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CTCF-mediated chromatin loops enclose
inducible gene regulatory domains
Martin Oti1,4* , Jonas Falck2, Martijn A. Huynen2 and Huiqing Zhou1,3*

Abstract

Background: The CCTC-binding factor (CTCF) protein is involved in genome organization, including mediating
three-dimensional chromatin interactions. Human patient lymphocytes with mutations in a single copy of the CTCF
gene have reduced expression of enhancer-associated genes involved in response to stimuli. We hypothesize that
CTCF interactions stabilize enhancer-promoter chromatin interaction domains, facilitating increased expression of
genes in response to stimuli. Here we systematically investigate this model using computational analyses.

Results: We use CTCF ChIA-PET data from the ENCODE project to show that CTCF-associated chromatin loops have
a tendency to enclose regions of enhancer-regulated stimulus responsive genes, insulating them from neighboring
regions of constitutively expressed housekeeping genes. To facilitate cell type-specific CTCF loop identification, we
develop an algorithm to predict CTCF loops from ChIP-seq data alone by exploiting the CTCF motif directionality in
loop anchors. We apply this algorithm to a hundred ENCODE cell line datasets, confirming the universality of our
observations as well as identifying a general distinction between primary and immortal cells in loop-enclosed gene
content. Finally, we combine the existing evidence to propose a model for the formation of CTCF loops in which
partner sites are brought together by chromatin template reeling through stationary RNA polymerases, consistent
with the transcription factory hypothesis.

Conclusions: We provide computational evidence that CTCF-mediated chromatin interactions enclose domains of
stimulus responsive enhancer-regulated genes, insulating them from nearby housekeeping genes.
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Background
The CCTC-binding factor (CTCF) protein [1] is in-
volved in eukaryotic genome organization, including
mediating chromatin interactions [2]. It has functions
affecting gene regulation such as enhancer blocking
[3] and chromatin domain boundary demarcation [4]
where the spread of repressive chromatin is blocked,
although the distinction between these two roles has
been called into question [5]. It is additionally in-
volved in several more specialized genomic processes
including imprinting [6], immune-related genomic re-
combination and gene expression regulation [7, 8],
mammalian X-chromosome inactivation [9], alterna-
tive splicing [10] and alternative promoter choice

[11]. Interestingly, while it has been described primar-
ily as an insulator protein, it has also been implicated
in enhancing gene expression [12], an apparent
contradiction. To resolve this contradiction, it has
been proposed that CTCF may simply serve to tether
distant chromatin sites together, with its different
roles depending on the nature of the sites that are
brought together and the other DNA-binding proteins
involved in the interaction [5].
Genome-wide CTCF-mediated chromatin organization

was investigated by Handoko and colleagues in mouse
embryonic stem cells [13] with the “chromatin interaction
assay using paired-end tags” (ChIA-PET) technique [14].
That study showed that most CTCF interactions link sites
on the same chromosome forming loops, which are gener-
ally less than 1Mb in length. They also identified an en-
richment of the enhancer-associated [15] H3K4me1
(histone 3 lysine 4 monomethylation) chromatin mark
within CTCF loops that are <200kb long, constituting the
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majority of the loops. These within-loop H3K4me1 levels
decreased upon knock-down of CTCF. The H3K4me1
chromatin mark is associated with both active enhancers
and those poised for future activation, depending on the
additional presence or absence respectively of the
H3K27ac chromatin mark at the same enhancer [16, 17].
Therefore, this pattern is suggestive of a model in which
the <200kb CTCF loops enclose regulatory domains of
enhancer-regulated genes. Indeed, a later study using the
5C technique [18] lends support to this model, and pro-
poses a more detailed three-dimensional model in which
CTCF interactions demarcate overall regulatory domains
within which smaller-scale enhancer-promoter interac-
tions occur.
Recently, three unrelated human patients were identified

with disruptive mutations in a single copy of their CTCF
gene [19]. These patients showed surprisingly mild pheno-
types consisting primarily of mild intellectual disability, re-
duced head size (microcephaly) and growth retardation.
RNA-sequencing data generated from whole blood lym-
phocytes taken from these patients showed reduced ex-
pression levels of enhancer-associated stimulus responsive
genes when compared to lymphocytes from healthy con-
trols [19]. This suggests that such genes are incapable of
being up-regulated to adequate levels upon induction by
stimuli. Patient down-regulated genes were also enriched
for enhancer-promoter interactions in RNA Polymerase II
ChIA-PET data from K562 leukemia cells [20].
We therefore hypothesized that CTCF interactions

may stabilize enhancer-promoter chromatin interactions,
facilitating increased transcription levels in response to
stimuli. This hypothesis is supported by the recent find-
ings that genome-wide TNF-alpha responsive genes have
enhancers and promoters that are already pre-looped
prior to their induction [21], and that the TNF-alpha re-
sponsive SAMD4A gene is pre-looped head-to-tail by a
CTCF-dependent tie before its induction, a configur-
ation that is required for its prompt response to TNF-
alpha [22]. Additionally, genes in mouse embryonic stem
cells set to be activated later during differentiation are
already pre-looped and are associated with chromatin
marks for poised enhancers [23]. This enhancer-
promoter pre-looping of poised genes has also been
observed during Drosophila embryogenesis [24] and ap-
pears to be a general phenomenon in animal gene
regulation.
Here we investigate this hypothesis computationally,

seeking to identify whether there is a genome-wide ten-
dency for CTCF loops to enclose stimulus responsive
enhancer-regulated genes. We used CTCF ChIA-PET
data from human K562 and MCF-7 cells provided by the
ENCODE project [25], which are more comprehensive
than the mouse CTCF ChIA-PET data analyzed in the
previous study. We additionally predicted CTCF loops

from genome-wide CTCF binding site data for a hun-
dred cell line datasets provided by the ENCODE project,
using an algorithm we developed that exploits the motif
directionality in CTCF loop anchors [26, 27]. We find a
general tendency for CTCF loops to enclose stimulus
responsive genes that are associated with enhancer-
based regulation. We also find global differences in
loop-enclosed genes between primary and immortal
cells, with the former containing more predicted CTCF
loop-enclosed genes that are enriched for transcription
regulation, cell motility regulation and stem cell differ-
entiation. Finally, we discuss the implications of the
motif directionality in CTCF loop anchors, which point
to a model of CTCF loop formation involving the reel-
ing of the chromatin template through stationary RNA
polymerases, consistent with the transcription factory
model of transcription [28].

