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Abstract

Background: It has recently been shown that significant and accurate single nucleotide variants (SNVs) can be
reliably called from RNA-Seq data. These may provide another source of features for multivariate predictive modeling
of disease phenotype for the prioritization of candidate biomarkers. The continuous nature of SNV allele fraction
features allows the concurrent investigation of several genomic phenomena, including allele specific expression,
clonal expansion and/or deletion, and copy number variation.

Results: The proposed software pipeline and package, SNV Discriminant Analysis (SNV-DA), was applied on two
RNA-Seq datasets with varying sample sizes sequenced at different depths: a dataset containing primary tumors from
twenty patients with different disease outcomes in lung adenocarcinoma and a larger dataset of primary tumors
representing two major breast cancer subtypes, estrogen receptor positive and triple negative. Predictive models
were generated using the machine learning algorithm, sparse projections to latent structures discriminant analysis.
Training sets composed of RNA-Seq SNV features limited to genomic regions of origin (e.g. exonic or intronic) and/or
RNA-editing sites were shown to produce models with accurate predictive performances, were discriminant towards
true label groupings, and were able to produce SNV rankings significantly different from than univariate tests.
Furthermore, the utility of the proposed methodology is supported by its comparable performance to traditional
models as well as the enrichment of selected SNVs located in genes previously associated with cancer and genes
showing allele-specific expression. As proof of concept, we highlight the discovery of a previously unannotated
intergenic locus that is associated with epigenetic regulatory marks in cancer and whose significant allele-specific
expression is correlated with ER+ status; hereafter named ER+ associated hotspot (ERPAHS).

Conclusion: The use of models from RNA-Seq SNVs to identify and prioritize candidate molecular targets for
biomarker discovery is supported by the ability of the proposed method to produce significantly accurate predictive
models that are discriminant towards true label groupings. Importantly, the proposed methodology allows
investigation of mutations outside of exonic regions and identification of interesting expressed loci not included in
traditional gene annotations. An implementation of the proposed methodology is provided that allows the user to
specify SNV filtering criteria and cross-validation design during model creation and evaluation.
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Background
Defining the molecular basis for complex disease at high
resolution has become increasingly important for the dis-
covery of actionable drug targets and the improvement of
diagnosis and prognosis of cancer patients. To this end, a
widespread approach has been through differential gene
expression (DGE) analyses that utilize massively parallel
high-throughput RNA sequencing (RNA-Seq). RNA-Seq
provides a wealth of information beyond gene expres-
sion that can be used to characterize the transcriptome,
such as alternative splicing via changes in isoform pro-
portions. Notably, it has recently been shown that single
nucleotide variants (SNVs) in the genome can be accu-
rately and reliably called from RNA-Seq data as well [64].
This is significant as previously acquired RNA-Seq data
can now be analyzed to determine genotype and provide
more biological insight.
It is imperative that SNVs be studied as they molecu-

larly underpin complex disease and phenotype [17]. For
example, several SNVs, known to affect major regulatory
pathways, have been associated with chemotherapy resis-
tance and survival in lung cancer patients [39, 88]. In
addition to changes in protein structure and function due
to mutations in coding sequences of transcripts, SNVs
have a variety of functional effects on gene regulation and
expression. For example, variants lying in intronic regions
can have functional effects on expression by modulating
alternative splicing [82].
Furthermore, models created from co-occurring SNV

features have also been successful in predicting disease
phenotype, such as susceptibility to breast or lung cancer
[51, 52]. These models, however, rely on SNVs that have
already been found to be associated with the disease phe-
notype in question. Herein, we demonstrate that accurate
multivariate predictive models which identify and priori-
tize small subsets of candidate biomarkers can be created
from SNV features derived from RNA-Seq data and that
a priori knowledge of their phenotypic associations is not
necessary for their creation. In fact, because variants with
unknown clinical associations are included, novel variants
and/or genomic regions can be implicated as candidate
biomarkers.
Our proposed methodology seeks to train accurate pre-

dictive models on SNV allele fraction (AF) values using
sparse projections to latent structures discriminant analy-
sis (sPLS-DA). This approach allows the identification of
disease-associated SNVs located in coding regions as well
other expressed locations of the genome, such as from
intronic, intergenic, and 5’ UTR regions, which are often
under-represented in cancer biology literature. The con-
tinuous nature of SNV AF features from RNA-Seq data
also allows the exploration of several genomic phenom-
ena, mainly allele specific expression (ASE), where one
allele is preferentially expressed over the other. However,

it is important to note that the proposed methodology
does not discriminate these events from other sources
of allelic imbalance, such as from differential cell sur-
vival leading to clonal expansion or depletion and/or from
copy number amplification and deletion. In our view, this
inherent naïveté is a strength in that these events can be
analyzed concurrently in a whole genome fashion, pro-
viding a shotgun approach to biomarker discovery. The
identification of disease-associated SNVs can thus inform
and limit regions of interest when using more compre-
hensive approaches, such as differential expression, as
well as implicate novel unannotated regions that are often
ignored using traditional approaches. Furthermore, SNV
calling from RNA-Seq avoids using relatively more expen-
sive technology, such as whole-exome and whole-genome
sequencing (WES/WGS), and can be used to investi-
gate variations due to RNA-editing, which have been
shown to have prognostic value regarding outcomes in
cancer [63].
We demonstrate the effectiveness of the proposed

methodology and software pipeline, SNV Discriminant
Analysis (SNV-DA), on two datasets. The first of which
is relatively small dataset of non-small cell lung can-
cer (NSCLC) primary tumors from which we sought to
classify future recurrence. Lung cancer is the leading
cause of cancer-related deaths worldwide, with the sub-
type NSCLC compromising approximately 87 % of lung
cancer cases in the United States and causing an esti-
mated 500,000 deaths per year worldwide [26, 32]. Despite
advances in diagnosis and clinical treatments, NSCLC
continues to be the highest cause of cancer-related deaths
in major populations across the world [73]. Thus, it is
imperative that a better understanding of the molecular
events that drive indolent lung cancers into more aggres-
sive tumors be reached to guide future clinical patient
management.
The second dataset included in this analysis is com-

posed of 42 estrogen receptor positive (ER+) and 42 triple
negative (TR-) primary breast cancer tumors. Standard
targeted therapies for breast cancer rely on the presence
of either estrogen, progesterone, and/or Her2/neu recep-
tors in the primary tumor sample [8]. Those tumors that
lack these receptors, TR-, are thus resistant to standard
approaches and require a combination of chemothera-
peutic drugs for their treatment [60]. Compounding this
issue, these tumors usually show a more aggressive and
metastatic phenotype [28]. Therefore, it is necessary that
targets be found that drive triple negative breast cancer to
identify effective treatment of this subset of breast cancer.
We show that SNV-DA is able to createmultivariate pre-

dictive models that accurately predict disease phenotype
from variants called from RNA-Seq data and are signif-
icantly discriminant towards true sample groupings. We
also show that the proposed software pipeline is able to
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identify and prioritize disease-associative SNVs. Impor-
tantly, the utility of SNV-DA is supported by the result
that rankings produced by the methodology are signifi-
cantly different than rankings produced from univariate
tests and are enriched within genes with significant ASE.
Lastly, we present as proof of concept, the discovery of
a previously unknown highly mutated ER+ associated
hotspot (ERPAHS), which is associated with epigenetic
markers in cancer cell lines and whose expression is sig-
nificantly upregulated in ER+ primary tumors as well as
significantly correlated with identified SNV features.

