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growth and development of grafted apple

Guofang Li'", Juanjuan Ma'", Ming Tan', Jiangping Mao', Na An', Guangli Sha?, Dong Zhang', Caiping Zhao'

and Mingyu Han'"

Abstract

Background: The root architecture of grafted apple (Malus spp.) is affected by various characteristics of the scions.
To provide information on the molecular mechanisms underlying this influence, we examined root transcriptomes
of M. robusta rootstock grafted with scions of wild-type (WT) apple (M. spectabilis) and a more-branching (MB)

mutant at the branching stage.

Results: The growth rate of rootstock grafted MB was repressed significantly, especially the primary root length and
diameter, and root weight. Biological function categories of differentially expressed genes were significantly
enriched in processes associated with hormone signal transduction and intracellular activity, with processes related
to the cell cycle especially down-regulated. Roots of rootstock grafted with MB scions displayed elevated auxin and
cytokinin contents and reduced expression of MrPINT, MrARF, MrAHP, most MrCRET genes, and cell growth-related
genes MrGH3, MrSAUR and MrTCH4. Although auxin accumulation and transcription of MrPIN3, MrALFT and MrALF4
tended to induce lateral root formation in MB-grafted rootstock, the number of lateral roots was not significantly
changed. Sucrose, fructose and glucose contents were not decreased in MB-grafted roots compared with those
bearing WT scions, but glycolysis and tricarboxylic acid cycle metabolic activities were repressed. Root resistance
and nitrogen metabolism were reduced in MB-grafted roots as well.

Conclusions: Our findings suggest that root growth and development of rootstock are mainly influenced by sugar
metabolism and auxin and cytokinin signaling pathways. This study provides a basis that the characteristics of
scions are related to root growth and development, resistance and activity of rootstocks.

Keywords: Grafted apple, Root growth and development, Sugar metabolism, Auxin signaling, CKs signaling, Cell

cycle

Background

In terms of nutritional value and economic importance,
apple (Malus domestica Borkh.), grape, orange and ba-
nana are globally the most predominant fruit crops.
Among these four fruit crops, apple is king. Apple pro-
duction relies heavily on grafting, a technique that com-
bines well-adapted rootstocks with high-quality scions.
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Various aspects of scion growth and development, such
as plant height, fruiting rate, resistance, physiological
and biochemical characteristics and environmental adapt-
ability [1-4], are invariably influenced by the rootstock.
Grafting experiments have revealed that plant vascular
systems function as transportation corridors for hor-
mones, sugars and RNA molecules [5-7]. Plant vascular
systems including xylem and phloem tissues play crucial
roles in the transportation of water, minerals and organics
substances, and serve as the junction between above-
ground and belowground tissues [5, 8]. Extensive research
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has demonstrated that grafted gain-of-function transcripts
can impact tissue development, thereby influencing fea-
tures such as leaf shape and root architecture [1, 2, 9-11].

The developmental plasticity of roots, which are mainly
composed of lateral roots (LRs) and primary roots (PRs),
is regulated by hormonal signals and nutrients [12-15].
The relationship of cytokinins (CKs), brassinolide (BR),
abscisic acid (ABA), gibberellins (GAs), ethylene and stri-
golactones are related to auxin biosynthesis, transport,
distribution and/or signalling is relatively clear [16-19].
As nutrient components, the main targets of sugar signals
are auxin, ABA and CK signalling processes [20, 21].

Auxin transport and signalling play essential roles in
PR growth and LR formation [22-24]. CKs, which are
antagonistic to auxin, repress PR growth and LR initi-
ation by suppressing cell differentiation [25-27]. This
antagonism between auxin and CKs in PRs was medi-
ated by SHORT HYPOCOTYL 2 (SHY2) [28, 29]. Arabi-
dopsis response regulator 1 (ARR1), which activates CK
signaling, binds directly to the SHY2 promoter region. In
response to auxin, SHY2 degradation is induced to en-
able auxin transport and distribution. During LR forma-
tion, signaling components including histidine kinases
(AHKs) and ARRs are also involved in the inhibitory ef-
fect of CK [30, 31], which research has shown is un-
affected by the addition of auxin [32].

In roots, cell cycle and differentiation-related genes,
such as CYCA2;1, CYCA2;:4, CYCBI;1, CYCD1;1, CYCD3;2
and CDKB2;1, are activated by auxin [33-35]. Several root
development-related genes identified from studies of root
phenotypic mutants, are responsible for meristematic ac-
tivity [36]. For instance, SHORT ROOT (SHR) is specific-
ally expressed in root column vascular tissues to regulate
root longitudinal growth [37, 38]. Even when treated with
exogenous auxin, the aberrant lateral root formation-4
(alf4) only has normal PRs but no LRs [39].

In grafted apple seedlings, rootstock root architecture,
resistance and root regeneration are affected by the
scion [40, 41]. The molecular mechanisms underlying
these effects are poorly understood. With the availability
of the apple complete genome sequence and the advance
of next-generation high-throughput RNA sequencing
(RNA-seq) technology, genome-wide transcriptome ana-
lysis can be applied to study gene expression patterns in
different tissues under various conditions during apple
root growth and development.