Results
CTCF loops insulate enhancer-regulated stimulus
response genes from housekeeping genes
To investigate whether CTCF loops are enriched for
enhancers relative to surrounding regions, we investi-
gated the enhancer-associated H3K4me1 (histone 3
lysine 4 monomethylation) as well as other chromatin
marks within and around experimentally determined
CTCF loops determined using the ChIA-PET tech-
nique in K562 myeloid leukemia and MCF-7 breast
cancer cell lines. These chromatin mark and ChIA-
PET data were all obtained from the ENCODE project
[25]. The ChIA-PET CTCF interaction data have been
corroborated by the independent Hi-C technique,
which does not focus on specific proteins [26]. We fo-
cused on CTCF loops less than 200kb in length as
these have previously been shown to be associated with
active chromatin marks in mouse embryonic stem cells
[13]. To ensure we were using reliable ChIA-PET interac-
tions, we filtered them for those containing CTCF binding
sites at both anchors, using chromatin immunoprecipita-
tion followed by sequencing (ChIP-seq) datasets also ob-
tained from the ENCODE project [25], and additionally
filtered them for those that were supported by at least
three ligation products in the ChIA-PET data. Most marks
were assessed in the K562 cell line as, being one of the
main ENCODE cell lines, it had the largest collection of
chromatin mark ChIP-seq datasets.
To investigate the loop-flanking regions as well as the

loop bodies, each loop was extended on either side to in-
clude flanking regions equal in size to the loop itself,
after which the extended region was divided into a fixed
number of bins each spanning a distance equal to 10 %
of the loop length. Average feature density across all
loops was calculated per bin, and plotted across the re-
gion (Fig. 1a). Consistent with mouse embryonic stem
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cells [13], we identified an enrichment of the H3K4me1
enhancer mark within CTCF loop bodies relative to
flanking regions (Fig. 1a). We did not find enrichment of
other histone marks within CTCF loops, except for a
slight increase in the H2A.Z histone variant which is
also associated with active promoters and enhancers [29]
(Additional file 1: Figure S1). However, most histone
marks are enriched at CTCF loop anchors (Additional
file 1: Figure S1). The enrichment of active enhancer
marks within CTCF loops is also detectable using the
enhancer states determined by the ENCODE project
using the ChromHMM algorithm [30] (Fig. 1b). This al-
gorithm combines different histone marks and other
genomic features into a set of states, each defined by a
specific combination of features [31]. Chromatin states
associated with enhancers, weak enhancers and weak

transcription (which is associated with transcript pro-
duction but no transcription-associated chromatin
marks) were strongly enriched within K562 loops rela-
tive to flanking regions, while the state associated with
normal transcription remained relatively constant across
loops and their flanking regions (Fig. 1b). This indicates
that while transcription occurs both within and outside
the loops, the nature of this transcription differs between
the two regions, with enhancer-associated transcription
being more prominent within the loops. Unsurprisingly,
the insulator state is enriched specifically at the CTCF
loop anchors.
We reasoned that enhancer-regulated genes should be

located in gene poor regions, as more non-coding DNA
within and around the genes would be required for the
placement of enhancers [32]. We therefore expected a
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Fig. 1 Genomic properties of CTCF loops and flanking regions. a Profiles of H3K4me1 histone mark and gene and exon density across genomic
regions within and around CTCF ChIA-PET loops in both MCF-7 and K562 cells. The loops and their flanking regions are split into bins each spanning
10 % of the loop length. For each bin, the median feature coverage for all loops is plotted. Profiles were normalized by subtracting the mean of all bins,
displaying only the variation pattern across the profile. This was done because mean genomic bin coverage can vary substantially between chromatin
marks and other genomic features, separating the profiles along the Y-axis and making pattern comparison more difficult. b Profiles of enhancer- and
transcription-related chromatin states as defined by the ChromHMM algorithm, within and around CTCF ChIA-PET loops in K562 cells. Processed as
above, but without normalizing the means as all the profiles have similar means. Weak transcription differs from the normal transcription state in that
it is associated with transcript production but not with any further chromatin marks. c Expression level distribution for genes within and flanking CTCF
ChIA-PET loops in K562 and MCF-7 cells. Flanking regions are equal in size to the loops they flank. Flanking genes located within neighboring loops
are excluded from the set of flanking genes; there is no overlap between loop-enclosed and loop-flanking genes. Expression data are from the same
cell lines as the corresponding loop sets. d Tissue Specificity Index (TSI, see methods) distribution for genes within and flanking CTCF ChIA-PET loops.
Flanking genes are chosen as described above. e Coefficient of Variation (CV) distribution for genes within and flanking CTCF ChIA-PET loops. CV
(standard deviation/mean) indicates the degree of variability in expression level of a gene across tissues. Flanking genes are chosen as
described above
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lower ratio of coding to non-coding DNA within the loops
relative to their flanking regions. Indeed, there is a marked
reduction in exon density within CTCF loops relative to
flanking regions (Fig. 1a). This corresponds to a less pro-
nounced reduction in within-loop gene density, although
the centers of the loops are enriched for genes. These re-
sults imply that CTCF loops enclose gene poor regions,
with a tendency for genes to be centered within the
loops. Alternatively, it may reflect a high gene density
just outside CTCF loops. The low exon density com-
pared to gene density within the loops relative to the
flanking regions indicates a proportionally larger
amount of non-coding DNA within the intergenic re-
gions around the loop-enclosed genes, as loop genes
are shorter (loop vs flank medians: 13.5kb vs 18.5kb &
13.9kb vs 21.5kb; p = 1.2 × 10−47 & p = 2.4 × 10−90 for
K562 & MCF-7 cells respectively, Wilcoxon rank sum
test) and their intron density is also lower (Additional
file 1: Figure S1C).
Gene Ontology [33] analysis showed that genes lo-

cated within CTCF loops are enriched for response to
stimuli (K562 & MCF-7 cells: fold enrichment = 1.2 &
1.2, p = 2.5 × 10−16 & p = 5.7 × 10−18 respectively,
hypergeometric distribution test). Several stimulus re-
sponsive function categories are enriched (particularly
immune system and inflammation-related) and, to a
lesser extent, developmental and cell differentiation
categories (Additional file 2: Table S1). These are bio-
logical function categories that are associated with dy-
namic transcription regulation. Consistent with their
biological functions, these loop genes are also enriched
for extracellular, plasma membrane and vesicle cellular
localizations.
In contrast to genes within the CTCF loops, those in

the flanking regions just outside the loops show an ex-
pression pattern more similar to housekeeping genes:
they are on average more highly expressed than the

loop-enclosed genes (Fig. 1c, Table 1), less cell line-
specific in their expression pattern (Fig. 1d, Table 1), and
have less variation in their expression levels across cell
lines (Fig. 1e, Table 1). This is confirmed by the enrich-
ment of genes from a list of human housekeeping genes
determined from 16 diverse human tissue types [34] in
these loop-flanking regions (K562 & MCF-7 cells: fold
enrichments = 1.3 & 1.28 respectively, p = 2.91 × 10−9 &
p < 10−323 respectively, hypergeometric distribution test).
Gene Ontology analysis also shows enrichment for
housekeeping biological functions such as RNA process-
ing, primary metabolism, cytoskeletal and cell cycle pro-
teins, with genes localized primarily to the cytoplasm,
mitochondria and nucleus (Additional file 2: Table S1).
These findings were recently corroborated by another
comprehensive study of CTCF ChIA-PET data [35].
Loop-distal genes, which are located neither within

loops nor within their flanking regions, generally resem-
ble within-loop genes more than they do loop-flanking
genes in their expression patterns in these two cell types,
in that they have lower expression levels, higher tissue
specificity and greater expression variability across cell
types than the loop flanking genes (Fig. 1c–e, Table 1).
They further resemble within-loop genes in that they are
enriched for cell surface-associated Gene Ontology
terms; however these are primarily nervous system-
related (Additional file 2: Table S1). It is unknown
whether they might be enclosed within CTCF loops in
other cell types like neuronal cells.
We have previously reported that genes that were

down-regulated in lymphocytes of CTCF mutant human
patients are enriched among the within-loop genes for
the K562 cell line, after these K562 CTCF loops were fil-
tered for those whose anchors overlap CTCF binding
sites in lymphocytes [19]. Here, we additionally detect
an enrichment of genes whose expression did not differ
between patients and controls, within the CTCF loop-