Methods
First, SNVs are called from processed RNA-seq files using
Genome Analysis Toolkit (GATK) [58]. Calls are then
filtered by SNPiR tools [64] to remove SNVs that may
result from sequencing noise and/or alignment errors.
After data transformation, sPLS-DA models are trained
on SNVs limited by region of origin. Following the empir-
ical estimation of the optimal number of selected features
to be included in the model, performance is evaluating
using 10-fold cross-validation. Finally, top predictive SNV
features are characterized to determine their relevance to
the cancer phenotype in question.

Variant calling pipeline
The variant calling and filtering pipeline, SNPiR, has
been shown to obtain accurate SNVs with minimal
false-positives from RNA-Seq data [64]. For each sam-
ple, the pipeline consists of several steps: pre- and
post-processing, filtering, alignment, and variant call-
ing. Burrows-Wheelers Aligner (BWA) [48] is used with
default parameters to map reads as single-end sequences
to the human genome (hg19), which is concatenated with
exons with known splice junctions as per SNPiR protocol.
Samtools and Picardtools are used to remove duplicate
and unmapped reads, while GATK [58] is used for indel
realignment, base calibration and variant calling using the
reference SNP database, dbSNP (NCBI hg19 build 141).
SNPiR tools are then used to removemismatches from the
first 6 bp of aligned reads, as well as to remove variant calls
from repetitive regions, intronic sites within 4 bp of splice
junctions, homopolymer runs, and ambiguously mapped
reads determined by BLAT [42].
The resulting output is a BED file containing SNVs with

their genomic coordinates and allele fractions. RADAR
is first used to determine if SNVs are located at RNA-
editing sites [67]. The SNV annotation program, ANNO-
VAR (v2014jul14), is then used to annotate unique SNVs
using default parameters [79]. For each SNV, ANNO-
VAR provides information on the gene and region of
origin, which include exonic, intronic, 5’ or 3’ UTR, inter-
genic, up/downstream, and non-coding RNA (ncRNA).
ANNOVAR defines intergenic variants to those that are

at least 2 kb distal from a coding sequence, whereas the
ncRNA category contains variants that do not overlap
coding transcript annotations and is used by ANNOVAR
to encapsulate both annotated non-coding RNA, such as
known miRNA and lncRNA, as well as unannotated loci
in the genome. Lastly, Bedtools genomecov [66] is used to
determine loci with adequate read coverage using hg19 as
reference.

Data transformation and filtering
The total set of variants is transformed into a matrix
SNVM, where SNVMi,j is the allele fraction of the i-th
SNV in sample j. Allele fraction, or read-frequency, is
defined as the amount of reads supporting the vari-
ant allele over the total amount of reads covering that
nucleotide position. Read coverages are determined for
every SNVMi,j. Those SNVMi,j values that do not reach
the threshold read coverage (default 10) are given a non-
available (NA) value. Sub-models can then be generated
by limiting SNVs to those located in a region of interest,
such as exonic positions, and/or by requiring a minimum
number of non-zero features.

sPLS-DA and optimal number of features
Predictive models are created using sPLS-DA, which is
implemented in the mixOmics R package [13, 15]. PLS-
DA is a supervised, multivariate modeling technique used
to determine the variation within X, the SNV data, that
is correlated to Y, the class labels (e.g. disease-free versus
relapse). The sparse version of the technique, sPLS-DA,
seeks to identify the best K features that provides the best
discrimination between two classes, ignoring all other
features. sPLS-DA thus provides a framework for both
feature selection and classification.
Nested cross-validations are used to determine the

amount of features, K , utilized by sPLS-DA that result
in the best predictive performance. For every iteration
of 10-fold cross-validation, sub-cross-validations are per-
formed across a range of values for K. For each K , the
model is trained on 10-fold sub-training sets and evalu-
ated. The value of K with the best performance for each
iteration of the parent cross-validation is then stored. This
process is repeated 15 times to more accurately estimate
the distribution of optimal Ks from 150 values. The opti-
mal K is then determined as the rounded value of K that
corresponds to the maximum of the estimated kernel den-
sity of the distribution of selected K ’s, as represented in
Fig. 1.

Construction of gene expression models
To compare the performance of the proposed method-
ology with traditional gene expression classifiers, mod-
els were created using gene expression values as input.
For the NSCLC dataset, Bowtie (v1.2.18) [46] and RSEM
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Fig. 1 Selection of Optimal K. A kernel density is estimated from the distribution of Ks selected within the nested cross-validations during the
creation of each model. The value of K that corresponds to the max of the density is chosen as the optimal value of K . The example shown is the
distribution of Ks that maximized internal cross validations in the breast cancer exonic SNV model

(v1.2.18) [47] were used with default parameters to align
reads to the transcriptome and quantify reads, respec-
tively. For the breast cancer dataset, BWA (v0.7.12) [48]
and featureCounts (v1.4.6) [49] was used with default
parameters to align reads to the genome and quantify
reads, respectively. For both datasets, read counts were
normalized via DESeq2 (v1.10.0) [54]. Herein, adjusted
p-values reported by DESeq2 will simply be referred to as
p-values.Models were trained on subsequent gene expres-
sion matrices using the same parameters as those used in
the creation of SNV models. For each dataset, the distri-
bution of performance statistics are compared to that of
the corresponding SNVmodel to identify the similarity of
performance between the proposed methodology and the
traditional approach.

Evaluation
After the empirical estimation of the optimal value of
K , the model is then evaluated using fifteen 10-fold
cross-validations to determine performance via its predic-
tive accuracy, classification sensitivities, and area under
the receiver operating characteristic curve (AUC), which
seeks to quantify the relationship between true and false
positive rates. Though sPLS-DA is able to train amodel on
features that includeNA values, missing data in the test set
is not compatible with the resulting model. Therefore, NA
values are replaced with the mean of the means of the cen-
tered and standardized AF values for each feature within
each group in the training set. For example, the mean of
the normalized AF values for feature X in group A is aver-
aged together with the mean of normalized AF values for
feature X in group B disregarding samples from the test
set. This value is then used as a proxy for the missing data
in the test set.
To determine if the proposed methodology is discrim-

inant towards the true grouping of disease phenotype,
permutation tests are repeated 1000 times to construct the
null distribution of model performance (i.e., no relation to

phenotype) for each model. The true model performance
is then compared to this null distribution to determine
significance, with a significantly discriminant model out-
performing the majority of permutation test models.
Otherwise, it could be said that model performance is
independent of the true grouping and is, thus, insignif-
icant. For each test, one iteration of a 10-fold cross-
validation is used to train and test models with randomly
permuted sample group labels using the optimal K that
was used in the true model. The number of models with
AUC greater than or equal to the true model AUC is
divided by the number of tests to determine permutation
test p-values.
Lastly, to obtain the final set of putative SNV features,

the model is trained using all samples and the optimal
value of K . The selected features are then ranked by the
absolute values of their predictive coefficients (or load-
ings) as determined by sPLS-DA. In order to assay the
utility of the proposedmethodology, a Friedman rank sum
test is used to compare the rankings of selected features
to those of traditional approaches — the univariate non-
parametric tests, Fisher’s exact and Wilcoxon rank sum.
The Fisher’s exact test is implemented by the produc-

tion of a 2×4 table for each SNV locus, where each value
corresponds to the number of samples in each group
with detectable levels of each allele in (A, C, G, T), while
disregarding samples with sub-threshold read coverage
(<10) at that locus. As the presence of an allele is binary
in this case, the test only takes into account the differ-
ential abundance of the alleles across groups. Whereas,
Wilcoxon rank sum test p-values are produced by com-
paring the distributions of continuous allele fractions and
do not directly include information on their differential
abundance across samples.
To determine if the proposedmethodology selects SNVs

that lie in genes that have significant allele-specific expres-
sion, selected SNVs were analyzed using MBASED: a
method that combines evidence across multiple SNVs
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to identify gene-level ASE [56]. Though the method
was designed for the integration of expression data with
exonic SNV calls from WES and/or WGS, we applied
the methodology on SNVs selected during the creation of
our SNV genic models: exonic, intronic, and 3’UTR. To
determine if genes from which selected SNVs are located
are enriched for ASE, we compared the number of sig-
nificant ASE gene/sample pairs to those found in equally
sized random subsets of genes from which the total set of
SNVs were called. One thousand subsets were evaluated
to determine the null distribution from which enrichment
p-values can be computed.
Finally, the top 15 features selected by SNV-DA are

characterized by their relevance to cancer phenotype and
are analyzed via hierarchical clustering to visualize the
co-occurrence of features.

