndrome and it has patients showing split hand (HP:0001171) and duplications in 17p13.3

PATIENTS.

PEL 22

PATIENTS

Chromosome 13

PATIENTS

2
PEL 52 s o
"
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patients and controls, respectively). We observed that
the frequency of patients overlapping a PEL is independ-
ent to their length (Fig. 4a). This effect could be also ex-
plained by the specific cohorts of patient CNVs that are
collected in DECIPHER. However, it is observable that
the frequency of controls that overlap PELs, despite be-
ing very low, increases with PEL length (Fig. 4b). This
observation agrees with the random distribution of
control CNVs across the genome. Overall, these results
evidence that our approach is robust at finding pheno-
typically enriched /loci (PELs) from a heterogeneous
population of patients of different genomic disorders.
We also built a patient network from the genotype
and phenotype data of individuals related to pathogenic
PELs, revealing clusters of patients that correspond to
cliques or sets of them. The resulting network represents
a map of the most relevant genotype-phenotype associa-
tions that we found in the DECIPHER dataset (Fig. 5a).
From ClinVar information, we identified patient CNVs
with or without an overlap to known genomic disorders
(grey and red nodes in Fig. 5a, respectively). A detailed
exploration of these clusters of patients revealed that 164
(~50 %) of the pathogenic PELs (see previous section)
overlapped pathogenic CNVs in ClinVar, indicating that
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PELs are potentially related to known genomic disorders
(Table 3 and Additional file 5: Table S4). For instance, in
Fig. 5b, the PEL associated with the 8p23.1 deletion coin-
cides with the same genomic location as the genetic vari-
ants related to pulmonic stenosis (MIM 265500) in
ClinVar. In this particular case, 15 out of 21 patients with
deletions in this Jocus (Fig. 5b and PEL 22 from Table 3)
were annotated with "Malformation of the heart and great
vessels" (HP:0002564, P-value of the enrichment 8.3E-10),
which is the primary cause of pulmonic stenosis. In
addition, there was no healthy individual from the control
dataset showing a deletion in this locus, suggesting a high
penetrance of this phenotype associated to this locus
(Table 3).

Another example is retinoblastoma (HP:0009919, P-
value of the enrichment 6.7E-16 and 3.7E-15 for PEL 1
and 2 respectively; Additional file 3: Table S2) where 6
out of the 7 cases from the patient dataset belong to the
same PEL, consisting on deletions in 13ql14.2
(chr13:48,544,437-50,206,474, see Fig. 5b). It has been
documented that structural variations in this locus are
associated with the 13q14 deletion syndrome in which
the most representative clinical feature is retinoblastoma
(MIM 180200) [31, 32]. However, deletions in this locus

Table 3 Phenotypically enriched locus overlapping with phenotypically similar known genomic syndromes

PELID Type*  Chr  Start Length (Kb)  Phenotype Cases/Carrier (DGV) ~ Pvalue® P®  MIM®