Table 1 Gene expression pattern differences between ChIA-PET CTCF loop-enclosed, loop-flanking and loop-distal genes

Cell line Measure Loops Flanks Distal Flanks/Loops Flanks/Distal Loops/Distal

FCa P-valueb FC P-value FC P-value

K562 Gene Count 4378 4767 6466

Median Expression (FPKM)c 0.853 1.698 0.091 1.99 5.89e–07 18.66 1.25e–93 9.37 9.74e–56

Median TSId 0.754 0.6756 0.7565 0.9 5.3e–37 0.89 8.23e–47 1.0 0.27

Median CVe 1.142 0.8357 1.192 0.73 1.72e–36 0.7 1.34e–56 0.96 0.01

MCF7 Gene Count 5469 6490 3847

Median Expression (FPKM) 0.467 2.18 0.413 4.67 1.92e–65 5.28 1.07e–90 1.13 9.04e–06

Median TSI 0.7818 0.6721 0.7549 0.86 1.65e–98 0.89 3.16e–46 1.04 1.19e–05

Median CV 1.331 0.8214 1.178 0.62 3.92e–100 0.7 9.91e–56 1.13 7.65e–04
aFC: Fold Change of the medians
bP-value based on Wilcoxon rank sum test with continuity correction
cFPKM: Fragments Per Kilobase per Million mapped reads
dTSI: Tissue Specificity Index
eCV: Coefficient of Variation
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flanking regions of both K562 and MCF7 cells (fold en-
richments = 1.13 & 1.18 respectively, p = 1.94 × 10−4 &
p = 8.21 × 10−10 respectively, hypergeometric distribu-
tion test). This is consistent with the housekeeping func-
tions identified for these patient-unaffected genes [19].

CTCF interactions can be predicted from CTCF ChIP-seq data
In order to investigate CTCF loop-enclosed genes in a
broad array of cell lines, we developed an algorithm to
predict CTCF loops from CTCF ChIP-seq datasets.
These datasets contain genome-wide CTCF DNA

binding sites and are available for many cell lines from
the ENCODE project [25]. Our algorithm exploits the
recently reported finding that CTCF binding site motifs
are oriented towards the loop body [26]. Using EN-
CODE CTCF ChIA-PET data from the K562 and MCF-
7 cell lines, we first confirmed that the 3′ end of the
CTCF motif (Jaspar database [36]) is oriented towards
the loop body (Fig. 2a) in over 70 % of all anchors
(K562: 27946/38452 anchor motifs (73 %), MCF-7:
48653/67584 anchor motifs (72 %), p < 10−323 for both
K562 and MCF-7 cell lines, chi-square test). We further
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Fig. 2 Predicting CTCF loops from ChIP-seq datasets. a Model of CTCF loops implied by CTCF motif orientation in loop anchors. RAD21: cohesin
subunit. b Percentage of motifs for which motif orientation is concordant with loop anchor orientation (as depicted in a), for motifs in different
score categories in MCF-7 and K562 cells. c Schematic illustration of CTCF loop prediction algorithm. Triangles represent CTCF ChIP-seq peaks,
with color and size reflecting binding strength (peak scores). Black arrows represent CTCF motifs, with orientation indicated by arrow. Predicted
loops are represented by double-headed arrows, with color reflecting predicted loop strength. Briefly, the loop prediction algorithm scans the
genome from left to right connecting start anchors to end anchors based on motif orientation (1st iteration, light green horizontal arrows). New
loop sets are begun when new start anchors are encountered beyond end anchors (loop 3). Subsequently, weaker peaks (light green triangles) are filtered
out and the genome is rescanned, identifying stronger, longer loops (loop 4, dark green arrow). This process is repeated with progressively higher peak
thresholds up to a maximum threshold. d Example of CTCF ChIP-seq peak-based predicted CTCF loops (below) compared to experimentally determined
CTCF ChIA-PET loops (above, data from two replicate experiments shown) in MCF-7 cells. Darker lines indicate stronger (predicted) loops. e Comparison of
percentage of correctly predicted ChIA-PET loops with 1000 random control datasets in which motif orientation within ChIP-seq peaks is randomly
permuted, for K562 and MCF-7 cell lines. Grey density plots depict the distributions of the random control percentages. Black diamonds indicate the actual
percentages. f Comparison of percentage of correctly predicted Hi-C loops with 1000 random control datasets in which motif orientation within ChIP-seq
peaks is randomly permuted, for 7 cell lines

Oti et al. BMC Genomics  (2016) 17:252 Page 5 of 16



observed that the concordance between motif orienta-
tion and interaction direction correlates with motif
score; it increases with the similarity of the motif to the
canonical CTCF motif, reaching almost 95 % concord-
ance for the highest-scoring motifs (Fig. 2b). Concordant
CTCF motif scores follow a bimodal distribution with an
enrichment of high-scoring motifs as well as a subset of
lower-scoring motifs, while discordant motifs follow a
unimodal distribution with primarily low-scoring motifs
(Additional file 1: Figure S2A).
Based on this motif orientation preference, we devel-

oped a computational algorithm for predicting CTCF in-
teractions from ChIP-seq data (Fig. 2c). For a given
ChIP-seq dataset, we scan the CTCF motifs located in
the CTCF binding sites (ChIP-seq peaks), opening CTCF
loops each time a parallel motif is encountered and clos-
ing all currently open loops for each anti-parallel motif
that is encountered. As this simple scanning approach
cannot identify nested CTCF loops which occur exten-
sively in the CTCF ChIA-PET data, we iteratively rescan
the genome after removing the lowest-scoring ChIP-seq
peaks from the dataset, using successively more strin-
gent cut-offs. Given that stronger peaks are more likely
to be involved in experimentally determined interactions
[13], removing weaker peaks should allow us to skip
over CTCF binding sites that do not interact robustly in
the cell. This allows us to identify larger outer loops that
enclose smaller inner loops, provided the outer loops are
anchored by stronger CTCF binding sites than the inner
loops (Fig. 2c). When predicted loops at different peak
thresholds are combined, this approach effectively re-
covers nested ChIA-PET loop structures (Fig. 2d). We find
the highest recovery rate of ChIA-PET loops occurs when
excluding the weakest 30–50 % of CTCF ChIP-seq peaks,
although the success rate varies between different CTCF
ChIP-seq data sets even for the same cell type (Additional
file 1: Figure 2B). Nevertheless, prediction performance is
much better than random expectation for both K562 and
MCF-7 cell types (~30 % vs ~12 %, p < 10−323 for both cell
types, p-value based on normal distribution fitted to
random scores) (Fig. 2e). Independent validation using
experimentally determined CTCF-associated loops based
on the Hi-C technique [26] gave consistent results with
the ChIA-PET loop validation (p < 10−323 for all cell types,
p-value based on normal distribution fitted to random
scores) (Fig. 2f). It should be noted that these overlap esti-
mates are probably lower bounds, as the ChIA-PET tech-
nique is likely to miss interactions as evidenced by the
moderate reproducibility of loops between replicates
(~11800 shared loops between replicates containing
47234 and 18181 loops respectively), while the Hi-C loops
are biased toward longer loops due to the sequencing
depth-limited genomic resolution of the technique [26]
(Additional file 1: Figure S2C). In addition, the overall