Case studies
Disease outcome in non-small cell lung cancer
NSCLC is the leading cause of cancer-related mortality
in the US. Adenocarcinoma, the most frequent histolog-
ical subtype, accounts for 40 % of such deaths [74]. RNA
samples were collected from 21 different lung adenocar-
cinoma tumors with known clinical outcomes obtained
from the American College of Surgery Oncology Group
(ACOSOG). Since the RNA specimens were received
from ACOSOG with no personal identifying informa-
tion, the local IRB has considered the proposed project
“not human subject research” after reviewing the protocol
(IRB Pro00013739). Ten of the RNA samples were derived
from patients who developed cancer recurrence within
three years of their initial surgical resection (Relapse; R).
The remaining eleven patients had remained disease free
(DF) after three years. Using these samples, we sought
to determine the ability of the proposed methodology to
identify and prioritize candidate biomarkers that may help
predict relapse phenotype in NSCLC.
RNA integrity was verified on an Agilent 2200 Bioana-

lyzer (Agilent Technologies, Palo Alto, CA). One hundred
to two hundred ng of total RNA was used to prepare
RNA-Seq libraries using the TruSeq RNA Sample Prep
Kit following the protocol as described by the manu-
facturer (Illumina, San Diego, CA). Three samples per
lane were clustered on a cBot as described by the man-
ufacturer (Illumina, San Diego, CA). Clustered RNA-Seq
libraries were paired-end sequenced with 2×100 cycles
on a HiScanSQ. Demultiplexing was performed utilizing
CASAVA to generate the Fastq files. Each sample pro-
duced approximately 25 million reads after sequencing.
One sample from the relapse group was removed from
subsequent analysis after being identified in our previous
study as an outlier based on principle component analyses
of expression and alternative splicing [2]. The removal of
this sample is additionally supported by the iLOO outlier

detection algorithm [27]. Using normalized counts from
DESeq2[54] of all relapse samples, the algorithm iden-
tified 567 outlying gene features in the suspect sample
− 5.74 standard deviations greater than the distribution
of the number of outlying features in the other samples
(mean = 143.44, standard deviation = 73.82).

Hormone receptor status in breast cancer
To further validate our model, we obtained a dataset
from the publicly available SRA database (SRP042620),
which was provided by Varley et al., 2014 [78]. In their
publication, the authors sought to identify read-through
transcripts that are significantly correlated with breast
cancer and/or hormone receptor status. RNA-Seq was
obtained from 42 ER+ and 42 TR- primary tumors using
poly-A capture and Tn-RNA-Seq for library construction.
Libraries were sequenced on the Illumina HiSeq 2000
using 50 bp paired-end reads, which produced 50 million
reads on average. Instead of trying to predict some future
outcome of the patients from which these tumors were
sampled, we sought to identify SNV features that co-occur
with hormone receptor status. Selected SNVs may thus
provide insight intomolecularmechanisms differentiating
these two subgroups of breast cancer.

Results and discussion
Called SNVs
After variant calling and SNPiR post-processing, 96,025
and 213,020 unique variants with read coverages >= 10
were found in the NSCLC and breast cancer datasets,
respectively. SNV matrices were created by limiting SNVs
to those that had at least 3 non-zero values across sam-
ples in the NSCLC dataset and 6 non-zero values in the
breast cancer dataset. Tables 1 and 2 show the distribu-
tions of SNVs for each dataset based on region of origin as
determined by RefSeq annotations.

Table 1 Lung: Distribution of SNVs by Region

Region Total set Filtered set

3’ UTR 27,626 12,570

exonic 25,788 10,870

intronic 21,706 4,847

nonsynonymous exonic 11,804 4,334

intergenic 12,867 2,460

ncRNA 4,062 1,285

5’ UTR 2,519 928

up/downstream 1,669 448

RNA-editing 1,627 430

All SNVs 96,025 33,467

The distribution of called SNVs by region of origin in the NSCLC dataset. A filtered
set is created by only including SNVs that have at least three samples with non-zero
allele fractions
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Table 2 Breast: Distribution of SNVs by Region

Region Total set Filtered set

intronic 93,860 12,378

3’ UTR 33,800 9,034

exonic 31,235 6,195

nonsynonymous exonic 12,598 2,484

intergenic 26,764 2,341

ncRNA 10,767 1,767

up/downstream 3,189 491

5’ UTR 2,148 419

RNA-editing 1,902 215

All SNVs 213,020 31,788

The distribution of called SNVs by region of origin in the breast cancer dataset. A
filtered set is created by only including SNVs that have at least six samples with
non-zero allele fractions

Model performance
sPLS-DA was used to create models using different sub-
sets of SNVs based on type (as shown in Tables 1 and 2)
over different ranges of K . For the NSCLC dataset, the
classification target was patient relapse within a 3 year
period, labeled as Relapse, R, or Disease Free, DF. For the
breast cancer dataset, the model sought to classify each
sample as being from either the cancer subtype estro-
gen receptor positive, ER+, or hormone receptor triple
negative, TR-.

Disease outcome in non-small cell lung cancer
Table 3 contains measures of performance for models
trained on different subsets of SNVs in the NSCLC
dataset. What is immediately apparent is that the non-
synonymous exonic model had the best performance by

a large margin. The model performed better than chance
as seen by its AUC and predictive accuracy. Furthermore,
permutation tests reveal that the performance of
the model is dependent on the true label groupings
(p = 0.016), thereby, suggesting that selected SNVs reflect
a true biological phenomenon. With the addition of syn-
onymous variants in the model, however, performance
reflects that of a failed model. Interestingly, the distribu-
tion of AUCs from the nonsynonymous exonic model was
significantly better than the distribution of AUCs from
the gene expression model (Student’s t-test, p < 0.001).
Though some of the other models have AUC values that
seem to be better than chance, their performances are not
significant based on permutation test values.