PEL240 d 1 243981716 12.547 Abnormality of the skull 13/18 (0) 450E-08 100 217990
PEL 193 d 1 243786018 126.15 Abnormality of the skull 14/19 (0) 1.30E-08 100 217990
PEL68 d 1 243981716 12547 Microcephaly 12/18 (0) 740E-11 100 217990
PEL 49 d 1 243786018 126.15 Microcephaly 13/19 (0) 9.20E-12 100 217990
PEL 25 d 1 243981716 12.547 Aplasia/Hypoplasia of the cerebrum 15/18 (0) 1.80E-12 100 217990
PEL 15 d 1 243786018 126.15 Aplasia/Hypoplasia of the cerebrum 16/19 (0) 3.80E-13 100 217990
PEL70 d 11 31802605 23.093 Aplasia/Hypoplasia affecting the eye 5/8 (0) 1.00E-08 100 106210
PEL317 d 14 55242483 200.932 Abnormality of the eye 6/6 (0) 1.80E-04 100 248000
PEL295 d 4 82082415 31.542 Growth abnormality 9/11 (0) 420E-06 100 601665
PEL 484 d 6 407031 170484 Abnormality of the ocular region 10/16 (1) 410E-06 302 145400
PEL 484 d 6 407031 170484 Abnormality of the ocular region 10/16 (1) 410E-06 302 187350
PEL 347 d 6 1612710 15.026 Abnormality of the ocular region 11/17 (0) 160E-07 100 145400
PEL 347 d 6 1612710 15.026 Abnormality of the ocular region 11/17 (0) 160E-07 100 187350
PEL 156 d 6 407031 170.484 Abnormality of globe location 9/16 (1) 790E-08 28 145400
PEL 100 d 6 2371534 63.584 Hypertelorism 8/13 (1) 280E-08 257 145400
PEL 88 d 6 1612710 357.639 Hypertelorism 9/16 (1) 3.00E-09 28 145400
PEL 58 d 6 1612710 22698 Hypertelorism 10/17 (0) 340E-11 100 145400
PEL 22 d 8 11610366 83.076 Malformation of the heart and great vessels ~ 15/21 (0) 1.00E-13 100 265500
PEL 6 d 8 11610366 83.076 Abnormality of the cardiovascular system 18/21 (0) 8.00E-15 100 265500
PEL 7 d 8 11610366 83.076 Abnormality of cardiac morphology 17/21 (0) 640E-15 100 265500
PEL 452 d X 102585912 9472 Abnormality of digit 6/8 (0) 350E-05 100 108110

" Duplication (D) and deletion (d). ® Adjusted P-values from the Fisher's Exact test of the case-control analysis. ® P is the penetrance, this table show only those
PELs with a penetrance higher than 25 %. The penetrance was calculated as described by Cooper et al. [8, 28]. < OMIM genomic disorders from ClinVar showing
phenotypes that were similar to those found in the respective PEL