After grafting scions with consistent genetic back-
grounds onto identical rootstock materials, we used RNA-
seq of roots to analyze gene expression patterns of
development-related biological processes. A combined
analysis of plant growth dynamics and hormone and sugar
contents in roots indicated that scion characteristics can
influence rootstock phenotypes, which were mainly regu-
lated by auxin and CK signaling pathways. Root activity
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and resistance were also influenced. These results may be
helpful for further understanding of the mechanisms that
cause grafting and internal conditions to influence root
growth and development.

Results

Phenotypic changes in grafted seedlings

To quantify the effect of scions on rootstock phenotype,
we grafted seedlings of wild type (WT) M. spectabilis
‘Bly114’ and its more-branching mutant (MB) onto iden-
tical M. robusta rootstocks. Scions of young plants dis-
played similar phenotypes, with obvious differences
appearing at the branching stage (60 days after scion
bud germination) (Fig. 1b and e). PR length and diam-
eter and root fresh weight were reduced in MB-bearing
rootstock compared with WT-grafted material, whereas
the number of LRs was slightly but not significantly
higher (Fig. 1c, d and f). To assess the relative propor-
tion of LR growth to total root growth, we used the ratio
of LR number to total root weight. As shown in Fig. 1g,
this ratio was higher in MB-bearing rootstock. This ratio
progressively decreased in both MB- and WT-bearing
rootstocks as the growth period was extended. These re-
sults indicate that root growth, particularly the primary
root, is the main process.

Quantitative analysis of sugars, photosynthetic
parameters and hormones

To evaluate nutrient levels, we measured levels of soluble
sugars, including sucrose, glucose, fructose and sorbitol,
in roots, stems and leaves at early growth and branching
stages (25 and 60 days after scion bud germination, re-
spectively) (Fig. 2). At the early growth stage (Fig. 2a-c),
the only significant difference was that sorbitol levels were
lower in stems of MB than in WT scions (Fig. 2b). At the
branching stage, levels of all soluble sugars in the two
scions were highest in MB leaves and lowest in MB stems
(Fig. 2d and e), which indicates that sugars were concen-
trated in MB leaves with lower output. Sorbitol content
was relatively lower in roots of MB-bearing rootstock
while fructose content was slightly higher (Fig. 2f). Com-
pared with WT scions, total soluble sugar content of
stems and roots was lower in MB scions and that of leaves
was higher.

Moreover, net photosynthetic efficiency (Pr) was higher
in WT than MB leaves and was not balanced by the lower
stomatal conductance (Gs) needed for equal intercellular
CO, concentration (Ci) (Additional file 1).

Zeatin riboside (ZR), ABA and indole acetic acid
(IAA) contents were significantly higher in roots of MB-
bearing rootstock, while GAs contents were unchanged
(Fig. 3c). The ABA content of shoot tips, stems and
roots of grafted MB was obviously higher than that of
grafted WT, whereas IAA content was higher in stems
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Fig. 1 Phenotypic changes in wild-type (WT) and more-branching (MB) grafted apple (M. spectabilis) scions and M. robusta rootstock. a—b Branching
phenotypes of WT and MB grafted scions at different growth stages (a, 25 days after scion bud germination [DAG; b, 60 DAG); c-d Root phenotypes
at the branching stage (60 and 225 DAG). e-g Comparison of branching number, root phenotypic parameters and root ratio. Data are means + SE
(n=10). Root ratio was assessed by the relative proportion of LR number to total root weight. Significant differences (*P < 0.05 and **P < 0.01) are
based on Student’s t-test. Scale bars=2.0 cm (a), 5.0 cm (b), 10.0 cm (c) and 10.0 cm (d)

and shoot tips, but not roots, of grafted WT (Fig. 3a-c).
These data demonstrate that higher IAA and ZR in roots
of MB-bearing rootstock should be closely related to its
root anatomy (Fig. 1d).

Tissue sampling, RNA-seq and analysis of differentially
expressed genes
To gain global insights into the molecular mechanisms
responsible for the different phenotypes (Fig. 1c-e), root
apex samples without LRs [42] were collected from WT
and MB for transcriptomic analysis at the branching
stage. To ensure data reliability, two samples of each
type of seedling were sequenced.

A statistical summary of RNA-seq results is given in
Table 1. The genomic mapping rate was greater than

7749 %, with the gene mapping rate reaching 61.32-
61.66 %. Identification of differentially expressed genes
(DEGs) was based on the criteria of false discovery rate
(FDR) < 0.001, |log,Ratio| > 1, and Reads Per kb per Mil-
lion mapped reads (RPKM) >1 at least in one sample.
Venn diagrams of all genes of different expression and
DEGs in roots of WT- and MB-bearing rootstock are
shown in Fig. 4. Most expressed genes had obviously
similar expression levels between the two scion types,
suggesting that MB had only a narrow influence on the
rootstock. Among DEGs, 2896 were down-regulated and
1543 were up-regulated in root grafted MB.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses were
used to respectively identify biological processes and
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Fig. 2 Quantification of soluble sugars in WT and MB grafted apples. Sugar content in leaves (a, d), stems (b, €) and roots (¢, f) at the early
growth stage (25 DAG, a—c) and the branching stage (60 DAG, d-f). Values are means + SE (n = 3). Significant differences (*P < 0.05 and **P < 0.01)
are based on Student’s t-tests
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Fig. 3 Quantification of free ZR, IAA, GAs and ABA in WT and MB
grafted apple. Hormone content in shoot tips (a), stems (b) and
roots (c) at the branching stage (60 DAG). Values are means + SE
(n =3, with three technological duplicates). Significant differences
(*P < 0.05 and **P < 0.01) are based on Student’s t-tests