Hormone receptor status in breast cancer
Table 4 contains measures of performance for mod-
els trained on different subsets of SNVs in the larger
breast cancer dataset. Strikingly, all models tested have
high AUC distributions and high predictive accuracies. In
contrast to the NSCLC dataset, the addition of synony-
mous SNVs in the exonic model produced significantly
better performance (Student’s t-test, p < 0.001), while
selecting roughly half as many features. The distributions
of AUC values from the intergenic and all-SNVs models
were significantly higher than from all other models (Stu-
dent’s t-test, ps < 0.001) - being able to accurately predict
TR- samples 96 and 97 % of the time. Interestingly, models
with relatively small amounts of starting features (5’ UTR,
up/downstream models, and RNA-editing) were also able
to produce accurate results. Most importantly, the bio-
logical significance of these models is supported by the
result that all had permutation test p-values < 0.001. Of
note, the model trained on gene expression features had

Table 3 NSCLC model performances

Model Tested Range of K, Every
Nth

Opt. K AUC [95 % CI] P-value Pred. Accuracy DF Sens. R Sens.

nonsynonymous
exonic

10–1000, 40 841 0.874 [0.845–0.903] 0.016 0.803 0.836 0.763

3’ UTR 10–1000, 40 46 0.720 [0.650–0.789] >0.10 0.626 0.626 0.626

up/downstream 10–400, 15 138 0.708 [0.690 – 0.725] >0.10 0.653 0.690 0.615

all-SNVs 10–1000, 40 139 0.643 [0.615–0.671] >0.10 0.587 0.679 0.474

intronic 10–1000, 40 59 0.634 [0.599–0.669] >0.10 0.607 0.558 0.667

RNA-editing 10–400, 10 36 0.615 [0.577 – 0.653] >0.10 0.573 0.503 0.659

exonic 10-1000, 40 54 0.580 [0.552–0.609] >0.10 0.450 0.612 0.252

intergenic 10–1000, 40 60 0.561 [0.519–0.602] >0.10 0.487 0.642 0.296

ncRNA 10–1000, 40 36 0.556 [0.520–0.591] >0.10 0.547 0.721 0.333

5’ UTR 10–750, 30 16 0.242 [0.215–0.268] >0.10 0.290 0.394 0.163

gene expression 10–1000, 40 592 0.824 [0.803–0.845] 0.068 0.740 0.764 0.711

The range of K tested, the optimal value of K, AUC and 95 % confidence interval, p value from 1000 iteration permutation tests, predictive accuracy, and classification
sensitivities of the top-performing models by genomic region



Paul et al. BMC Genomics  (2016) 17:263 Page 7 of 19

Table 4 Breast model performances

Model Tested Range of K, Every
Nth

Opt. K AUC [95 % CI] P-value Pred. Accuracy ER+ Sens. TR- Sens.

intergenic 10–1000, 40 771 0.975 [0.972–0.977] <0.001 0.939 0.922 0.956

all-SNVs 10–1000, 40 163 0.972 [0.969–0.975] <0.001 0.941 0.936 0.968

up/downstream 10–400, 15 386 0.960 [0.959–0.962] <0.001 0.915 0.910 0.920

exonic 10–1000, 40 50 0.958 [0.952–0.964] <0.001 0.912 0.906 0.917

3’ UTR 10–1000, 40 129 0.939 [0.936–0.942] <0.001 0.884 0.914 0.854

ncRNA 10–1000, 40 911 0.939 [0.936–0.942] <0.001 0.843 0.917 0.768

5’ UTR 10–400, 15 370 0.939 [0.931–0.946] <0.001 0.837 0.873 0.801

intronic 10–1000, 40 315 0.935 [0.933–0.937] <0.001 0.879 0.829 0.930

nonsynonymous
exonic

10–1000, 40 92 0.920 [0.915–0.926] <0.001 0.869 0.857 0.881

RNA-editing 10–200, 5 12 0.878 [0.873–0.883] <0.001 0.820 0.747 0.894

gene expression 10–1000, 40 472 0.985 [0.983–0.987] <0.001 0.963 0.976 0.951

The range of K tested, the optimal value of K, AUC and 95 % confidence interval, p value from 1000 iteration permutation tests, predictive accuracy, and classification
sensitivities of the top-performing models by genomic region

significantly better performance than all models trained
on SNV features (Student’s t-test, p < 0.001), however,
the all-SNVs model surpassed the gene expression model
when classifying TR- samples (Student’s t-test, p = 0.018),
which in this dataset can be considered the experimen-
tal group. Furthermore, only one of the top 15 features
selected by the gene expression model corresponds to a
gene where from a top predictive SNV feature is found:
ZNF552.

Predictive SNV features: disease outcome in non-small cell
lung cancer
The rankings of selected nonsynonymous features in the
NSCLC dataset were significantly different than uni-
variate rankings from Fisher’s exact and Wilcoxon rank
sum tests as determined by Friedman rank sum tests
(ps < 10−16). Figure 2 visualizes allele fraction distri-
butions of the top 15 predictive SNVs identified during

the creation of nonsynonymous exonic SNV model. SNVs
chosen are more abundant in one of the groups and/or
have higher AF values. Both classes were equally repre-
sentative in the top selected SNV features (7 DF vs 8 R).
Figure 3 contains a heatmap produced during hierarchi-
cal clustering analysis of the top 15 selected features.
Not surprisingly, SNV-DA was able to prioritize features
that segregate the two groups. The heatmap also visual-
izes co-occurring features, one example being the three
SNV features lying in TACC3, which form their own
cluster.
Additional file 1 contains the list of nonsynonymous

exonic SNVs selected in this dataset as well as their respec-
tive model loadings. Limiting analysis to genes where
selected SNVS are located, 19.49 % of gene/sample pairs
showed significant ASE - an enrichment compared to that
of the null distribution (p < 0.001, 2.64X greater than the
mean of the null distribution).

Fig. 2 NSCLC Exonic SNVs Alelle Fractions. Box plots of allele fraction distributions of the top 15 predictive SNVs identified during the creation of the
nonsynonymous exonic SNVmodel in the NSCLC dataset. Only allele fractions>0 are plotted, though zero values contribute to box plot distributions
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Fig. 3 Hierarchical Clustering of NSCLC Exonic SNVs A heatmap demonstrating the distinct clustering of sample groups and the co-occurrence of
top nonsynonymous exonic SNV features in the NSCLC dataset. NA values are filled in with black

Table 5 contains annotations of the top 15 selected fea-
tures. With 11 of the top 15 features being from genes
that have previous associations with cancer, it is clear that
the proposed methodology was able to identify features
that have possible implications to cancer biology. Several
examples include: CEACAM6, which is routinely used as
a tumor marker in several cancers (including lung can-
cer) [9]; MTRR, in which variants have a well-documented
association with increased risk of NSCLC [77]; and three
SNVS in TACC3, whose high expression is associated with
poor prognosis in NSCLC [37].

Predictive SNV features: breast cancer hormone receptor
status
Except for up/downstream and 5’UTR models, the rank-
ings of selected SNV features for each model were sig-
nificantly different than univariate rankings from Fisher’s
exact test (ps< 10−6). When comparing rankings to those
produced byWilcoxon rank sum test, all were significantly
different (ps< 10−7). The similarity to univariate rankings
in the two models is likely a result of a small initial fea-
ture set size and/or the types of patterns seen in the data.
For example, though the 5’ UTR model produced rank-
ings that were significantly different than rankings from
Wilcoxon rank sum test, they were not significantly dif-
ferent than those from Fisher’s exact test (p = 0.515),
suggesting that predictive power of selected SNVs in this
model result more from the differential abundance of AF
values (number of nonzeros) than with the differential

magnitude of AF values between groups, which Wilcoxon
rank sum test seeks to quantify. The distribution of SNVs
by region of origin selected during the training of the all-
SNVs model is given in Fig. 4. Notice that the majority of
selected SNVs are located in traditional coding regions.
Additional files 2, 3, 4, 5, 6, 7 and 8 contain the lists of

SNV features selected during the creation of each model.
In the following sections, the top 15 SNVs for selected
models are highlighted to demonstrate that the genes in
which they are reside are enriched for associations with
cancer.