Reyes-Palomares et al. BMIC Genomics (2016) 17:232

Table 4 The novel pathogenic phenotypically enriched locus
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PEL ID Type*  Chr  Start Length (Kb) Phenotype Cases/Carrier (DGV) P value® po
PEL 3 d 3 181296306 175.931 Anophthalmia 6/9 (0) 1.80E-15 100
PEL 5 d 7 95693340 89.973 Ectrodactyly 7/10 (0) 1.70E-14 100
PEL 4 d 3 181296306 175931 Abnormality of globe size 8/9 (0) 1.90E-14 100
PEL 4 d 3 181296306 175931 Aplasia/Hypoplasia affecting the eye 8/9 (0) 1.90E-13 100
PEL 71 d 2 200208169 38268 Abnormality of the palate 11/19 (0) 2.10E-11 100
PEL 31 d 3 181166306 576 Abnormality of globe size 6/9 (0) 4.10E-11 100
PEL 105 d 2 200208169 38.268 Abnormality of the oral cavity 12/19 (0) 2.50E-10 100
PEL 84 d 15 100019051 189.992 Growth delay 13/18 (0) 270E-10 100
PEL 31 d 3 181166306 576 Aplasia/Hypoplasia affecting the eye 6/9 (0) 270E-10 100
PEL 128 d 2 200208169 38268 Abnormality of the mouth 14/19 (0) 1.90E-09 100
PEL 131 d 15 100019051 189.992 Growth abnormality 14/18 (0) 6.40E-09 100
PEL 129 d 15 99057570 65.959 Growth delay 11/16 (0) 8.10E-09 100
PEL 69 d 11 31735689 39.768 Aplasia/Hypoplasia affecting the eye 5/8 (0) 1.00E-08 100
PEL 126 d 2 166091754 49616 Seizures 10/15 (0) 1.00E-08 100
PEL 175 d 7 112349829 160.71 Delayed speech and language development 12/18 (0) 1.00E-08 100
PEL 78 d 14 29904720 411.94 Aplasia/Hypoplasia of the cerebrum 10/12 (0) 1.50E-08 100
PEL 82 d 14 29904720 41194 Aplasia/Hypoplasia of the cerebrum 10/12 (0) 1.50E-08 100
PEL 141 d 7 114297499 533997 Delayed speech and language development 11/15 (0) 4.50E-08 100
PEL 166 d 2 166244769 311476 Seizures 9/14 (0) 6.00E-08 100
PEL 202 d 15 99057570 65.959 Growth abnormality 12/16 (0) 8.80E-08 100
PEL 152 d 14 29904720 41194 Microcephaly 8/12 (0) 1.60E-07 100
PEL 159 d 14 29904720 411.94 Microcephaly 8/12 (0) 1.60E-07 100
PEL216 d 2 200208169 38268 Abnormality of the palate 7/13 (0) 1.60E-07 100
PEL 385 d 2 200246437 0 Abnormality of the face 16/19 (0) 1.60E-07 100
PEL 137 d 6 76509712 35949 Joint laxity 5/9 (0) 1.60E-07 100
PEL390 d 7 112349829  160.71 Neurodevelopmental delay 13/18 (0) 1.60E-07 100
PEL412 d 13 92065689 29.285 Growth delay 9/17 (0) 2.00E-07 100
PEL 419 d 13 92065689 29.285 Growth delay 9/17 (0) 2.00E-07 100
PEL436 D 16 3831263 32469 Abnormality of the face 15/18 (0) 420E-07 100
PEL222 d 2 201936560  57.623 Abnormality of the mouth 10/13 (0) 4.80E-07 100
PEL 222 d 2 200208169 38.268 Abnormality of the mouth 10/13 (0) 4.80E-07 100
PEL 242 d 7 114297499 533.997 Neurodevelopmental delay 12/15 (0) 5.20E-07 100
PEL 114 d 13 48557360 146432 Abnormality of the globe 8/9 (0) 5.90E-07 100
PEL250 d 7 119973023  238.728 Delayed speech and language development ~ 9/13 (0) 8.80E-07 100
PEL 123 d 12 66224830 22517 Short stature 7/8 (0) 1.10E-06 100
PEL 184 d 1 28743173 21.263 Deeply set eye 4/7 (0) 1.90E-06 100
PEL 462 d 1 11270844 47.828 Abnormality of the skull 10/14 (0) 1.90E-06 100
PEL 417 d 2 201936560 57.623 Abnormality of the mouth 9/13 (0) 2.00E-06 100
PEL330 d 14 29781404 230359 Seizures 7/12 (0) 2.10E-06 100
PEL 227 d 9 77206264 34573 Seizures 7/10 (0) 2.10E-06 100
PEL 133 D 2 219965169  9.153 Cutaneous finger syndactyly 3/5(0) 2.30E-06 100
PEL 116 d 3 181296306 6.681 Abnormality of the ocular region 9/9 (0) 2.50E-06 100
PEL 173 D 2 59105866 181.965 Midface retrusion 3/5 (0) 4.00E-06 100
PEL120 D 2 59105866 181.965 Strabismus 5/5 (0) 440E-06 100
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Table 4 The novel pathogenic phenotypically enriched locus (Continued)

