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Abstract

Background: Zinc finger proteins (ZFPs) play an important role in regulating plant responses to abiotic stress.
However, little is known about the function of LSD1-like-type ZFP in saline-alkaline (SA) stress resistance of rice.

In this study, OsLOL5 (GenBank No. AJ620677), containing two LSD1-like-type C2C2 domains, was isolated and
analyzed its protection roles in transgenic plants and yeast. OsLOL5 was located in the nucleus as evidenced by the
bombardment of onion epidermal cells.

Results: OsLOL5 expression significantly increased in rice leaves and roots under 150 mmol L-1 NaCl, 30 mM NaHCOs,
and 10 mmol -1 H,O, treatment, respectively. Overexpression of OsLOL5 in yeast resulted in SA tolerance at
significant level. Transgenic Arabidopsis plants overexpressing OsLOL5 grew well in the presence ofboth NaCl and
NaHCOs treatments, whereas wild-type plants exhibited chlorosis, stunted growth phenotype, and even death.
SA stress caused significant changes in the malondialdehyde (MDA) contents in non-transgenic plants compared
with those in transgenic lines. Transgenic rice overexpressing OsLOL5 exhibited stronger resistance than NT under
NaHCOs5 treatment, as demonstrated by its greater shoot length, and fresh weight. The genes associated with
oxidative stress, such as OsAPX2, OsCAT, OsCu/Zn-SOD, and OsRGRC2, were significantly upregulated in OsLOL5-
overexpressing rice. The results suggested that OsLOL5 improved SA tolerance in plants, and regulated oxidative
and salinity stress retardation via the active oxygen detoxification pathway.

Conclusions: The yeast INVScl bacterium grew significantly better than the control strain under NaCl, NaHCOs, and
H>O, treatments. These findings illustrated that OsLOL5 overexpression enhanced yeast resistance for SA stress through
active oxygen species. The present study showed that the OsLOL5 genes involved in the ROS signaling pathways may
combine with the model plant Arabidopsis and rice in LDS1-type ZFP by ROS signaling pathways that regulate cell
necrosis. We speculated that the OsLOL5 active oxygen scavenging system may have coordinating roles. The present
study further revealed that OsLOL5 ZFP could regulate oxidative stress function, but could also provide a basis for salt-
resistant rice strains.
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Background

Zinc finger proteins (ZFPs) are an important class of
transcription factors. Zinc finger domains are the im-
portant feature of ZFPs, which consist of various num-
bers of cysteine (C) and histidine residues (H) combined
with zinc ions [1]. Based on the number and location of
these residues, ZFPs are classified into C2H2, C2HC,
C2HC5, C3HC4, CCCH, C2C2, C4HC3, C6, and C8
groups [2]. Versatile ZFPs can bind DNA, RNA, pro-
teins, and lipids to participate in the activities of an
organism. C2H2 ZFPs are involved in different stages of
plant growth and development and in various stress
responses [3-9]. Plants possess a class containing the
LSD1 zinc finger domain of the gene called the LSD1-
like gene family, which is typically characterized by the
presence of one to three LSD1-like zinc finger domains
(C-X5-C-X14-C-X,-C). The LSD1-ke genes were found to
be important in programmed cell death (PCD) and re-
sponses against diseases [1]. Furthermore, the Arabidopsis
LSD1 gene responds to superoxide dismutase (SOD) sig-
nals, and suppresses PCD via AtLSD1 by upregulating the
Cu/Zn-SOD gene to mit cell death proferation [10].
ZAT11, a zinc finger of A. thaana, is a dual-function tran-
scriptional regulator that positively regulates primary root
growth, but negatively regulates Ni21 tolerance [11]. The
TaLOL2 gene contains three typical LSD1-ke zinc fin-
ger domains. QqRT—PCR analysis showed that TuLOL2
is upregulated in early stripe rust infection, indicating
the involvement of wheat stripe rust-induced defense
responses [12].