Exonic
Figure 5 visualizes allele fraction distributions of the top
15 predictive SNVs identified during the creation of the
exonic SNV model in the breast cancer dataaset. SNVs
chosen are more abundant in one of the groups and/or
have higher AF values. Figure 6 demonstrates the cluster-
ing of samples by hormone receptor status. Though not a
perfect clustering, the top 15 (of 50) features adequately
segregate the two groups. Genes where selected exonic
SNVs are located showed an enrichment of significant
ASE events −16.67 % of gene/sample pairs (p < 0.001,
1.75X greater than random mean).
Ten of the top 15 SNV features lie in genes that have pre-

vious associations with cancer; 6, of which, are located in
genes specifically associated with breast cancer (Table 6).
Several outstanding examples include: HRPAP20, a hor-
mone regulated breast cancer oncogene that promotes
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Table 5 Top 15 nonsynonymous exonic SNV features in NSCLC

Gene dbSNP ID Locus (Chr:bp) Variant Class Description

MTRR rs1802059 5:7878179 C→T DF Variants in gene are associated with NSCLC risk [77]

TACC3 rs17680881 4:1732978 G→A R High expression of TACC3 associated with poor prognosis in NSCLC [37]

TACC3 rs1063743 4:1729988 G→A R High expression of TACC3 associated with poor prognosis in NSCLC [37]

EXOSC7 rs6794 3:45052775 G→C DF Downregulated in papillary thyroid cancer; component of exosome [31]

VPS8 rs3821750 3:184766301 T→C DF Vacular protein sorting 8 homolog [68]

SACM1L rs1468542 3:45779136 A→T DF Phosphatidylinositol-4-phosphate phosphatase activity [68]

ADD1 rs4961 4:2906707 G→T R Specific variant is associated with hyper-tension [45]; regulates PPAR-γ
which is involved in cancer [44]

PJA2 rs246105 5:108672946 C→T R Presence of FER-PJA2 chimeras are associated with poor post-operative
NSCLC survival [41]; over-expressed in thryoid cancer [14]

TACC3 rs17132047 4:1729953 G→A R Higher expression of TACC3 associated with poor prognosis in NSCLC [37]

PEMT rs897453 17:17425631 C→T R Increased expression of PEMT in NSCLC patients predict shorter survival [89]

CLIM1 rs2296961 10:97023630 T→C DF Upregulated in breast cancer; cytoskeleton adapter protein; regulates estro-
gen receptor [36]

HS1 rs2070180 3:121351338 C→T R Over-expression associated with poor survival in leukemia [12]

CHMP4A rs2295322 14:24679877 C→T R Over-expression associated with recurrent ovarian cancer [7]

CEACAM6 rs11548735 19:42265889 G→T DF Carcinoembryonic antigen-related cell adhesionmolecule, tumor marker in
cancer [9]

PLA2G7 rs1805017 6:46684222 C→T DF Associated with aggressive prostate cancer [76]; specific variant association
with protection from coronary heart disease [83]

malignant tumor growth [40]; ARHGEF16, which pro-
motes migration and invasion of breast cancer cells [29];
FASN, whose upregulation is associated with HER2+
tumors and metastatic lesions [38] (confirmed in this
dataset: FC = 3.6, p < 10−5, DESeq2); and USP35,
amplification of which is associated with significantly

worse prognosis in breast cancer patients and is associated
with ER- tumors [21]. The latter demonstrates a seem-
ingly paradoxical result as the SNV in question is largely
abundant in ER+ tumors. In fact, in this dataset USP35
is significantly upregulated in ER+ tumors (FC=4.2, p <

10−5 ), perhaps providing evidence that conflict with the

Fig. 4 Distribution of Selected SNV Features in All-SNVs Breast Cancer Model. 3’UTR, exonic, and intronic SNVs dominate the distribution of selected
SNV features
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Fig. 5 Breast Exonic SNVs Alelle Fractions. Box plots of allele fraction distributions of top 15 predictive SNVs identified during the creation of the
exonic SNV model in the breast cancer dataset. Only allele fractions >0 are plotted, though zero values contribute to box plot distributions

observation that USP35 amplification is associated with
ER- tumors. It is important to note that the 5 SNV fea-
tures that do not have previous associations with cancer
lie in genes that are uncharacterized, 3 of which from the
same gene, LRRC56. These SNVs thus implicate genes that
may provide future insight into the biology of the different
cancer subtypes.

Intronic
Figure 7 visualizes allele fraction distributions of the top
15 predictive SNVs identified during the creation of the
intronic SNV model in the breast cancer dataaset. The
majority of identified SNV features have obvious differ-
ences in AF distributions, except for the SNV in HFM1

(chr1:91852851 A→ G) which has small AF values. Inter-
estingly, this gene is differentially expressed in this dataset
with ER+ tumors expressing less reads (FC = −1.9, p =
0.011), suggesting a possible association of the SNV in the
downregulation of the gene. Though not significant, the
expression of HFM1 is decreased in samples in which the
SNV is present (Student’s t-test, p = 0.084). Furthermore,
selected intronic SNVs lie in genes that are enriched with
ASE events, 24.04 % of gene/sample pairs (p < 0.001,
3.16X greater than random mean).
Eleven of the top 15 SNVs are located in genes that

have previous associations with cancer (Table 7); 9 of
which are associated with breast cancer specifically. Some
interesting examples include: 2 SNVs that are located in

Fig. 6 Hierarchical Clustering of Breast Exonic SNVs. A heatmap demonstrating the distinct clustering of sample groups and the co-occurrence of
top exonic SNV features in the breast cancer dataset. NA values are filled in with black
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Table 6 Top exonic SNVs in breast

Gene dbSNP ID Locus (Chr:bp) Variant Type Class Description

EML4 rs6736913 2:42510018 A→G NS TR- EML4-ALK mutants are frequently found in NSCLC and some
breast cancers [69, 72]

TBC1D9 rs1560440 4:141543997 G→A S ER+ A marker of tumor recurrence in breast cancer [3]

HRPAP20 rs11402 6:97339088 C→T S TR- A hormone regulated oncogene in breast cancer that pro-
motes malignant tumor growth [40]

LMNTD2 rs28406183 11:556521 C→G S ER+ Uncharacterized lamin tail domain containing protein 2[68]

GOLGA2 rs77768947 9:131019765 C→A NS ER+ Downregulation of GOLGA2/GM130 decreased angiogenesis
and cancer cell invasion in vitro and suppressed tumorigenesis
in lung cancer mice model [18]

USP35 rs2512526 11:77921527 G→C NS ER+ Amplification of which is associated with significantly worse
prognosis in breast cancer and with ER- breast tumors [21]

LYAR rs7376390 4:4276132 T→C NS TR- Promotes invasion in colorectal cancer cells [81]

ARHGEF16 rs4638054 1:3394456 T→C S ER+ Promotes migration and invasion of breast cancer cells [29]

LRRC56 rs10902170 11:554166 C→G NS ER+ Uncharacterized in humans [68]

USE1 rs414528 19:17330060 T→C NS TR- A recently characterized SNARE protein, no characterized asso-
ciation with cancer phenotype [62]

FASN rs2228309 17:80051183 A→G S ER+ Upregulation is associated with HER2+ tumors and metastatic
lesions [38]

LRRC56 rs7942030 11:549959 C→T S ER+ Uncharacterized in humans [68]

KIF20B rs1886996 10:91498127 T→C NS TR- Upregulation is associated with pancreatic cancer [4]

SLC12A7 rs6865765 5:1081702 A→G S ER+ Also known as KCC4, in which LOF mutations significantly
inhibit xenograft tumors in SCID mice [30]

LRRC56 rs4963198 11:551753 G→A NS ER+ Uncharacterized in humans [68]

HDAC7, which has been shown to promote breast can-
cer cell survival and resistance to therapy [80]; 2 SNVs
lying in CTBP1 and CTBP2, both of which are associated
with breast cancer cell proliferation - the former being a
regulator of BRCA [23, 53]; CD151, whose deregulation
is predictive of poor outcome in node-negative lobular
breast carcinoma [70]; and SNED1, high expression of
which is correlated with poor outcome for ER-/PR- breast
cancer patients [61] (interestingly SNED1 is significantly
upregulated in ER+ in this dataset: FC = 2.8, p < 10−4).