domain architecture can be detected from the predicted
loops even when many of the individual ChIA-PET loops
within the region are undetected (Fig. 2d). Furthermore,
predicted loops involving stronger CTCF peaks are more
likely to reflect experimentally determined loops than
those linking weaker peaks (Additional file 1: Figure S2D),
consistent with the observation that stronger CTCF peaks
are more likely to be involved in ChIA-PET interactions
in mouse embryonic stem cells than weaker CTCF peaks
[13]. When all peaks are used for loop predictions, the
majority of the genome falls within predicted CTCF loops
in most cell lines (Additional file 3: Table S2). Predicted
loops involving weak CTCF peaks are therefore less likely
to be biologically relevant than those linking stronger
binding sites.
In order to obtain subsets of high-confidence pre-

dicted loops, we filtered the top-scoring 5 % of predicted
loops for each dataset. As these high-scoring predicted
loops also tend to be the longer loops (Fig. 2c), they re-
flect the larger CTCF-demarcated domains and generally
enclose 25–30 % of all genes predicted to lie within
CTCF loops per cell line (Additional file 3: Table S2).
These stringent loop subsets were used for further com-
parison of the genome-wide CTCF loop-enclosed gene
architecture across the ENCODE cell lines.

Enrichment of stimulus response genes within CTCF loops
is universal across cell lines
We applied our CTCF loop prediction algorithm to 100
CTCF ChIP-seq datasets generated by the ENCODE
consortium [25], in order to investigate the generality of
the enrichment of stimulus response genes within
CTCF-enclosed chromatin domains (Additional file 3:
Table S2 and https://zenodo.org/record/29423). Due to
the variability in ChIP-seq datasets and correspondingly
in loop prediction between different labs even for the
same cell line (Additional file 1: Figure 2B), we restricted
our analysis to the 50 cell line datasets generated by the
University of Washington (UW) [25]. Using K-means
clustering, we clustered the genes into six clusters based
on their pattern of loop membership across cell lines
(Fig. 3a). Similar results are obtained with different
choices of cluster number (Additional file 1: Figure S3).
While the largest cluster (cluster 1; 13681 genes) con-
tains genes absent from strong predicted CTCF loops in
virtually all cell lines, the next largest (cluster 3; 3293
genes) contains genes predicted to lie within strong
CTCF loops in the majority of cell lines. Consistent with
the genes located within ChIA-PET loops in K562 and
MCF-7 cells, this latter cluster is enriched for genes in-
volved in the regulation of cellular responses to external
signals (Additional file 4: Table S3).
Strikingly, hierarchical clustering of the cell lines based

on their cluster similarity profiles reveals a general
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segregation of primary and immortal cells (Fig. 3a).
Cluster 2 (1665 genes) contains genes that are loop-
enclosed predominantly within immortal cells, while
cluster 6 (1994 genes) contains genes that generally
loop-enclosed in primary cells but not in immortal cells.
Primary cells also generally contain more predicted loop-
enclosed genes than the immortal cells (median 6533 vs
6063 genes respectively for UW samples, p = 3.47 × 10−5,
Welch two sample T-test), an effect that is still observable
even when datasets from multiple ENCODE labs are
pooled (Fig. 3b). This is despite the fact that the overall
number of CTCF binding sites does not differ significantly
between these two classes (median 45910 vs 45711 peaks
respectively for UW samples, p = 0.28, Welch two sample
T-test) (Fig. 3c, and ref. [37]), and that CTCF gene expres-
sion is actually higher in immortal than in primary cells
[37]. This segregation of primary and immortal cells is
also observable using principal components analysis

(Fig. 3d) where it corresponds to the main axis of vari-
ation. It is consistent with the previously reported DNA
methylation-dependent differences in CTCF binding pat-
terns between these two classes of cell types [37], in which
a small subset of CTCF binding sites is silenced by DNA
methylation in immortal cells [38]. Interestingly, and
consistent with their more differentiated nature, gene
ontology [33] analysis shows that genes within primary
cell-specific predicted CTCF loops are enriched for tran-
scription regulation, stem cell differentiation and the regu-
lation of cell motility and migration (Additional file 4:
Table S3). In contrast, genes located within putative CTCF
loops in immortal cells but not in primary cells show a
slight enrichment for regulation of (Rho) GTPase activity,
lipid and glucan metabolic processes, and mitotic cell
cycle – consistent with their proliferation phenotype
(Additional file 4: Table S3). Apart from this separation
into primary and immortal cell types, no clear clustering

A

B C D

Fig. 3 Gene content similarities and differences between ENCODE cell lines for predicted CTCF loops. a Heatmap showing similarity of predicted
CTCF loop-enclosed gene content across the University of Washington ENCODE cell lines. Genes are clustered into six clusters using K-means
clustering. Cell lines are clustered hierarchically based on the K-means cluster patterns, using the average linkage algorithm and Euclidean
distances. Heatmap colors indicate the proportion of genes from that cluster falling within CTCF loops in that cell line. b Predicted CTCF loop
gene count distributions for primary and immortal cells, for all ENCODE datasets and for the subset from the University of Washington (UW).
Notches extend 1.58*IQR/sqrt(n) from the medians and roughly correspond to their 95% confidence intervals (IQR = inter-quartile range). c CTCF
ChIP-seq peak count distributions for primary and immortal cells (all ENCODE datasets and UW-only datasets). d Principal Components Analysis
(PCA) of cell lines based on their predicted CTCF loop-enclosed gene content (PC1 vs PC2 plotted)
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by cell type is observable (Fig. 3a). Somewhat surprisingly,
three primary cell types (HUVEC, NHEK & SAEC) cluster
with the immortal cell lines (Fig. 3a).
A common theme to the functions associated with gene

clusters enriched for CTCF loop-enclosed genes in mul-
tiple cell types (clusters 2,3,4 & 6) is the preponderance of
regulatory processes. In contrast, genes that are rarely or
never located within putative CTCF loops (clusters 1 & 4)
are enriched for housekeeping processes and for genes
that are involved in specialized and highly cell type-
specific biological processes, such as olfactory receptors
(Additional file 4: Table S3). This is consistent with the
observation that genes with complex regulatory require-
ments have intermediate levels of tissue-specificity in their
expression patterns [32], and with CTCF playing a role in
the genomic organization of genes requiring dynamic
regulation and rapid changes in expression levels.