To date, the ZFP transcription factor family in rice
(Oryza sativa L.) has been a huge focus of stress re-
search. After searching through the NCBI, Gramene,
and Plant TFDB databases, we acquired the sequence
data of 878 rice ZFP genes in 12 rice chromosomes.
Among them, Chromosomes 1 and 11 contain 121 and
45 ZFP genes, respectively. Several ZTP gene functions
have been characterized. A previous study showed that
the ZFP gene results in certain yields and traits under
abiotic stress related to cultivated rice [13]. For example,
rice ZFP245 is low-temperature and drought stress-related
[14]. Overexpression of ZFP182 in tobacco or rice increases
tolerance for NaCl stress, thereby suggesting that C2H2-
ZFP182 may be involved in the response of plants to salt
stress [15]. Overexpression of OsTOP6A1 increases toler-
ance for NaCl and mannitol stress in A. thaliana [16].
OsZFP177 expression is induced during the cold season,
drought, and upon exposure to H,O, stress [17]. OsLSDI
gene over-expression can accelerate the differentiation of
the callus and promote chlorophyll b accumulation in
transgenic plants. Antisense transgenic plants OsLSD1 are
characterized by spontaneous necrotic lesions, enhanced
disease resistance, and upregulated PR1 gene expression
[1]. OsLOL2 has two LSD1-ke zinc finger domains, and is
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important in rice growth and disease resistance. Over-
expression of OsLOL2 in transgenic rice significantly
improves bacterial bight resistance. Over-expressing
transgenic tobacco enhances bacterial wilt disease and
Pseudomonas syringae resistance [18, 19]. However,
studies on salt tolerance in the gene OsLOLS remain
mited to date. In the present study, the OsLOL5 gene
from rice leaves of cultivar LongJingll (LJ11) was
cloned using RT-PCR, and the mRNA expression levels
under SA treatment were detected by using qRT-PCR
and transgenic techniques. This study aimed to reveal
the mechanisms of the OsLOLS5 gene in regulating rice
responses to SA stress.

Methods

Plant materials and stress treatment

A. thaliana (ecotype: Columbia) seeds for SA treatment
were provided by the Environmental Research Center of
Northeast Forestry University, Harbin City, Heilongjiang
Province, China. aast Institute of Geography and Agro-
ecology, Chinese Academy of Sciences, Harbin City,
Heilongjiang province, China. Nine-day-old rice seed-
lings were used for 150 mmol L™ NaCl, 30 mmol L™
NaHCO3, and 5 mmol L H,0, stress treatments. Leaf
and root samples were collected after treatment and im-
mediately frozen in quid nitrogen. RNA was extracted
using an RNeasy Plant Mini Kit (Qiagen, Dusseldorf,
Germany) and then stored at —80 °C in the Northeast
Institute of Geography and Agroecology, Chinese Acad-
emy of Sciences, Harbin City, Heilongjiang Province,
China. Each stress treatment was repeated six times.

Cloning of OsLOL5 gene

The full-length OsLOL5 ¢cDNA sequence was obtained by
RT-PCR using primer pair OsLOL5-P1, which was de-
signed based on the gene sequence in GenBank (AJ620677,
http://www.ncbi.nlm.nih.gov/nuccore/40809630?report=-
genbank). The total RNA was isolated from four leaves
from rice seedlings of LJ11 using Trizol (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s
instructions. First-strand cDNA was synthesized using
a SuperScript™ reverse transcriptase kit. The specific
primer pair OsLOL5-P1 was designed with Primer
Premier 5.0 (Premier Biosoft, Palo Alto, USA) and
used for full-length ampfication of the gene, which
was cloned into the pMD18-T(Takara Biotechnology
in DAAN) vector and confirmed through sequencing
(Invitrogen, Shanghai, China).

Subcellular localization of OsLOL5 by transient expression
in onion epidermal tissue

To determine the subcellular location of the OsLOL5 pro-
tein, the PCR product generated by primer pair OsLOL5-
P2 was used to construct the PBII21:OsLOLS5:GFP
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expression vector (Fig. 1). The PBI121-OsLOLS5::GFP fusion
plasmids were coated onto 20 ml of 50 mg - mL™" gold par-
ticles with 25 M CaCl, and 0.1 mol L™ spermidine and
mixed rigorously using a vortex for 2 min. Plasmid-coated
particles were dehydrated using 75 and 95 % ethanol prior
to bombardment. Single-layer epidermal sheaths peeled
from onion bulbs were placed on 1/2 MS plates and sub-
jected to particle bombardment using the standard proced-
ure provided by the manufacturer. Plasmid-coated gold
particles were accelerated with a helium burst at 1100 psi in
a PDS-1000/He instrument (Bio-Rad, Hercules, California,
USA). Plates containing transfected onion tissues were
wrapped in foil and incubated in the dark overnight
(16-20 h) at room temperature [20].

OsLOL5 gene expression analysis

Total RNA was extracted from roots and leaves after
treatment of the seedlings with 150 mmol L™ NaCl,
30 mmol L' NaHCO3, or 5 mmol L™ H,O, after different
periods of time (0 h as control group, 12, 24, and 48 h), re-
spectively. First-strand cDNA was synthesized from 1 pg
of total RNA with SuperScript’lIl reverse transcriptase
and oligo-dT primers (Invitrogen, Shanghai, China)
according to the manufacturer’s instructions. cDNA was
diluted with nuclease-free water to 1:10. Aliquots of the
same cDNA sample were used for real-time PCR with pri-
mer pair OsLOL5-P3. The OsActinl gene was used as
an internal control. PCR was performed in a 25 pL re-
action mixture containing 400 nmol L! of each primer,
1 x SYBR Green qPCR master mix (Agilent Technolo-
gies, Santa Clara, CA, USA), and approximately 30 ng
of cDNA. Real-time PCR was performed on the Agilent
Stratagene MxPro-Mx3000p (Agilent Technologies,
Santa Clara, CA, USA) using the following procedure:
30 s at 95 °C for denaturation, followed by 40 cycles of
5sat 94 °C, 30 s at 60 °C, and 40s at 72 °C. Relative
transcript abundance was calculated according to the
manufacturer’s instructions. The specificity of each pri-
mer pair was verified by determining the melting curves
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at the end of each run, and sequencing the amplified
bands from gel electrophoresis.