biological functions enriched in DEGs. Significantly en-
riched GO biological terms included those in the categor-
ies of sugar and phosphate metabolic processes (cluster 1,
7 and 8), response to stimulus and signaling (cluster 2, 3,
5 and 6), cellular activity (cluster 4, 9 and 11) and specific
development processes (cluster 10 and 12) (Fig. 5). Fur-
thermore, down-regulated genes were obviously enriched
to signal transduction, metabolic process and cellular ac-
tivity (Additional file 2). The most heavily enriched KEGG
pathways were related to hormone signal transduction,
specific metabolic processes and biosynthesis (Table 2).
To evaluate cellular events, we compiled a list of DEGs
with pathway annotations related to hormone signaling
pathways and intracellular activity (Table 3). In this list,
61.70 % of genes, primarily falling into pathway cat-
egories of hormone signal transduction, RNA polymerase,

Table 1 Summary of RNA sequencing data from roots of
M. robusta rootstock grafted with wild-type (WT) and
more-branching (MB) M. spectabilis scions

Sample name Clean reads Genome Gene Expressed
map rate map rate gene
WT-1 47335946 77.86 % 6132 % 38653
WT- 2 47142182 7824 % 61.58 % 38505
MB- 1 47137442 7749 % 61.66 % 39377
MB- 2 47084672 77.70 % 61.65 % 39296
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brassinosteroid biosynthesis, aminoacyl-tRNA biosynthesis,
histidine metabolism and ribosome biogenesis in eukary-
otes, were down-regulated.

To validate the reliability of the expression profiles ob-
tained from RNA-Seq, we selected sixteen DEGs for
quantitative real-time PCR (qRT-PCR). Notably, the
expressed trends between Q-PCR data and RNA-seq
data were consistent generally (Fig. 7, Additional files 3, 4
and 5).

Expression of sugar metabolism-related genes

Sugar content and metabolism were correlated with the
status of energy supply status at the branching stage. As
shown in the list of sugar metabolism-related genes,
most genes especially in the process of glycolysis were
significantly repressed in roots of MB-bearing rootstock
(Fig. 6 and Additional file 3). Sucrose and glucose con-
tents were undifferentiated, however, while fructose
content was a slightly elevated in roots of grafted MB
(Fig. 2).

Sorbitol is the primary photosynthate, translocated
carbohydrate and reserve material in woody Rosaceae
species such as apple and pear [43]. NAD"-dependent
sorbitol dehydrogenase (NAD-SDH; EC 1.1.1.14) cata-
lyzes the transformation of sorbitol to fructose. The four
MrSDHs identified from the DEG analysis were all up-
regulated (Figs. 6b and 7b). In constrast, isomerase and
oxidoreductase genes regulating the transformation of
sorbitol to glucose, such as MrMEE31 (MDP0000275261
and MDP0000071829) and MrFEY (MDP0000758881),
were down-regulated.

To carry out sugar metabolism via the glycolytic path-
way, fructose-6P functions as an integrated element
downstream of glucose and fructose. Fructose-6P is synthe-
sized by aldolase superfamily protein (MDP0000309723),
mannose-6-phosphate isomerase type I (MDP0000275261)
and an NAD(P)-linked oxidoreductase superfamily protein
(MDP0000201632), all of which were significantly re-
pressed in MB-bearing rootstock roots (Fig. 6b). Aconitase
2 (MDP0000180604), isocitrate dehydrogenase (MDP0O00O
163886) and ATP-citrate lyase A-3 (MDP0000931334) in
tricarboxylic acid (TCA) cycle were down-regulated. Phos-
phoenolpyruvate carboxykinase 1 (EC 4.1.1.49), which cat-
alyzes the synthesis of phosphoenolpyruvate that mediates
glycolysis and gluconeogenesis, was also down-regulated
(Figs. 6¢ and 7b).

Expression of hormone signaling-related genes

Selected hormone signaling-related genes encoding re-
ceptors and response factors, identified from KEGG
pathway analysis, were shown (Fig. 7a, c-d, Additional
file 4). The most obvious physiological effect of auxin is
the promotion of organ and whole plant growth, which
requires auxin transportation and signal transduction.
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Fig. 4 Venn diagrams of all genes of different expression and DEGs between roots of grafted WT and MB apple. a The intersection of Venn
diagram indicating that all genes of different expression were identified both in two difference analysis pairs (WT-1-VS-MB-1 and WT-2-VS-MB-2).
b-c The intersection of Venn diagram indicating that genes were up- and down-regulated both in two difference analysis pairs
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Fig. 5 Clusters of annotated GO terms in the biological process category enriched in DEGs between roots of grafted WT and MB apple. DEGs
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Table 2 KEGG pathway enrichment analysis of DEGs (P < 0.05)

Pathway DEGs with pathway All genes with pathway Q-value Pathway ID
annotation (2774) (1612) annotation (35611) (35611)