Discussion
Based on the pattern of affected genes in lymphocytes of
human patients with mutations in a single copy of their
CTCF gene [19], we hypothesized that a major role of
CTCF-mediated chromatin interactions may be to
stabilize the three-dimensional enhancer-promoter chro-
matin conformations of inducible genes. Here our data
show that stimulus response genes are enriched within
the CTCF loops across a wide variety of cell types, pro-
viding evidence to support this model.
Interestingly, CTCF-enclosed chromatin domains are

enriched for H3K4me1 chromatin mark which marks
both active and poised enhancers [16, 17], but they are
not as enriched for the H3K27ac mark which is specific
to active enhancers and promoters [16, 17] (Fig. 1a,
Additional file 1: Figure S1). Given CTCF’s previously
described role in poising inactive inducible genes for ac-
tivation [22], this suggests that they are associated with
the poising of inducible genes for transcription whether
or not they are currently active. In support of this, the
loop-enclosed genes tend to have a greater expression
variation within cell types and increased expression vari-
ability between cell types relative to loop-flanking genes
(Fig. 1c–e; see also ref [35]). In contrast, these flanking
genes are generally widely and highly expressed across
cell types (Fig. 1c–e; see also ref [35]), but are not asso-
ciated with enhancer marks (Fig. 1b). The gene functions
enriched within loops are those associated with indu-
cible genes, while those enriched among flanking genes
are associated with constitutive housekeeping processes.
This leads to a model in which CTCF loops enclose regula-
tory domains of dynamically expressed inducible enhancer-
regulated genes, insulating them from nearby domains of
constitutively expressed housekeeping genes (Fig. 4a). This
model is consistent with Hi-C data that show that flanking
regions of topologically associating domains are enriched

for housekeeping genes [39], and that domain boundaries
are demarcated by CTCF loops [26], and has been corrobo-
rated in another recent study [35].
These findings are also consistent with the genes af-

fected in CTCF patient lymphocytes, where highly
expressed genes involved in response to stimuli were
expressed at lower levels in patients than in controls [19];
a pattern which suggests that those patient genes were not
able to be sufficiently induced in response to stimuli. In
contrast to these patient lymphocyte findings, a recent
study in which CTCF was knocked down in HEK293T
cells found very little effect on global gene expression [40].
However, if CTCF loss primarily affects gene induction,
such an effect would only be detected if the cells were
additionally provided with transcription-inducing stimuli.
Notably, in the CTCF patient lymphocytes, the affected
genes were primarily involved in response to wounding,
inflammation and bacterial defense [19], all processes that
can be expected to be activated in lymphocytes in blood
drawn from human individuals.
The enclosure of the regulatory domains of stimulus

response genes is consistent with CTCF’s bilaterian
multicellular animal phylogenetic distribution [41], as
organisms in this clade have complex developmental
processes that make extensive use of local environmental
signaling cues within the embryo, such as morphogen gra-
dients and cell surface molecular markers, to direct cell
differentiation, migration, adhesion, proliferation and
apoptosis during development [42]. Diversification of cell
surface proteins and nuclear transcription factors, which
expand a cell’s repertoire of responses to environmental
signals, is characteristic for the evolution of multicellular
animal development [43]. Our findings therefore support
CTCF’s proposed role as a key facilitator of the evolution
of complex multicellular animals [41].
Mechanistically, the poising of inducible genes by

CTCF may involve the stabilization of the chromatin
interaction hubs that maintain the spatial co-localization
of enhancers and promoters [18, 26, 44, 45]. Indeed, a
CTCF interaction has been described to stabilize a head-
to-tail looping interaction of the inducible SAMD4 gene,
an interaction that is required for prompt response of
the gene to an inducing stimulus [22]. Interestingly, the
convergent linear orientation of interacting DNA-bound
CTCF molecules [26] (Fig. 2a) implies that such
enhancer-promoter chromatin interaction hubs are not
only required for transcription, but are also formed by
transcription. This is because such an orientation prefer-
ence is best explained by a transcription model in which
static fixed motor molecules reel a mobile chromatin tem-
plate through themselves (Fig. 4b and c). Within the nu-
cleus, motif orientation along the chromatin strand cannot
be reliably determined if CTCF binding sites encountered
each other through spatial diffusion, as interacting sites
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would not be able to distinguish between parallel and anti-
parallel orientations of their chromatin strands (Fig. 4b; see
also ref. [46, 47]). Similarly, oppositely oriented binding sites
would not be able to determine whether they are located 5′
or 3′ to each other without information on their linear chro-
matin positions relative to each other (Fig. 4b). Given that
CTCF binding sites primarily interact with partner sites that
are oppositely oriented, and given that these sites generally
lie on their 3′ side, there must be linear communication
between them along the chromatin strand (see also ref.
[46, 47]). Additionally, as linearly distant partner sites
need to be brought together in close spatial proximity in
the nucleus in order to interact with each other, this lin-
ear communication can be explained by chromatin tem-
plate reeling by a motor protein that pulls the partner
sites towards each other (Fig. 4c). The most obvious

candidate for such a reeling motor is RNA polymerase II
(RNAPII). It has been proposed that during RNAPII tran-
scription relatively static polymerases reel the mobile chro-
matin template through them as they transcribe DNA [48];
a central tenet in the “transcription factory” model of tran-
scription [28]. CTCF interacts with RNAPII via its C-
terminal domain [49], although the loop body is located
on the 3′ side of the motif and therefore on the N-
terminal side of the bound protein [44, 50] (Fig. 2a).
DNA-bound CTCF molecules have also been reported
to stall transcribing RNAPII polymerases [51].
These observations allow us to propose a mechanistic

model for CTCF binding site interaction formation, in
which reeling polymerases in transcription factories stall
when they encounter bound CTCF molecules that they
cannot interact with (Fig. 4c). The more strongly the CTCF

A

CB

Fig. 4 Models of CTCF loop formation and genomic organization. a Model of CTCF loop-enclosed genomic domain. CTCF loops enclose domains of
enhancer-regulated stimulus-responsive genes, separating them from domains of constitutively expressed housekeeping genes. b The strong prefer-
ence shown by CTCF binding sites for interacting with partner sites on their 3′ side that have an opposite orientation cannot be explained by a spatial
diffusion model in which partner sites encounter each other through diffusion in three-dimensional nuclear space. Such a mechanism would not be
able to distinguish between the three depicted scenarios (upstream vs downstream location of partner sites and parallel vs anti-parallel orientation of
partner sites). The strong observed preference for scenario (iii) implies chromatin template-mediated contact between the partner sites. c Mechanistic
model for the formation of interactions between CTCF-bound genomic sites. Relatively stationary RNAP2 molecules in transcription factories reel in the
chromatin template, bringing distal CTCF binding sites towards the factory. Bound CTCF molecules presenting their C-terminus to the RNAP2 polymer-
ase interact with and are efficiently dislodged by the polymerase. Those presenting their N-terminus stall the polymerase, giving them time to interact
with other factory-tethered CTCF molecules
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molecule is bound the longer the polymerase is stalled, in-
creasing the opportunity for interaction with spatially prox-
imal CTCF binding sites also localized to the transcription
factory – explaining the quantitative relationship between
binding strength and orientation preference (Fig. 2b).
Should the reeling polymerase encounter a bound CTCF
molecule presenting its C-terminal domain however, it
would be able to interact with and efficiently dislodge the
bound CTCF molecule (Fig. 4c). In this model, transcrip-
tion would only be required for loop formation and not
loop maintenance. This loop formation-associated tran-
scription through entire gene regulatory domains may be
related to the “weak transcription” chromatin state which is
specifically enriched within CTCF loops (Fig. 1b). It is im-
portant to note that such domain-wide transcription is un-
likely to produce functional mRNAs and therefore does not
conflict with the observation that enhancer-promoter chro-
matin interactions can be formed and maintained in
the absence of active mRNA production [21, 23].
Once formed, the CTCF interactions can then be
fortified through the recruitment of cohesin ties
[52, 53]. This is supported by the obsevations that
the majority of CTCF binding sites are co-bound by
cohesin and that CTCF binding is required for cohe-
sin recruitment to these sites [54]. Our model is
similar to the extrusion model recently proposed by
Nichols and Corces [46] as well as Lieberman‐Aidez
and colleagues [47], but proposes a central role for
transcription as the motor behind CTCF loop forma-
tion. Nevertheless the two models are not mutually
exclusive.
It is reasonable to assume that not all interacting