Also of note, several variants lie in genes that were pre-
viously implicated in the exonic model: two SNVs in
ARHGEF16, one in EML4, and one in LMNTD2.

3’ UTR
Figure 8 visualizes allele fraction distributions of the
top 15 predictive SNVs identified during the creation of
the 3’ UTR SNV model in the breast cancer dataset -
demonstrating differential abundance and/or AF distribu-
tions. 20.41 % of gene/sample pairs were enriched with

Fig. 7 Breast Intronic SNVs Alelle Fractions. Box plots of allele fraction distributions of top 15 predictive SNVs identified during the creation of the
intronic SNV model in the breast cancer dataset. Only allele fractions >0 are plotted, though zero values contribute to box plot distributions
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Table 7 Top intronic SNVs in breast

Gene dbSNP ID Locus (Chr:bp) Variant Class Description

HFM1 NA 1:91852851 A→G ER+ A DNA helicase that is specifically expressed in germline cells [75]

EML4 rs7233 2:42396722 A→G TR- EML4-ALK mutants are frequently found in NSCLC and some breast
cancers [69]

ARHGEF16 rs4534324 1:3394674 T→C ER+ Promotes migration and invasion of breast cancer cells [29]

LRRC56 rs7396875 11:551405 G→A ER+ Uncharacterized in humans [68]

LMNTD2 rs936466 11:557342 T→C ER+ Uncharacterized lamnin tail containing domain protein [68]

CTBP1 rs1250100 4:1236182 A→G ER+ Downregulates BRCA and E-cadherin in breast cancer, potential
biomarker for cancer development [23]

HDAC7 rs3815138 12:48178465 T→C ER+ Promotes breast cancer cell survival and therapy resistance by inhibiting
autophagic cell death [80]

SNED1 rs6715941 2:241993027 C→T ER+ High expression is correlated with poor outcome for ER-/PR- breast
cancer patients [61]

CTBP2 rs4962716 10:126685867 T→C ER+ High expression is associated with E-cadherin and cellular proliferation in
breast cancer [53]

CD151 rs28454516 11:833828 G→A ER+ Deregulation is predictive of poor outcome in node-negative lobular
breast carcinoma [70]

DLG2 rs4943920 11:85195154 A→T TR- The location of DLG2 is a common fragile site and is under expressed in
several cancers [57]

ARHGEF16 rs4422946 1:3394640 A→G ER+ Promotes migration and invasion of breast cancer cells [29]

OAZ1 rs2523174 19:2271181 T→C ER+ mRNA biomarker for oral cancer patients [20]

GAA rs12944802 17:78084418 G→A ER+ Acid alpha-glucosidase, which is essential for the degradation of glyco-
gen to glucose in lysosomes [68]

HDAC7 rs3815132 12:48179048 C→T ER+ Promotes breast cancer cell survival and therapy resistance by inhibiting
autophagic cell death [80]

significant ASE events (p < 0.001, 1.71X greater than
random mean).
Similar to the previously described models, the top 15

SNV features are located in genes enriched with cancer
associations, 10 of 15 (Table 8); 6 of which are specifically
associated with breast cancer. Some interesting exam-
ples include: NOTCH1, which has been shown to pro-
mote recurrence in breast cancer [1]; IKBKE, a breast
cancer oncogene which is upregulated in TR- breast can-
cers [6]; LAMB1, a breast cancer biomarker [85]; PDXK,

which is associated with breast cancer relapse and metas-
tasis [35]; and COL1A1, which is upregulated in pro-
gesterone receptor positive breast cancer patients [50].
Interestingly, the top predictive SNV, rs11515 (a SNP
located in the tumor suppressor gene CDKN2A), is asso-
ciated with poor survival in glibolastoma patients and is
moderately associated with breast cancer risk [24, 71].
Also of note, one of the SNVs lies in LRRC56, which
has appeared in the top selected features in the two
previous models.

Fig. 8 Breast 3’UTR SNVs Alelle Fractions. Box plots of allele fraction distributions of top 15 predictive SNVs identified during the creation of the
3’UTR SNV model in the breast cancer dataset. Only allele fractions >0 are plotted, though zero values contribute to box plot distributions
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Table 8 Top 3’ UTR SNVs in breast

Gene dbSNP ID Locus (Chr:bp) Variant Class Description

CDKN2A rs11515 9:21968199 C→G TR- Moderate association with breast cancer risk [24]; rs11515 is associated
with poor survival in patients with glioblastoma multiforme [71]

AP2M1 NA 3:183901795 T→C ER+ Over-expressed in espohageal squamous cell carcinoma [22]

LRRC56 rs10902172 11:554299 C→G ER+ Uncharacterized in humans [68]

SEC22A rs4234210 3:122990805 G→A TR- Vesicle trafficking protein [68]

MTG1 rs2255262 10:135234078 A→G ER+ GTPase associatedwith ERBB4, which is associatedwith advanced NSCLC
[55]

BTBD3 rs6660 20:11907058 C→T TR- Targeted by hsa-let-7i during colorectal cancer metastasis [87]

NOTCH1 rs6563 9:139389184 A→G TR- Promotes recurrence in breast cancer [1]

ZNF74 rs887023 22:20761899 C→T TR- Zinc finger protein [68]

IKBKE rs1057741 8:42188550 A→G ER+ Breast cancer oncogene [10]; upregulated in triple negative breast can-
cers [6]

ZNF552 NA 19:58319085 T→C ER+ Zinc finger protein [68]

TRAPPC10 rs2516524 21:45525899 A→G TR- Transmembrane protein [68]

PDXK rs4819309 21:45178438 C→A TR- Associated with breast cancer relapse and metastasis [35]

LAMB1 rs7561 7:107564366 T→G TR- Identified as a secretome biomarker of breast cancer [85]

COL1A1 NA 17:48261525 A→T ER+ Upregulated in progesterone receptor positive patients [50]

QSOX2 rs10117333 9:139099451 A→C TR- Upregulated in glioblastoma patients [5]

RNA-editing
Figure 9 visualizes allele fraction distributions of the 12
predictive SNVs identified during the creation of the
model using SNVs located at known RNA-editing sites.
Nine of the SNVs lie in genes that have previous associa-
tions with cancer (Table 9). The top SNV, a synonymous
mutation lying in NEIL1, is the only exonic SNV cho-
sen in the model. In fact, there is a paucity of exonic

SNVs in the total set (n = 8). Interestingly, RNA-editing
sites and SNPs in this gene have been identified in other
cancers [65]. Another interesting example is a SNV lying
in NEAT1, a lncRNA whose overexpression is associated
with poor prognosis in squamous cell carcinoma patients
[19]. Intriguingly, one of the RNA-editing SNVs lies in
ZNF552, which is also implicated in the 3’ UTR and gene
expression models.