Plant-pathogen interaction 653 (16.68 %) 3658 (10.27 %) 2.653051e-37 ko04626

Plant hormone signal transduction 2 (797 %) 2107 (5.92 %) 1.177574e-06 ko04075

Flavonoid biosynthesis 108 (2.76 %) 666 (1.87 %) 1.030723e-03 ko00941

Zeatin biosynthesis 54 (1.38 %) 310 (0.87 %) 1.385799e-02 ko00908

Flavone and flavonol biosynthesis 1 (1.3 %) 306 (0.86 %) 4.068123e-02 ko00944

Biosynthesis of secondary metabolites 1 (15.86 %) 5111 (14.35 %) 4.068123e-02 ko01110

ABC transporters 57 (1.46 %) 358 (1.01 %) 4.068123e-02 ko02010

Galactose metabolism 39 (1 %) 226 (0.63 %) 4.068123e-02 ko00052

Carotenoid biosynthesis 54 (1.38 %) 337 (0.95 %) 4.068123e-02 ko00906

Benzoxazinoid biosynthesis 33 (0.84 %) 184 (0.52 %) 4.068123e-02 ko00402

Purine metabolism 68 (4.29 %) 1254 (3.52 %) 4.496028e-02 ko00230

Table 3 KEGG pathways related to hormone signaling and intracellular activity

Pathway Pathway ID Gene number Up Down

Plant hormone signal transduction ko04075 312 92 220

RNA polymerase ko03020 135 30 105

ABC transporters ko02010 57 13 44

Zeatin biosynthesis ko00908 54 13 41

Brassinosteroid biosynthesis ko00905 18 1 17

Histidine metabolism ko00340 10 1 9

Endocytosis ko04144 42 29 13

Protein processing in endoplasmic reticulum ko04141 110 69 41

SNARE interactions in vesicular transport ko04130 19 11 8

Nitrogen metabolism ko00910 17 4 13

DNA replication ko03030 19 8 11

Homologous recombination ko03440 11 3 8

Phagosome ko04145 36 14 22

Mismatch repair ko03430 11 4 7

Basal transcription factors ko03022 8 7 1

Base excision repair ko03410 10 2 8

Aminoacyl-tRNA biosynthesis ko00970 18 1 17

RNA degradation ko03018 30 22 8

Ribosome biogenesis in eukaryotes ko03008 29 8 21

Protein export ko03060 6 2 4

mMRNA surveillance pathway ko03015 35 21 14

Ubiquitin mediated proteolysis ko04120 49 25 24

Nucleotide excision repair ko03420 15 5 10

RNA transport ko03013 62 28 34

Proteasome ko03050 6 3 3

Spliceosome ko03040 43 29 14

Total 1162 (100 %) 445 (38.30 %) 717 (61.70 %)
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to WT and bases on two duplicates

Fig. 6 Selected genes related to sugar metabolism from RNA sequencing data. a A schematic diagram of sugar metabolism from starch and
sucrose metabolism to TCA cycle. Bounding boxes represent metabolic processes or metabolite, and digit represents regulatory enzyme for
specific process. Straight arrow indicates transformational direction of metabolite (solid lines, directly; dotted lines, indirectly). b Selected genes
related to starch, sucrose, fructose and sorbitol metabolism. ¢ Selected genes related to glycosis and gluconeogenesis and TCA cycle. Colors
indicate the expression values: red indicates up-regulated expression and green indicates down-regulated expression. Data is log base 2 relative

Auxin transporters identified from the apple genome,
MrPINI (MDP0000138035), two AUXIN-RESIST-ANTI
(MrAUX1; MDP0000155113, MDP0000s749280) and one
NO VEIN (MrNOV; MDP0000806699) were repressed in
grafted MB (Fig. 7a, ¢ and Additional file 4), whereas,
MrPIN3 (MDP0000497581) and MrAUXI (MDP00000
80407, MDP0000175425) were activated. Auxin receptor
gene TRANSPORT INHIBITOR RESPONSEI (MrTIRI;
MDP0000498419, MDP0000125975), AUXIN F-BOX
PROTEIN 5 (MrAFBS; MDP0000809218, MDP000073
4661) and MrSKP2A (MDP0000257953) were activated in
MB-bearing rootstock roots, but identified auxin response
factors (ARFs) (MDP0000173151, MDP0000123466, MDP
0000179650, MDP00006344.33, M DP0000412781, MDP0O
00194603) were repressed (Fig. 7a, ¢ and Additional file 4).
MrGH3 and small auxin up RNA (MrSAUR), regulating
cell enlargement and plant growth downstream of
MrARFs, were down-regulated (Fig. 7a and Additional
file 4). MrTCH4 and MrCYCD3, which are down-
stream of BR signaling and respectively responsible
for cell elongation and cell division, were also down-
regulated (Fig. 7a, e and Additional file 5).

Most CKs receptors (MrCREIs), which mediate CK-
mediated repression of LR initiation [32], were signifi-
cantly repressed in grafted MB roots (Fig. 7a, d and
Additional file 4). The genes encoding histidine-containing
phosphotransmitters (AHPs), which are positive regulators
of CK signaling, were down-regulated. Some type B re-
sponse regulators (B-ARR) genes were up-regulated while
others were simultaneously down-regulated. MrARRs
(MDP0000119750, MDP0000250737), which are suppres-
sors of B-ARRs after the acceptance of a phosphate group
from AHPs, were significantly up-regulated [44].