PEL 276 d 7 94174003 41.631 Decreased body weight 4/7 (0) 7.20E-06 100
PEL329 d 7 95693340 89.973 Abnormality of limb bone morphology 8/10 (0) 1.30E-05 100
PEL 304 d X 133530468 102.522 Global developmental delay 6/8 (0) 1.50E-05 100
PEL 388 d 10 28842276 86.821 Abnormality of the eyelid 6/8 (0) 1.70E-05 100
PEL 210 D 2 59105866 181.965 Feeding difficulties in infancy 4/5 (0) 1.70E-05 100
PEL 455 d 10 28842276 86.821 Abnormality of the palpebral fissures 5/8 (0) 2.00E-05 100
PEL 251 d 13 41726952 39.763 Abnormal eye morphology 6/7 (0) 2.00E-05 100
PEL470 d 10 28842276 86.821 Abnormality of the hair 5/8 (0) 2.20E-05 100
PEL 358 d 1 28743173 21.263 Abnormality of globe location 5/7 (0) 2.90E-05 100
PEL 460 d 3 181648378 93.928 Abnormality of the ocular region 7/9 (0) 3.60E-05 100
PEL338 d 5 170676605 370.857 Abnormality of the cardiac septa 4/6 (0) 3.90E-05 100
PEL133 D 2 219965169  9.153 Toe syndactyly 3/5 (0) 4.00E-05 100
PEL 454 d 1 177800358 362172 Short stature 5/7 (0) 4.40E-05 100
PEL369 d 14 57423809 185.438 Abnormality of the eye 7/8 (0) 4.50E-05 100
PEL 449 d 7 94174003 41.631 Abnormality of the foot 5/7 (0) 4.90E-05 100
PEL 294 d 1 157149743 12346 Abnormal hair quantity 3/4 (0) 5.70E-05 100
PEL213 d 1 157149743 12346 Abnormality of the lip 4/4 (0) 5.70E-05 100
PEL 327 d 19 10640379 140937 Abnormal genital system morphology 4/5 (0) 7.00E-05 100
PEL 448 d 14 58205713 144.654 Abnormality of the skull 7/8 (0) 8.00E-05 100
PEL203 d 13 33963658 138,576 Abnormality of the neck 3/3 (0) 8.20E-05 100
PEL 423 d 3 181692255 50.051 Abnormality of the face 9/9 (0) 1.10E-04 100
PEL 324 d 7 94953990 5573 Growth abnormality 6/6 (0) 2.20E-04 100
PEL 456 D 2 219965169 9.153 Abnormality of the lower limb 4/5(0) 5.20E-04 100
PEL 361 D 7 106664270 182398 Strabismus 3/3(0) 540E-04 100
PEL 404 D 7 107527586 136426 Abnormality of eye movement 3/3 (0) 8.20E-04 100
PEL 407 D 1 113036203 122933 Abnormality of the palate 3/3 (0) 1.00E-03 100

“Duplication (D) and deletion (d). * Adjusted P-values from the Fisher's Exact test of the case-control analysis. ® This table show only those PELs with a penetrance
higher than 100 %. The penetrance was calculated as described by Cooper et al. [8, 28]

are frequent in control population (286 samples,
Additional file 3: Table S2), suggesting a reduced pene-
trance for the retinoblastoma phenotype [33] where other
factors might be influencing this medical condition. These
results indicate that our method is able to identify and
prioritize structural variants that are strongly associated
with pathological phenotypes.

In addition, several clusters of patients associated with
pathogenic PELs that were found not to be apparently
associated with known genomic syndromes but signifi-
cantly enriched for highly specific clinical features such
as ectrodactyly, malformations in the heart, defects in
atrial septum, and anophthalmia (Table 4). More than
50 % (172 out of 336) of the pathogenic PELs do not
overlap with any known genomic disorder in ClinVar so
they can be candidates for novel syndromic loci. For
instance, we detected a cluster of patients showing a se-
vere medical condition that is known as split hand
(HP:0001171) with duplications in 17p13.3 (Fig. 5b). The
PEL associated with this cluster (PEL 52, P-value of 1.1E-