CTCF binding sites are brought together by chroma-
tin template reeling as inter-chromosomal and very
long range cis-interactions also occur [13]. While
some of these long-range interactions might be arti-
facts of the ChIA-PET technique, inter-chromosomal
interactions identified using ChIA-PET have been ex-
perimentally validated [20, 23], so many are likely to
be genuine. Therefore, chromatin template reeling is
unlikely to be an absolute requirement for the
establishment of all CTCF interactions. Actively tran-
scribed sites may also co-localize in the nucleus
through spatial clustering of active genes in transcrip-
tion factories [55], even without RNAPII reeling as a
mechanism to bring them together. Still, the prepon-
derance of specifically located and oriented cis-linked
interaction partners, especially for the binding sites
with stronger motifs (Fig. 2b and ref. [26]), suggests
that chromatin template reeling is the main mechan-
ism by which CTCF binding sites are brought into
proximity with their interaction partners. Importantly,
this model suggests that transcription shapes the for-
mation of the CTCF interactome.

It should be noted that the gene functional category
enrichments for the CTCF loop-enclosed and loop-
flanking genes are relatively modest, generally below
two-fold (Additional file 2: Tables S1 and Additional
file 4: Table S3), and therefore probably only reflect the
role of a subset of CTCF loops. The majority of CTCF
loops may simply be involved in the structural organization
of the chromatin fiber. Nevertheless, the H3K4me1 poised/
active enhancer mark is the only one that is clearly enriched
within CTCF loops when they are viewed at a global scale
(Additional file 1: Figure S1), and the enrichment of genes
involved in regulatory and stimulus responsive processes
within CTCF loops is similarly clear and consistent across
cell types (Fig. 3a, Additional file 2: Tables S1 and Add-
itional file 4: Table S3). Where they do differ between cell
types (primary versus immortal), the putative loop-enclosed
genes reflect regulatory and environmental interaction-
related cellular processes that are relevant to the cell types
in which these genes are loop-enclosed (Fig. 3a, Additional
file 4: Table S3). Additionally, in lymphocytes of patients
with reduced levels of functional CTCF molecules, actively
transcribed stimulus inducible genes are clearly reduced
[19]. These patients also have mild phenotypes, suggesting
that most functions of CTCF are not very dosage-sensitive.
Taken together, these observations indicate that its role in
poising inducible genes for transcriptional up-regulation,
whether in response to environmental signals [22] or in the
course of normal development and cell differentiation [56],
is one of the most important general roles of CTCF in the
nucleus – at least from a quantitative perspective.

Conclusions
A major role of CTCF-mediated chromatin loops, particu-
larly those that are less than 200kb long, appears to be to
enclose enhancer-regulated gene domains, particularly
those involved in responding to stimuli. This looping may
facilitate rapid changes in transcription rate by stabilizing
pre-formed enhancer-promoter chromatin hubs that can
readily be converted into, or recruited to, active transcrip-
tion factories. It may also permit such genes to be con-
trolled independently from neighboring constitutively
expressed housekeeping genes. CTCF-mediated chroma-
tin loops can be predicted from ChIP-seq data due to the
CTCF binding orientation preference at interacting loop
anchors. This orientation preference suggests that these
loops may be formed by relatively stationary RNAPII mol-
ecules reeling in the chromatin template, thereby bringing
together distant CTCF genomic binding sites into close
spatial proximity in the nucleus.

Methods
Data sets
All analyses were done using the hg19/GRCh37 assem-
bly of the human genome. CTCF ChIA-PET loop and
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CTCF ChIP-seq peak files for the K562 and MCF-7 cell
lines were taken from the ENCODE project [25], down-
loaded from the ENCODE data collection center (DCC)
of the UCSC genome browser website [57]. The final
sets of predicted CTCF loops for these cell lines, used
for validation against the ChIA-PET loops, were gener-
ated by merging the ChIP-seq peak datasets per cell line,
retaining the maximum score per peak where they over-
lapped. The CTCF ChIA-PET interactions were filtered
for intra-chromosomal loops that overlapped CTCF
ChIP-seq peaks at both anchors in the same cell line.
Peaks from replicate ChIP-seq experiments were merged
per cell line. Histone mark ChIP-seq mapped read BAM
files for both cell lines were also downloaded from the
ENCODE DCC at the UCSC. As the ENCODE ChIP-seq
datasets did not include the H3K4me1 mark for the
MCF-7 cell line, the BAM files for this cell line (from
two replicate ChIP-seq experiments) were obtained from
reference [58]. All available ENCODE CTCF ChIP-seq
peak files for the different cell lines and from different
labs were downloaded from the UCSC ENCODE DCC.
Only the “AWG” versions of these ChIP-seq datasets
were used for cell line-specific CTCF loop prediction, as
these were all generated using a standardized processing
pipeline by the ENCODE consortium Analysis Work-
ing Group [25]. Genomic locations of genes and exons
were downloaded from the ENSEMBL database version
75 (human genome assembly GRCh37) [59] using the
BioMart web interface [60]. Gene Ontology terms [33]
and their human gene associations were downloaded
from the FTP website of the Gene Ontology Consortium
(ftp://ftp.geneontology.org/) on April 9 2015. ChromHMM
chromatin state datasets were downloaded from the UCSC
ENCODE DCC, with states defined by the ENCODE pro-
ject [31]. RNA-seq expression data (FPKM values) for poly-
adenylated whole cell gene transcripts, generated at the
CSHL lab using the GENCODE transcriptome [61] version
7, were downloaded from the UCSC ENCODE DCC for 15
cell lines (Additional file 3: Table S2).

Analysis tools and scripts
All analyses were performed using custom-written
Python, R and shell scripts (https://zenodo.org/record/
29423), in addition to third party Linux command line
tools. In particular, the BEDTools suite [62] (versions
2.16.2 to 2.22.1) was used extensively for genomic
interval processing. Statistical analyses were carried
out using the R statistical program (R core team (2015)
R: A language and environment for statistical comput-
ing. R foundation for Statistical Computing. Vienna,
Austria. http://www.R-project.org/). Plotting was done
with R using the ggplot2 [63] and pheatmap (http://
cran.r-project.org/web/packages/pheatmap/) packages.
Gene Ontology term enrichment was performed using

the goseq R package [64] from the Bioconductor project
[65].