Finally, ABA response factors MrSnRK2s and MrABFs
were up-regulated in roots of grafted MB (Fig. 7a and
Additional file 4). These genes are mainly activated by
abiotic stress conditions, such as salt stress, water
deprivation and osmotic stress [45, 46].

Expression of genes related to root development, the cell
cycle and growth

Several development-related genes operating in root
meristem were selected to observe their activities (Fig. 7a,
e, f, Additional files 4 and 5). In PRs of grafted MB, Sev-
eral positive regulatory genes, including MrSHR (MDPOO
00165587), MrAHK3 (MDP0000181429), MrIAA26 (MDP

0000130583, MDP0000753736, MDP0000164095), POL-
TERGEIST LIKE 1 (MrPLL1; MDP0000256052) and TOR-
NADO 2 (MrTRN2; MDP0000142574), were repressed
significantly, whereas some negative regulatory genes, in-
cluding WOODEN LEG 1 (MrWOL; MDP0000242242),
MrTIR1 (MDP0000125975, MDP0000498419), MrSHY2
(MDP0000324919), RETINOBLASTOMA-RELATED 1
(MrRBR; MDP0000172418) and KIP-RELATED PROTEIN
2 (MrKRP2; MDP0000258414), were significantly up-
regulated (Fig. 7a, f and Additional file 6). MrALF4
(MDP0000167283), a positive regulator during LR forma-
tion, was activated in roots of grafted MB (Fig. 7f). More-
over, LIKE AUXIN RESISTANT 2 (MrLAX2; MDP0000
885425) and MrALFI (MDP0000124971), which negatively
regulate the formation of aberrant LRs, were more
than 3-fold down-regulated in roots of grafted MB
(Additional file 6). These results were consistent with
observed root phenotypes (Fig. 1c and d).

Cells are the basic structural and functional units of
organisms. Selected cell cycle-related genes (Fig. 7a and
Additional file 5), namely, MrCYCD1 (MDP0000809276,
MDP0000231873, MDP0000310564), MrCYCD2 (MDP
0000176105), MrCYCD3 (MDP0000286130, MDP0000
155259), GLUCAN SYNTHASE-LIKE 2 (MrGLS2; MDP
0000286691), K+ TRANSPORTER 1 (MrKT1; MDP000O
216786) and MrKAC2 (MDP0000213592), were signifi-
cantly repressed in roots of MB-bearing rootstock. Two
MrTCH4 genes (MDP0000842877, MDP0000225088),
which are positively regulated by BR signaling as well as
MrCYCD3, were down-regulated in roots of grafted MB.

Discussion
Scion characteristics affect rootstock sugar metabolism
KEGG biological functions pathway analysis indicated
that most genes related to hormone signal transduction,
cell transcription and translation activity were down-
regulated (Table 3), thus suggesting that root growth
and development rates were repressed both at subcellu-
lar and transcriptional levels. However, more intensive
changes requires further biochemical verification.
Hetero-grafting experiments have demonstrated that
some phloem-mobile transcripts target to root tips and
modify root architectures [11]. Given the consistent gen-
etic background between WT and MB, any changes in
root phenotypes in the same growth environment can be
assumed to stem from differences in scion characteristics
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Fig. 7 Changes in genes related to hormone signaling pathways, cell elongation and root development detected by DEGs analysis and gRT-PCR
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(Fig. 1). Plant growth and development is dependent on
hormonal triggers and metabolic factors, such as photo-
synthetic efficiency and nutrient uptake [15].

Photoassimilates are the only source of sugar in photo-
synthetic organisms. Although sorbitol content was dra-
matically decreased in grafted MB relative to the WT,
mainly because of limited photosynthetic ability and
transport volume, the contents of sucrose, fructose and
glucose in root, required for the glycolytic pathway, were
unchanged. The up-regulation of NAD-SDHs is only
useful for the sorbitol to fructose transition. Genes re-
lated to the TCA cycle as well as most glycolysis genes
were also significantly repressed in grafted MB (Fig. 6b-c).
Recent studies found that sucrose could also serve as a
signal prior to hormonal action in apical dominance and
bud outgrowth, and that this was positively concentration-
dependent [30, 47]. These results suggest that the growth
and development of grafted MB suffers, at least metabolic-
ally, from limitations to glycolysis and the TCA cycle.

Regulation of root development and growth by auxin and
CK signaling

In plants, the auxin pathway, including polar auxin
transport and auxin signal transduction processes, is in-
volved in stages of embryonic and postembryonic root
development ranging from hypophysis to meristem initi-
ation, emergence and elongation [48-51].

Auxin has tissue-specific and exerts contradictory ac-
tivities in roots. At high concentrations, auxin inhibits
root elongation. Because grafted WT and MB roots had
similar auxin contents, however, reduced auxin levels
cannot be responsible for the low rate of root growth
observed in MB-bearing rootstock (Fig. 3c). Studies have
shown that PIN1 and PIN2 localization directs auxin
flow in plants; this is particularly true of downward
PIN1-dependent flow, which is positively associated with
flow volume and growth rate [52-54]. Consistent with
those study findings and the low growth rate of grafted
MB roots observed in our study, we discovered that the
expressions of MrPINI and related genes such as
MrSHR were down-regulated in roots grafted MB (Fig. 7a
and f). Conversely, however, high auxin and down-
regulated expression of MrPINI can help induce division
and differentiation of founder cells [55], events that pre-
cede the expression of genes needed for LR formation.
Although PIN2, PIN4 and PIN7 can specifically change
the distribution of auxin in the root elongation zone
[56], the expression of their encoding genes was not de-
tected in this study. Finally, up-regulated MrPIN3 can
also increase auxin distribution into pericycle cells to
trigger pericycle cell division [57, 58].