13 for Fisher's exact test in Additional file 3: Table S2)
shows a very high penetrance for this phenotype, but its
patients display a broad spectrum of specific clinical out-
comes that are associated with this medical condition.
The phenotype "abnormality of the hand" (HP:0001155)
was the most enriched HPO term (P-value of the enrich-
ment 2.7E-07 for PEL 52 in Additional file 3: Table S2)
associated with this PEL (Table 4). A priori this cluster of
genetically and phenotypically related patients could be
considered a novel genomic disorder. Indeed, after review-
ing the available clinical literature we found evidence of
syndromic presence in micro-duplications spanning this
locus, related to a previous familiar study with a similar
phenotype [34]. We distinguished seven broad domains of
phenotypic abnormalities through the examination of the
phenotypic relationships between patients from PELs
(Additional file 3: Table S2): abnormality of the ocular re-
gion, abnormality of the limb bone morphology, abnor-
mality of the skull, abnormality of the face, abnormality of
the cerebrum, abnormality of the cardiovascular system
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and growth delay. Our results show that this approach
provides a new tool for the characterization and the study
of phenotype-genotype relationships in a systematic
genome-wide manner. For instance, it is possible to
characterize the pleotropic effects of pathogenic CNVs or
to study mutations on different mutated genomic regions
that are related to similar phenotypes.

Additive phenotypic effects of pathogenic CNVs

We observed that the length of CNVs is correlated to
complex phenotypic profiles of DECIPHER patients, as
shown in Fig. 2a. This complexity is here defined as the
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number of distinct clinical features that have been ob-
served by a physician in a patient. Thus, it was explored
if the length of significant PELs is associated with com-
plex pathogenicity or adds more phenotypes according
to the number of different genomic regions that are af-
fected. To illustrate this effect, we analyzed the pheno-
typic relationships between significant PELs that are in
close genomic regions. For instance, deletions in
10925.13 (PEL 149) and 10q26.13 (PEL 239) are related
to different phenotypes such as abnormalities of the
cardiovascular system and the genitourinary system
respectively (Fig. 6a). Most cases with deletions in
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10g25.13 (5 of 7 cases) are associated with malforma-
tions of the heart and great vessels, denoting a very spe-
cific clinical feature. In addition, cases with deletions in
10q26.13 are related to defects in the genitourinary sys-
tem (PEL 239 in Fig. 6a). The patient B14 (Fig. 6a) shows
both phenotypes and has a deletion that overlaps both
genomic loci (PEL 149 and PEL 239, Fig. 6a). This ex-
ample illustrates an additive effect, accumulating specific
clinical features according to the extension of structural
variants with respect to the genome of reference. This effect
is also noticeable for more complex genetic relationships
among loci of patient CNVs associated with significant
PELs as those represented in Fig. 6b. In this case, three dif-
ferent clusters (cliques) of highly interconnected patients
were detected, indicating that some individuals are included
in more than one cluster or PEL. These different PELs were
found to be associated with abnormalities of the ocular re-
gion, aplasia/hypoplasia of the cerebrum and abnormalities
of the skull (PEL 254, 211 and 462, respectively, Fig. 6b).
All patients overlapping these regions from signifi-
cant PELs show the phenotype if they have the
structural variation, except for patient S15 who ap-
parently does not have signs of hypoplasia of the
cerebrum. Different PELs associated with the same
phenotype (HPO terms) were found located in con-
tiguous or even the same genomic region. In some
other cases, distinct PELs were essentially the same
clusters of patients except with variations in one or
two individuals (they should be considered one PEL).
Thus, despite the precise identification of genomic
coordinates of individual CNVs being a technological
limitation, the wide adoption of next generation se-
quencing methods by clinical studies may solve the
current shortcomings in the array-based CNV data
used for this analysis.

Conclusions

This work presents a combined analysis of network-
based approaches, phenotype enrichment and genetic
association studies for patient CNVs in the DECIPHER
database. A set of methods was developed to identify
clusters of patients that are genetically and phenotypic-
ally related. The newly developed methods used here
have potential usefulness for a wide range of applica-
tions, such as prediction of unknown syndromes,
characterization of candidate pathogenic structural vari-
ants and the identification likely associated phenotypes
with a specific locus. This procedure could be improved
using more specific clinical features of the patients, so
physicians should be encouraged to submit detailed
phenotype data. This work evidences the need for ad-
vancement in consolidated standards and public reposi-
tories for genomic and medical records in genomic and
personalized medicine.
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