Genomic profiles around CTCF loops
The reproducibility between the MCF-7 ChIA-PET rep-
licates is moderate (~11800 shared loops between repli-
cates containing 47234 and 18181 loops respectively).
Therefore we would expect clearer results when restrict-
ing our analysis to better-supported loops. Due to the
large difference in total number between the replicated
and the presence of well-supported loops (in terms of
ligation products) in only a single of the two replicates,
we decided to use a more stringent cut-off of 3 ligation
products (as opposed to the default 2) for loop filtering ra-
ther than restricting ourselves to loops present in both rep-
licates. We indeed obtained stronger over-representations
and more significant p-values with the more stringent loop
set, although similar results were also obtained with the full
loop set (data not shown).
Genomic profile generation around CTCF loops was per-

formed using a similar approach to that used by Handoko
et al. [13]. Each loop was extended by an equal-sized region
on either flank. Loops that were extended past a chromo-
some end were filtered out. The extended loop regions
were split into 30 bins, each equal to 10 % of the original
loop length. For each feature type (ChIP-seq reads, exons,
genes), features were overlapped with bins for each CTCF
loop, and feature counts per bin were normalized into
FPKM values (Features Per Kilobase per Million features)
to account for differing bin sizes between loops and differ-
ing total feature counts between feature types. Subse-
quently, for each of the 30 bins the median FPKM score
across all loops was determined. This resulted in a single
score profile per dataset. These score profiles were mean-
normalized to zero by subtracting the mean score of the 30
bins for each profile, centering all profiles on zero. This was
done in order to facilitate the comparison of histone mark
profiles with different median coverage levels in the same
plot, given that some marks have higher average densities
than others. However this mean-normalization was not
performed for the ChromHMM plot in Fig. 1b, as the signal
levels were comparable for all profiles. Consequently these
are absolute median FPKM profiles and are not zero-
centered. Note that as median feature FPKMs are used per
bin, a score greater than zero is generated only when the
feature occurs in that bin in at least half the surveyed loops.
Variance was not normalized in these profiles, to retain the
differences between features in the relative scale of the vari-
ation. Genomic profile generation was carried out using a
custom R script (https://zenodo.org/record/29423) which
in turn uses the BEDTools programs makewindows (for
splitting of extended loop regions into bins), intersect (for
counting features in window bins) and bamtobed (for read-
ing from ChIP-seq BAM files). For the K562 cell line the
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single CTCF ChIA-PET dataset was used for profile gener-
ation while for the MCF-7 cell line, which has two replicate
CTCF ChIA-PET datasets, the larger dataset (replicate 1)
was used. Both datasets were filtered for loops supported
by at least three ligation products.

Gene expression patterns within and adjacent to CTCF loops
Genes were classified as being within-loop genes if they
overlapped a CTCF ChIA-PET loop, and as loop-flanking
genes if they were located within loop-flanking regions of
equal size to the loop. Genes that fell into both categories
because they flanked some loops but overlapped others
were subtracted from the set of loop-flanking genes. Other
genes not falling within either of these two categories were
classified as loop-distal genes.
Gene expression patterns were determined using a sub-

set of ENCODE RNA-seq datasets, limited to the GEN-
CODE version 7 whole cell PolyA+ transcript RNA-seq
datasets from the Cold Spring Harbor Laboratory (CSHL)
for consistency reasons. This resulted in expression data
for 15 cell types including K562 and MCF-7 (Additional
file 3: Table S2). The ENCODE-computed FPKM values
were used, and the mean of the two replicates was taken
per gene.
The Tissue Specificity Index (TSI) was taken from

Yanai et al. [66] and determines to what extent a gene is
expressed at a much higher level in one or a few tissues
relative to the rest. It is given by:

TSI ¼
X

i

n
1 − Ei=Emaxð Þ= n−1ð Þ

where Ei is the expression level in tissue i, Emax is the
maximal expression level in any tissue and n is the num-
ber of tissues or cell types.
The Coefficient of Variation (CV) is a normalized

measure of the variance in expression level across the
datasets, and is given by:

CV ¼ SD Eð Þ = mean Eð Þ
where E is the set of expression levels in all tissues,

and SD and mean indicate the standard deviation and
the mean of the gene expression levels across the cell
types, respectively.
The list of human housekeeping genes were taken

from Eisenberg & Levanon 2013 [34].

Motif-anchor concordance levels
To determine the concordance between CTCF motif
and ChIA-PET loop anchor orientations, CTCF motifs
were intersected with ChIA-PET anchors using BED-
Tools intersect for both the K562 and the MCF-7 (repli-
cate 1 dataset) cell lines. As anchors for multiple
different ChIA-PET loops can localize to the same
CTCF binding site, the total number of anchors in each

orientation was tallied for each motif, as well as the max-
imum ChIA-PET loop score for each orientation. For
the ChIA-PET loop score, the number of ligation prod-
ucts supporting the reported ChIA-PET loop was used.
Motifs overlapped by ChIA-PET anchors in both orien-
tations were classified as bi-directional. For comparing
concordance levels for different motif score bins, bi-
directional anchor motifs were classified as discordant if
one or more discordant loops were supported by more
ligation products than all concordant interactions (i.e. if
one or more discordant loops were stronger than all
concordant loops), and otherwise as concordant.

CTCF loop prediction algorithm
The FIMO tool [67] from the MEME suite [68] (version
4.8.1) was used to scan genome-wide for CTCF motifs in
the human genome (assembly hg19) (Additional file 3:
Table S2). Default settings were used, except for a conserva-
tive p-value threshold of 2.5 × 10−4 which was chosen due
to the p-value distribution acquiring a strongly periodic pat-
tern above this threshold (Additional file 1: Figure S4), sug-
gesting primarily artifactual motifs. The CTCF motif
position weight matrix used for the scanning was taken
from the JASPAR database [36], from the JASPAR
CORE vertebrates motif collection of 2009 (motif ID:
MA0139.1). For each ChIP-seq peak dataset, the genome-
wide motifs were overlapped with the peaks to obtain the
subset of peak motifs for that dataset. Peak-contained mo-
tifs were considered as anchors for loop prediction. Loop
anchor scores were computed from both peak and motif
scores by multiplying the ChIP-seq peak scores provided
by the ENCODE consortium with the motif scores assigned
by FIMO, weighting the peak scores tenfold more than the
motif scores:

anchor score ¼ peak score � motif score=10ð Þ

This was done because CTCF binding strength can
vary between cell types at the same binding sites, in a
DNA methylation-dependent manner [37]. Consequently,
the experimentally determined binding strength in each
cell line was weighted more heavily than the static motif
score. Loop scores were calculated as the geometric mean
of the anchor scores at both anchors.
In this study the prediction algorithm iterates over

thresholds defined using peak proportions rather than
peak scores. However, the Python script created to im-
plement the algorithm is capable of using either propor-
tions or scores.
The basic loop prediction algorithm used in this study

is as follows:

1. For all chromosomes:
a. Scan through all CTCF peak-enclosed motifs.
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b. If it is a plus strand motif and there are no
current end anchors, add it to the list of current
start anchors.

c. If it is a plus strand motif and there are one or
more current end anchors, match all current plus
strand motifs (start anchors) to all current minus
strand motifs (end anchors) to create a set of
predicted loops. Score all newly predicted loops
with the geometric mean of their two anchor
scores (less outlier sensitive than arithmetic
mean). Then initiate a new list of current start
anchors with the present one.

d. If it is a minus strand motif, add it to the list of
current end anchors.

e. If the end of the chromosome is reached, match
all current plus strand motifs (start anchors) to
all current minus strand motifs (end anchors).