Following auxin distribution, auxin signal transduction
induces downstream gene expression or crosstalk with
other hormone signals. In the present study, the presence
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of an up-regulated auxin receptors, MrTIR1 and MrAFB5,
was consistent with the observed higher auxin content
and down-regulation of MrAux/IAA transcriptional re-
pressor proteins (Figs. 3, 7a and Additional file 4). As all
the genes influenced by auxin are controlled by the activa-
tion or inhibition of MrARFs [59]. Therefore, ARFs down-
regulation may be ultimately responsible for the low rate
of root growth observed in grafted MB.

Like auxin, CKs also play a crucial role in regulating
meristem activity [60]. According to a previous study,
ZR is the main suppressor of lateral and adventitious
root formation [61]. Experimental verification involving
CK deficiency and exogenous application indicates that
CKs inhibit PR growth and LR initiation within a re-
stricted root meristem region via CRE1/AHK3/B-ARRs
signaling [27, 29, 32]. One mode of CK action is the
regulation of the expression of genes such as CREI,
SHY2 and PINI1 as well as cell cycle-related genes
[30, 32, 62]. In another mode, which does not involve
transcripts, CKs specifically promote PIN1 degradation by
disturbing its endocytic recycling in vacuoles, and reduce
its abundance on the plasma membrane through an un-
known mechanism [29]. In MB-bearing rootstock, root
phenotypic changes such as PR length and LR number
were accordingly consistent with changes of CK signaling
components, such as the up-regulation of MrSHY2 and
MrA-ARRs (Figs. 1d, f and 7a and Additional file 5). In a
study in Arabidopsis, however, exogenous auxin could not
rescue the CK-mediated inhibition of LR initiation; in
addition, the effect of CKs effect on LR formation was
similar between the wild type and auxin mutants harbor-
ing in response- and transportation-associated defects
[32]. Consequently, CKs and auxin signaling pathways are
partially independent during LR initiation; their inter-
action is more than just a simple antagonism, however,
with a balance probably maintained between them in re-
stricted root regions.

Mediation of multiple signaling by root development-
related genes

Specific genes associated with root meristematic activity
and differentiation have been identified from root mu-
tants [36]. In Arabidopsis PRs, the balance between cell
division and differentiation is coordinated by SHY2,
which regulates auxin signaling negatively and CK sig-
naling positively, respectively [28]. SHY2 expression in
grafted MB may have been influenced by CK signaling.
As a positive signal of longitudinal growth, SHR expres-
sion was specific to roots, dependent on root develop-
ment and growth [38], and highest in roots of grafted
WT. Expressions of MrGH3.9 and MrTCH4, responsible
for cell elongation or enlargement, were also higher—a re-
sponse to auxin and BR, respectively (Fig. 7a and Additional
file 5).
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Overexpression of RBR rapidly represses stem cell
properties, and delays cell division and differentiation
[63, 64]. These changes are similar to the inhibitory ef-
fect of KPR2 on CYCD2;1 and cyclin-dependent kinase,
which is negatively regulated by auxin [65, 66]. CYCD2;1
expression is regulated by sucrose, however, which is not
responsive to auxin [66]. In our study, MrKPR2 expres-
sion was up-regulated in roots of MB-bearing rootstock
with higher auxin content (Fig. 3 and Additional file 6),
perhaps because this gene is located downstream of
MrAREFs.

In contrast to the alf4 phenotype, the aberrant lateral
root formation-1 (alfl) mutant is characterized by an in-
creased number of LRs [39, 67]. Additionally, ALF4 ex-
pression and subcellular locatization of ALF4 are
essential to maintain the mitosis of pericycle cells, a
process independent of auxin signaling [39]. However,
several studies have shown that auxin plays an essential
role from LR initiation to LR growth [32, 68]. Given the
expression trends observed for MrALF1 and MrALF4 in
our study, grafted MB should have had a significantly
higher number of LRs than grafted WT (Fig. 7f). Conse-
quently, these findings may indicate that the expression
of some independent genes for LR development can be
repressed by auxin or CK signaling pathways.

Cell division and differentiation during root growth and
development

In roots, active cell division and differentiation primarily
occurs in the root meristem zone and may thus regulate
the rate of root growth and development [14, 27, 69]. In
regard to root growth, the down-regulated expression of
cell division- and differentiation- related genes was thus
consistent with the root phenotype of grafted MB (Fig. 1d
and Additional file 5). The stimulatory effect of auxin on
cell division is strongly linked to cell cycle processes.
With respect to auxin response, many cell cycle-related
genes were in fact up-regulated in roots, whereas cell
cycle protein inhibiting factors such as KRP1/2, were
down-regulated [33, 48, 51].