Table 9 Top RNA-editing SNVs in breast

Gene Locus (Chr:bp) Variant Type Class Description

NEIL1 15:75646087 A→G exonic ER+ A DNA repair protein in which polymorphisms and RNA-editing
sites have been reported in several cancers [65]

ZNF552 19:58321691 T→C intronic ER+ Zinc finger protein [68]

ABHD2 chr15:89744476 G→T 3’ UTR ER+ Upregulation is associated with colorectal cancer [84]

RAB11FIP3 chr16:548088 A→G intronic ER+ Rab11-binding protein that regulates breast cancer cell motility [34]

SMIM11 chr21:35761073 G→T 3’ UTR TR- Uncharacterized small integral membrane protein [34]

PSMB2 chr1:36068370 T→C 3’ UTR TR- A SNP, rs6661896, within this gene is associated with chronic
myelogenous leukemia [11]

TPM4 chr19:161915020 A→G intronic TR- Upregulated in primary breast tumors compared to metastatic
lesions [59]

NOM1 chr7:156762883 A→G 3’ UTR TR- Nucleolar Protein with MIF4G domain, involved with protein trans-
lation [68]

NEAT1 chr11:65208856 A→G intergenic TR- A lncRNA whose overexpression is associated with poor prognosis
in squamous cell carcinoma patients [19]

SEPT2 chr2:242266408 A→G intronic TR- Expression is associated with hepatocellular cancer growth [16]

LANCL2&VOPP1 chr7:55525773 T→C intergenic TR- LANCL2 is a regulator of the oncogene AKT1[86]

PLB2&SDS chr12:113828961 A→G intergenic TR- Uncharacterized locus
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Fig. 9 Breast RNA-editing SNVs Alelle Fractions. Box plots of allele fraction distributions of 12 predictive SNVs identified during the creation of the
RNA-editing SNV model in the breast cancer dataset. Only allele fractions >0 are plotted, though zero values contribute to box plot distributions

Intergenic
Something immediately noticeable about the features
selected by this model is that 66 of the 771 features are
located proximal to each other spanning 8,610 bp (chr9:
68, 416, 905–68, 425, 515; hg19). Interestingly, 36 of these
are further concentrated in a 1,635 bp region (chr9: 68,
418, 108–68, 419, 742) defined by a strong H3K27Ac peak
and histone methylation peaks (H3K4me1, H3K4me3,
H3K27me3, and H3K36me3) present in chronic myel-
ogenous leukemia cell lines (K562), a moderate peak
in human embryonic stem cells (H1-ESC), as well as
a DNaseI hypersensitivity site and evidence of CTCF
binding (Fig. 10) [25]. The enrichment of these peaks
provide strong evidence that this locus is regulated
in K562. Because this region is highly enriched with
selected SNVs associated with the ER+ subtype, we have
termed this locus estrogen receptor positive associated
hotspot (ERPAHS). In fact, 9 of the top 15 selected
intergenic SNVs are located in this concentrated region
(Fig. 11). Furthermore, the only characterized transcripts
within 100 kbp of ERPAHS are two immediately flank-
ing miRNAs (mir4477A and mir4477B) and a pseudogene

FRG1JP, all of unknown function [68], though the two
miRNA were shown to be expressed by a subset of lym-
phoma cell lines in a published study [33].
To assay whether this region is regulated in ER+ and

TR- breast samples, we sought to determine if the locus
is differentially expressed. The location of ERPAHS (as
defined by the 8,610 bp region ± 1,000 bp; chr9: 68,
415, 905–68, 426, 515) was included in the hg19 RefSeq
annotation used by featureCounts during read assign-
ment. Importantly, this region does not overlap the anno-
tated transcripts mentioned above. Strikingly, this region
is highly expressed in both ER+ and TR- breast sam-
ples and is upregulated in ER+ tumors (FC = 1.63,
p = 0.0265, Fig. 12). Furthermore, allele fraction val-
ues of the most predictive intergenic SNV, rs113539941
(chr9: 68418921 C→T), were significantly correlated with
increased expression of this locus (Fig. 12).When compar-
ing expression across samples classified with the binary
presence of rs113539941, there is amore pronounced level
of differential expression (FC = 2.67, p < 10−5, Fig. 13),
suggesting a functional role for associated mutations at
this locus. This example provides a proof of concept of

Fig. 10 Breast Intergenic Hotspot A UCSC genome browser view demonstrating the region of enriched selected intergenic SNVs in genomic
position 9q12[43]. This locus is defined by the presence of several regulatory markers including CTCF binding, H3K27Ac, histone methylation marks,
and a DNaseI hypersensitvity site, all of which were found K562 cell lines. The enrichment of top selective intergenic SNV features suggests that this
locus is associated and regulated in ER+ primary tumors
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Fig. 11 Breast Intergenic SNVs Alelle Fractions. Box plots of allele fraction distributions of top 15 predictive SNVs identified during the creation of the
intergenic SNV model in the breast cancer dataset. Only allele fractions >0 are plotted, though zero values contribute to box plot distributions. SNVs
lying in the densely populated region of the estrogen positive associated hotspot are highlighted in red

the utility of the proposed approach to identify biologi-
cally associated regions, genes, and/or SNVs. In fact, there
are 7 other regions identified via the selected intergenic
SNVs that have at least 10 co-occurring SNVs. These loci
provide potential new avenues for breast cancer research
- further work should be done to identify their biological
significance and functional roles in cancer.

Conclusions
This study introduces a new methodology and software
pipeline, SNV-DA, which is used to identify differential
patterns of mutation between two phenotypes from SNVs
called from RNA-Seq data. In the breast cancer dataset,
we demonstrated that SNV-DA was able to produce mod-
els with high predictive performances and that models
were discriminant towards the true group labels, indi-
cating that the methodology can identify and prioritize

differentially abundant SNVs that are of biological inter-
est. However, in the NSCLC dataset, the power of the
proposed methodology to identify non-exonic SNVs that
were predictive of disease outcome was likely limited
by a combination of small sample size and/or shallow
sequencing. We further demonstrated the utility of the
proposed methodology by showing that selected SNV
feature rankings were significantly different than uni-
variate rankings by Fisher’s exact and Wilcoxon rank
sum tests and that the locations of selected SNVs were
enriched with genes displaying significant allele-specific
expression (Additional file 9). Though the relative per-
formance of SNV models to traditional models trained
on gene expression features varied, their performances
were comparable - with the all-SNVs model producing
the best classification accuracy of triple negative breast
cancer samples (Additional file 10).

Fig. 12 Correlation of ERPAHS Expression with Hormone Receptor Status and rs113539941 A boxplot demonstrating the high expression of ERPAHS
in both ER+ and TR- primary breast cancer samples as well as the significant upregulation of ERPAHS in ER+ tumors compared to those of TR-.
Increased expression of ERPAHS is also correlated with higher allele fraction values in tumors. The grey region represents the 95 % CI from linear
regression
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Fig. 13 Differential Expression of ERPAHS in Tumors Bearing rs113539941 Mean raw read coverage of tumors bearing rs113539941 and tumors
lacking the SNV over the genomic location of ERPAHS. The approximate region of regulatory enrichment is highlighted in green with rs113539941
marked with a dashed line. Fold change and significance of differential expression is given from DESeq2 using normalized read counts