2. Filter out lowest scoring 10 % ChIP-seq peaks and
repeat step 1 above. Merge the new predicted loops
with the already existing predicted loops.

3. Repeat step 2 above with successively larger subsets
of the lowest scoring peaks being filtered out, in
increments of 10 % of the total number of ChIP-seq
peaks, until the final threshold where 60 % lowest
scoring peaks have been filtered out.

The genome is only scanned in the forward direction,
as with this algorithm the reverse scan gives identical
loop predictions and is therefore redundant. A custom
Python script implementing this algorithm is provided in
the Additional files (Additional file 5).

CTCF loop prediction validation
Predicted CTCF loops were validated against ENCODE
ChIA-PET loops for the K562 and MCF-7 cell lines, and
against the Hi-C loops from Rao et al. [26] for the seven
cell lines provided therein. ENCODE ChIP-seq datasets
were merged per cell line using the BEDTools “merge”
tool, and merged peaks were assigned the maximum
peak score from the contributing datasets. ChIA-PET
loops were filtered for those supported by at least 3
ligation products. Both MCF-7 ChIA-PET replicate data-
sets were merged before validation. CTCF motifs that
served as anchors in predicted loops were extended by
100 bp in either direction before overlapping with the
experimental loop anchors. Only predicted loops that
overlapped experimentally determined loops at both an-
chors were considered validated. Predicted versus ex-
perimental loop overlap evaluation was done using a
custom Python script (https://zenodo.org/record/29423),
which in turn relies on BEDTools intersect.
Randomization controls for the predicted CTCF loop

datasets were generated by randomly permuting the
motif orientations of the peak-contained CTCF motifs.

Everything else remained the same, including peak and
motif locations and strengths, and the total numbers of
motifs in each orientation. K562 and MCF-7 dataset ran-
domizations that were validated against the ChIA-PET
loops were performed using the same merged ChIP-seq
peak datasets used for loop prediction in these cell lines.
Randomizations for the datasets validated against the
Hi-C loops were based on the AWG ChIP-seq peak
datasets, which were also used for the actual loop
predictions.

ENCODE ChIP-seq dataset comparison
CTCF loops were predicted for the 100 ENCODE AWG
uniformly processed ChIP-seq datasets. Predictions were
performed using a final peak threshold of 60 % and an
interval size of 10 %. For each dataset the top 5 % of pre-
dicted CTCF loops less than 1Mb long were used for
further analyses. Genes contained within these loops
were determined using BEDTools intersect. Five out of
the 100 datasets with abnormally low numbers of loop-
enclosed genes, defined as greater than 2 standard de-
viations from the mean number of predicted CTCF
loop-enclosed genes per dataset, were excluded as be-
ing outliers. The 50 University of Washington (UW)
cell line datasets from the remaining 95 ChIP-seq data-
sets were used for further analyses.
The pheatmap R package was used for the K-means

clustering of genes based on their pattern of predicted
loop containment across the 50 UW ENCODE cell lines,
as well as the hierarchical clustering of these cell lines
based on their K-means cluster score profiles. The K-
means cluster scores indicate the proportion of genes in
that cluster that lie within predicted CTCF loops in that
cell line.
Classification of ENCODE cell line datasets according

to different properties such as lab of origin, cell lineage,
karyotype and immortality was done based on the EN-
CODE annotation available from the UCSC ENCODE
Data Collection Center website (http://genome.ucsc.edu/
ENCODE/cellTypes.html).

Availability of supporting data
Additional data files have been submitted to the Zenodo
website and are available online at https://zenodo.org/
record/29423 [69].

Additional files

Additional file 1: Figure S1. Profiles of histone marks and gene-related
features across genomic regions within and around CTCF ChIA-PET loops
in K562 cells. The loops and their flanking regions are split into bins each
spanning 10 % of the loop length. For each bin, the median feature
coverage for all loops is plotted. Profiles were normalized by subtracting
the mean of all 30 bins, displaying only the variation pattern across the
profile. This was done because mean genomic bin coverage can vary
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substantially between chromatin marks and other genomic features,
separating the profiles along the Y-axis and making pattern comparison
more difficult. A) Loops shorter than 200kb in length. B) Loops between
200kb and 1Mb in length. (A & B) Top panels: regulatory element-
associated histone marks and variants. Middle panels: Repression-associated
histone marks. Bottom panels: Transcribed region-associated
histone marks. C) Gene-related features for K562 (top) and MCF-7 (bottom) cell
lines. (Note that as median densities are plotted per bin, when the proportion
of loops with a given feature drops below half the median jumps to zero as in
the peripheral bins of the MCF-7 DHS profile. Also note that the strong DHS
enrichment at loop anchors compresses the scale of the other profiles.).
Figure S2. A) Motif score distributions for exclusively concordant,
exclusively discordant and bi-directional loop anchors in both MCF-7
and K562 cells. Concordant and bi-directional motifs show a bimodal
distribution with a population of low-scoring and a population of
high-scoring motifs. Discordant motifs show a unimodal distribution
of low-scoring motifs. B) Proportion of ChIA-PET loops identified by CTCF
ChIP-seq peak-based loop prediction at different peak thresholds. The X-axis
contains the percentage (x%) of CTCF ChIP-seq peaks used for the prediction,
after filtering out those (100-x%) with the lowest scores. C) Length distributions
(log10-transformed number of base pairs) of predicted CTCF loops that either
overlap (green) or do not overlap (red) experimentally determined Hi-C loops
for different cell types. Notches correspond to 95 % confidence intervals for
the medians. D) Loop score distributions of predicted CTCF loops that either
overlap (green) or do not overlap (red) experimentally determined Hi-C loops
for different cell types. Notches correspond to 95 % confidence intervals for
the medians. Figure S3. Heatmaps showing patterns of predicted CTCF
loop-enclosed gene content across different ENCODE cell lines from the
University of Washington lab. Genes are clustered using K-means clustering
based on their pattern of loop membership across cell lines. Cell lines are
hierarchically clustered based on their K-means cluster similarity profiles,
using average linkage and Euclidean distance. Heatmap colors indicate the
proportion of genes from that cluster falling within CTCF loops in that cell
line. A) K-means gene clustering with K = 12 clusters. B) K-means gene
clustering with K = 16 clusters. Figure S4. Density plot of CTCF motif
p-values from a genome-wide scan using the FIMO program with a motif
p-value threshold of 10−3. (PDF 326 kb)

Additional file 2: Table S1. Gene Ontology term overrepresentation for
genes located within and flanking ChIA-PET CTCF loops in K562 and
MCF-7 cell lines. (XLSX 11854 kb)

Additional file 3: Table S2. Datasets used in and generated by this
study. (XLSX 23 kb)

Additional file 4: Table S3. Gene Ontology term overrepresentation
for genes in different K-means clusters based on occupancy pattern of
genes in predicted CTCF loops for the University of Washington (UW)
ENCODE cell lines. (XLSX 8869 kb)

Additional file 5: A custom Python script. (ZIP 7kb)
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