Apart from auxin, the positive role of BR on root
growth and development can also be triggered by stimu-
lating the cell cycle in PR meristem [70]. Moreover, ex-
ogenously applied BR can promote the expression of
auxin response genes and LR development, with these
effects inhibited by N-(1-naphthyl) phthalamic acid
(NPA) [16, 71]. When exogenous BR is present, LR de-
velopment is further activated by the addition of exogen-
ous auxin, which may indicate the existence of a
synergistic effect between auxin and BR in root develop-
ment. In our study, however, brassinazole resistant 1/2
(BZR1/2) genes, which are positive regulators of the BR
signalling pathway, were activated in MB-bearing roots
(Fig. 7a and Additional file 4). This result may be evidence
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that auxin signaling genes function downstream of the BR
signaling pathway to regulate root cell division.

Although the cell cycle and cell division are insuffi-
cient to activate the formation of LRs or buds [34, 72],
the processes of cell division, differentiation and enlarge-
ment are required for LR initiation, emergence and
elongation, even when restricted to pericycle cells [27, 32].
Furthermore, the overall number of LRs was high in
grafted MB (Fig. 1f). This finding suggests that pericycle
cell division and differentiation were active in roots of
grafted MB. Importantly, these results thus obviously indi-
cate that increased rates of cell division and differentiation
in MB were mainly limited to root growth. As inferred
from the correspondence with root morphology in MB
(Fig. 1d), the regulated expression of cell cycle- and
growth-related genes may be a direct indicator of root
growth.

Scion influences on root resistance and nitrogen
metabolism

ABA plays an important role in plant dormancy and
stress resistance [45, 46]. Although previous studies have
variously found that ABA has negative or positive effects
on root development, its effect is mainly related to auxin
pathways [18, 73]. Compared with shoot tips and stems,
the ABA content of roots was significantly lower in all
grafted seedlings (Fig. 3). Moreover, the undifferentiated
concentration of soluble sugars in roots, unlike that of
leaves, was insufficient to increase osmotic pressure—a
factor playing an important role in abiotic stress re-
sponse [74, 75]. These results suggest that roots are
maintained in a relatively stable environment.

Further analysis revealed that the expressions of ABA
response factor genes, which induce dormancy and
stress responses, were significantly up-regulated in roots
of grafted MB (Fig. 7a and Additional file 7). Moreover,
expressions of salicylic acid signal-related genes (NPRI
and PR-1) for disease resistance were significantly re-
pressed in roots of MB (Additional file 7). Concerning
root vigor, expressions of nitrogen metabolism related-
genes for nitrogen uptake and synthesis of amino acids
were repressed (Additional file 7). These results indicate
that root vigor was suppressed in grafted MB, possibly
leading to limitations on root development and growth.

Conclusions

In this study, root phenotypes of identical rootstock ma-
terials were notably influenced by a more branching mu-
tant, compared to wild type. To gain global insights into
the molecular mechanisms responsible for different phe-
notypes based on consistent genetic backgrounds of
scions, RNA-seq of roots was performed to analyze gene
expression patterns of development-related biological
processes. Specific biological functions analysis indicated
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that most genes related to hormone signal transduction,
cell transcription and translation activity and sugar me-
tabolism were down-regulated. A combined analysis of
plant growth dynamics and sugar and hormone contents
in roots indicated that scion characteristics can influence
rootstock phenotypes, which were mainly regulated by
sugar metabolism and auxin and CK signaling pathways.
These results may be helpful for further understanding
of the mechanisms that cause grafting and internal con-
ditions to influence root growth and development.
Moreover, root activity and resistance are also repressed
in roots of grafted MB. These results thus imply that the
scion characteristics influencing these processes contrib-
ute to root growth and development, resistance and ac-
tivity of rootstock.

Methods

Plant material

Scions from wild-type (WT) M. spectabilis ‘Blyl14’ and
a branching mutant (MB) were grafted onto 1-year-old
M. robusta seedlings. The grafted seedlings were field-
cultivated under natural conditions in Yangling (34°52'N,
108°7'E), Shaanxi, China.

For measurements of phytohormone contents and
total RNA extraction during the annual growth period
when scions presented different branching phenotypes,
rootstock roots and scion stems and shoot tips from
grafted seedlings were frozen separately in liquid nitro-
gen and stored at —80 °C until further use.

Measurement of root phenotypes and photosynthetic
parameters

Three intact seedlings each of grafted WT and MB were
obtained for root and photosynthetic parameter measure-
ments. Roots were scanned using EPSON EXPRESSION
10000 XL, and images were analyzed using WinRHIZO
system (Regent Instruments, Québec, Canada) [76].

A LI-6400 T portable photosynthesis system (Li-Cor,
Lincoln NE, USA) was used for in vivo measurements of
photosynthetic parameters, including Pn, Gs and Ci on
sunny days between 9:00 and 11:00 a.m. Leaves were il-
luminated with a 6400-02B light source at a saturating
incident photosynthetic photon flux density of 1000 pumol
m? s~ from 670-nm red light-emitting diodes with 10 %
blue light.

Measurement of sugar and hormone contents
A total of 0.3 g (dry weight) of roots, stems, leaves and
shoot tips from at least three individual seedlings were
used for measurements of soluble sugar and determin-
ation of hormone contents [77].