Importantly, SNV-DA was able to identify small subsets
of SNVs that can be used for further analysis (as little as
50 features in the breast exonic model). Characterization
of top performing SNV features from optimally perform-
ing models demonstrated that there is an enrichment of
SNVs originating from genes previously associated with
cancer risk, progression, and survival. That themajority of
selected features lie in genes that have strong relationships
with the analyzed phenotype supports the use of SNV-DA
for the identification and prioritization of novel molecular
targets associated with disease phenotype. Furthermore,
in the breast cancer dataset, SNV-DA was able to iden-
tify predictive SNVs located in ncRNA as well as intronic,
5’ UTR, 3’ UTR, up/downstream, and intergenic regions -
locations in the genome that are routinely ignored by
whole exome sequencing. One outstanding example was
the prioritization of the previously studied SNP, rs11515,
located in the 3’UTR of the tumor suppressor CDKN2A,
which has clear associations with poor prognosis and
risk in different cancers [71]. SNV-DA was also able to
implicate SNVs originating from RNA-editing, an analysis
exclusive to RNA sequencing data. Lastly, the identifi-
cation of the differentially expressed ERPAHS locus, its
significant correlation with predictive SNV allele frac-
tions, and association with regulatory regions in the K562
cancer cell line demonstrates the utility of the proposed
methodology for the identification of interesting unanno-
tated expressed regions of the genome (also ignored by
traditional differential gene expression analyses).
Because RNA-Seq variant calling is limited to regions of

the genome that are expressed, the proposedmethodology

would not be able to identify variants that result in a
marked decrease of expression below a threshold level.
However, SNVs called from RNA-Seq data have the added
benefit over traditional whole-genome or exome sequenc-
ing in that they provide information on the relative
amounts of allelic expression, which - as shown - can
be implicated in disease or phenotype. Moreover, this
methodology can also be used to analyze WGS and WES
data to determine the differential abundance of alleles
across heterogenous tissues. Furthermore, the develop-
ers of GATK have recently outlined best practices for
indel calling from RNA-Seq data; therefore, SNV-DA can
also be used for the analysis of those variants where spe-
cial attention is given to feature definitions (over-lapping
intervals, etc). Though SNV-DA identified predictive
SNVs lying in miRNA and lncRNA, the SNPiR pipeline is
not designed for non-standard RNA-Seq methodologies,
such as small RNA-Seq. Consequently, the development
of novel variant calling methods for these non-standard
approaches may produce new avenues of research that are
amenable to classification using SNV-DA. A tremendous
amount of RNA-Seq data has already been collected in the
private and public domain. This data now has the added
benefit in that it can be mined for more clinical insights
via SNV-DA.

Availability of supporting data
SNV-DA is freely available at https://github.com/
Anderson-Lab/SNV-DA. Data transformation is imple-
mented in Python and parallelized model creation,
evaluation, and permutation tests are implemented in R.

https://github.com/Anderson-Lab/SNV-DA
https://github.com/Anderson-Lab/SNV-DA
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The package allows users to specify cross-validation
design, filtering criteria, and values of K to be tested, as
well as the automatic creation of supporting figures. The
repository also contains variant data used in this study,
as well as the necessary code and documentation to run
SNV-DA and SNV calling from RNA-Seq data.

Additional files

Additional file 1: NSCLC: Nonsynonymous Exonic SNV model.
(CSV 49.1 kb)

Additional file 2: Breast: all-SNVs model. (CSV 8.93 kb)

Additional file 3: Breast: exonic SNV model. (CSV 2.93 kb)

Additional file 4: Breast: intronic SNV model. (CSV 17.2 kb)

Additional file 5: Breast: 3’ UTR SNV model. (CSV 6.47 kb)

Additional file 6: Breast: intergenic SNV model. (CSV 17.6 kb)

Additional file 7: Breast: ncRNA SNV model. (CSV 57.8 kb)

Additional file 8: Breast: up and downstream SNVs model. (CSV 22.1 kb)
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K. Phospholipase PLA2G7, associated with aggressive prostate cancer,

promotes prostate cancer cell migration and invasion and is inhibited by
statins. Oncotarget. 2013;5(3):742–50.

77. Van Dyke AL, Cote ML, Wenzlaff AS, Abrams J, Land S, Iyer P, Schwartz
AG. Chromosome 5p Region SNPs Are Associated with Risk of NSCLC
among Women. J Cancer Epidemiol. 2009. 2009:Article ID 242151.

78. Varley KE, Gertz J, Roberts BS, Davis NS, Bowling KM, Kirby MK, Nesmith
AS, Oliver PG, Grizzle WE, Forero A, Buchsbaum DJ, LoBuglio AF, Myers
RM. Recurrent read-through fusion transcripts in breast cancer. Breast
Cancer Res Treat. 2014;146:287–97.

79. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of
genetic variants from high-throughput sequencing data. Nucleic Acids
Res. 2010;38:e164.

80. Wu MY, Fu J, Xiao X, Wu J, Wu RC. MiR-34a regulates therapy resistance
by targeting HDAC1 and HDAC7 in breast cancer. Cancer Lett.
2014;354(2):311–9.

81. Wu Y, Liu M, Li Z, Wu XB, Wang Y, Wang Y, Nie M, Huang F, Ju J, Ma C,
Tan R, Zen K, Zhang CY, Fu K, Chen YG, Wang MR, Zhao Q. LYAR
promotes colorectal cancer cell mobility by activating galectin-1
expression. Oncotarget. 2015;6(32):32890–32901.

82. Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RKC,
Hua Y, Gueroussov S, Najafabadi HS, Hughes TR, Morris Q, Barash Y,
Krainer AR, Jojic N, Scherer SW, Blencowe BJ, Frey BJ. The human
splicing code reveals new insights into the genetic determinants of
disease. Science. 2015;347(6218).

83. Xu L, Zhou J, Huang S, Huang Y, LE Y, Jiang D, Wang F, Yang X, Xu W,
Huang X, Dong C, Zhang L, Ye M, Lian J, Duan S. An association study
between genetic polymorphisms related to lipoprotein-associated
phospholipase A(2) and coronary heart disease. Exp Ther Med. 2013;5(3):
742–50.

84. Yoshida T, Itoda M, Muto T, Miyaguchi K, Mogushi K, Shoji S, Shimokawa
K, Iida S, Uetake H, Ishikawa T, Sugihara K, Mizushima H, Tanaka H.
Clinical omics analysis of colorectal cancer incorporating copy number
aberrations and gene expression data. Cancer Informat. 2010;9:147–61.

85. Zawadzka AM, Schilling B, Cusack MP, Sahu AK, Drake P, Fisher SJ, Benz
CC, Gibson BW. Phosphoprotein secretome of tumor cells as a source of
candidates for breast cancer biomarkers in plasma. Mol Cell Proteomics.
2014;13(4):1034–49.

86. Zeng M, van der Donk WA, Chen J. Lanthionine synthetase C-like protein
2 (LanCL2) is a novel regulator of Akt. Mol Biol Cell. 2014;25(24):3954–61.

87. Zhang P1, Ma Y, Wang F, Yang J, Liu Z, Peng J, Qin H. Comprehensive
gene and microRNA expression profiling reveals the crucial role of
hsa-let-7i and its target genes in colorectal cancer metastasis. Mol Biol
Rep. 2012;39(2):1471–8.

88. Zienolddiny S, Skaug V. Single nucleotide polymorphisms as
susceptibility, prognostic, and therapeutic markers of nonsmall cell lung
cancer. Lung Cancer Targets Ther. 2011;2012(3):1–14.

89. Zinrajh D, Hörl G, Jürgens G, Marc J, Sok M, Cerne D. Increased
phosphatidylethanolamine N-methyltransferase gene expression in
non-small-cell lung cancer tissue predicts shorter patient survival. Oncol
Lett. 2014;7(6):2175–9.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:


	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Methods
	Variant calling pipeline
	Data transformation and filtering
	sPLS-DA and optimal number of features
	Construction of gene expression models
	Evaluation
	Case studies
	Disease outcome in non-small cell lung cancer
	Hormone receptor status in breast cancer


	Results and discussion
	Called SNVs
	Model performance
	Disease outcome in non-small cell lung cancer
	Hormone receptor status in breast cancer

	Predictive SNV features: disease outcome in non-small cell lung cancer
	Predictive SNV features: breast cancer hormone receptor status
	Exonic
	Intronic
	3' UTR
	RNA-editing
	Intergenic

	Conclusions
	Availability of supporting data
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7
	Additional file 8
	Additional file 9
	Additional file 10

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References