To quantify content of ZR, ABA, IAA and GAs con-
tents, 0.2-g fresh tissues samples were prepared for phy-
tohormone extractions, with hormonal analysis and
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quantification were performed using the enzyme-linked
immunosorbent assay (ELISA) technique ([78]. After
thorough grinding in liquid nitrogen, the samples were
extracted overnight with extracting solution at 4 °C. The
extracts were collected after centrifugation, passed
through a Sep-Pak C;g cartridge and dried under N,.
The residues were dissolved in phosphate buffer. The
ELISA for ZR, ABA, IAA and GAs was performed on a
96-well microtitration plate. After adding standard hor-
mone, sample extracts and antibodies, the coated plates
were incubated for 40 min at 37 °C. After rinsing four
times, 100 pL peroxidase-labeled goat antirabbit im-
munoglobulin was added to each well and the plate was
incubated for 40 min at 37 °C. Colored substrate (o-
phenylenediamine) was added to each well, and the
reaction was halted by the addition of 3 M H,SO,.
Absorbance at 490 nm was detected using an ELISA
spectrophotometer and used to calculate ZR, ABA,
IAA and GAs contents [79]. Each sample was mea-
sured three times, with three replicates.

Total RNA isolation

Total RNA was isolated from each sample by a modified
method [80], and ¢cDNA was synthesized as previously
described [81]. RNA integrity was checked on an agarose
gel, with RNA concentrations determined using a Nano-
drop1000 spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA).

RNA-seq and sequencing

Total RNA from roots of grafted with WT and MB was
subjected to RNA-seq. After total RNA extraction and
DNase I treatment, mRNA was isolated from total RNA
using magnetic oligo (dT) bends. The mRNA was mixed
with fragmentation buffer and cleaved into short frag-
ments for use as templates for cDNA synthesis. Short
fragments were purified, resolved with EB buffer for end
reparation and single adenine nucleotide addition and
connected with adapters. After agarose gel electrophor-
esis, suitable fragments were selected as templates for
polymerase chain reaction (PCR) amplification. During
quality control (QC) steps, an Agilent 2100 Bioanalyzer
and an ABI StepOnePlus Real-Time PCR system were
used for quantification and qualification of sample li-
braries. Finally, the constructed libraries were sequenced
on an Illumina HiSeq 2000 system (BGI, Shenzhen,
China).

Transcriptome analysis

Primary sequencing data, or raw reads, produced on the
[lumina system were filtered into clean reads that were
aligned to the apple (M. domestica) reference genome
(http://www.nature.com/ng/journal/v42/n10/full/ng.654.
html) using SOAPaligner/SOAP2 [82].
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Then clean reads was used to calculate the mapped
reads on the apple genome and to perform coverage
analysis (genome mapping rate) [83]. Gene coverage, the
percentage of a gene covered by reads, was calculated as
the ratio of the base number in a gene covered by
unique mapping reads to the total base number of that
gene (gene mapping rate).

Analysis of DEGs

Unigene expression was calculated using the Reads Per
kb per Million mapped reads (RPKM) method [84]. The
RPKM method eliminated the influence of different gene
lengths and sequencing discrepancies on the gene ex-
pression calculations. The calculated gene expression
could therefore be used to directly compare differences
in gene expression between the samples. In case where
more than one transcript was obtained for a gene, the
longest transcript was used to calculate expression level
and coverage. We identified DEGs between WT and MB
transcriptomes according to the following criteria [85]:
FDR < 0.001, |log,Ratio| =1, and RPKM >1 at least in
one sample.

GO and KEGG pathway enrichment analyses

DEGs were subjected to GO and KEGG pathway enrich-
ment analyses. Compared with the whole genome back-
ground, GO enrichment analysis using DAVID (https://
david.ncifcrf.gov/) identified GO terms that were signifi-
cantly enriched in the list of DEGs and filtered the DEGs
corresponding to specific biological functions [86]. KEGG
Pathway enrichment analysis in the KEGG Database
(http://www.genome.jp/kegg/) was used to identify signifi-
cantly enriched metabolic or signal transduction pathways
in the DEGs [87]. MapMan software was used to display
expression profiles at the pathway level [88]. The expres-
sion profiles of the metabolic pathways can be viewed by a
discrete signal visualized using different colors (blue and
red).

Quantification of gene expression

Specific primers for quantitative real-time PCR (qRT-
PCR) were designed using Primer 3 software (Additional
file 8). To determine the expression of the target genes,
PCR amplifications were performed in a 20-pL contain-
ing SYBR Premix Ex Taq II (Tli RNaseH Plus), with
10 uL of 2x SYBR Premix Ex Taq II (Takara, Beijing,
China), and 0.8 pL of forward and reverse primers on an
iCycler iQ5 (Bio-Rad, USA). The cycling protocol con-
sisted of 95 °C for 180 s, followed by 39 cycles of 95 °C
for 15 s, 58 °C for 20 s and 72 °C for 20 s, followed by
39 cycles to construct a melting curve. The actin gene
was used as an internal control for gene expression
normalization. Each reaction was performed in triplicate.
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The correlation of target genes in expression profiles
was measured by qRT-PCR.

Statistical analysis

Statistical processing of plant phenotype data, sugar and
hormone contents and qRT-PCR results was performed
in Excel 2007. Differences among means were evaluated
by the two-tailed ¢-test with the Statistical Program for
Social Science 19 (SPSS, Chicago, IL, USA). Graphs were
generated in Excel 2007 and Origin Pro 7.5.
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