Analysis of sensitivity to abiotic stress in OsLOL5
transgenic yeast

To detect OsLOLS5 response to NaCl, NaHCO3, and H,O,,
OsLOLS was amplified using primer pair OsLOL5-P4, and
the PCR product was cloned into pMD18-T. OsLOL5 was
cut from pMDI18-T with restriction endonucleases Kpnl
and Sphl, and ligated into the yeast expression vector
pYES2. Using the LiAc method, the plasimds pYES2
and pYES2:OsLOLS (Fig. 1) were transformed into
the Saccharomyces cerevisiae strain INVScl.Trans-
formed yeast strains were grown in synthetic defined
medium minus the appropriate amino acids (SD-Ura) for
selective growth for the expression plasmids. To analyze
abiotic stress tolerances, the pYES2- and pYES2:OsLOLS-
transformed cell cultures were adjusted to an ODgqg of 0.6
using yeast extract-peptone-dextrose (YPD) medium.
Ten-fold serial dilutions of yeast strains were prepared,
and 5-pl aliquots of each dilution were spotted on solid
YPD medium containing NaCl (0 mol L™ as control
group, 0.8, and 1 mol L), NaHCO; (30, 32, and
40 mmol L), or H,O, (3, 3.2, and 3.4 mmol L. All of
the plates were incubated at 30 °C for 3—6 days.

Functional analysis of OsLOLS5 in Arabidopsis

Using primer pair OsLOL5-P4, the OsLOLS PCR product
was ligated into the expression vector pCXSN after Xcml
digestion [21]. For Arabidopsis transformation, the
PpCXSN::OsLOLS (Fig. 1) vectors were first introduced into
Agrobacterium tumefaciens GV3101 by electroporation.
Arabidopsis cv Col-0 plants were transformed via floral
dip method as previously described [22]. Arabidopsis
transgenic seeds were plated on half-strength Murashige
and Skoog (MS) medium containing 25 mg- L' hygromy-
cin for selection. Resistant plants were used for molecular
identification. To study the function of OsLOL5 in the
abiotic stress response, the transgenic T3 generation

-

OsLOLS: PBI1121::0sLOL5:GFP
Spel Kpnl
OsLOLS pYES2::0sLOLS
Sphi Kpnl
T _.- S—

Fig. 1 Schematic of the expression vectors PBI121:0sLOL5:GFP, pCXSN:OsLOL5, and pYES2:OsLOL5. 35S Promoter, Cauliflower Mosaic Virus 355
Promoter; Tnos, nos-terminator; PGAL 1, Galactokinase promoter; CYCT TT, CYC1 terminator; and GFP, green fluorescent protein
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encoding OsLOLS5 driven by the cauliflower mosaic virus
(CaMV35S) promoter were tested with primer pair
OsLOL5-P5 and then used for the following studies. The
T3 (#1-#3) and WT seeds were sterilized and sowed in 1/
2 MS medium for germination for 10 d. The seedlings
were then transferred to 1/2 MS medium containing O
(0 mmol L™ as control group), 100, 125, or 150 mmol L™
NaCl or 0, 2, 4, and 6 mmol L'! NaHCO;. After 30 d, the
growth phenotype, plant height, fresh weight, and MDA
content of the seedlings were measured.

Alkaline stress tolerance analysis of OsLOLS5 in rice

For rice transformation, the pCXSN::OsLOL5 vectors
were transferred into A. tumefaciens EHA105 through
electroporation. OsLOL5 was transformed into O.
sativa L. ssp. japonica cv. “Longjing 11” by using the
Agrobacterium-mediated co-cultivation method. The
transgenic T2 generation encoding OsLOL5 driven by
the cauliflower mosaic virus (CaMV35S) promoter were
tested with primer pair OsLOL5-P5. OsOLO5 expres-
sion in transgenic plants was confirmed by using
Northern blot. Three independent T2 homologous
transgenic lines and the control Longjing 11 were used
for alkaline stress tolerance experiments. For alkaline
treatment, concurrent buds were transferred to the stress
liquid culture medium containing 0 (0 mmol L™ as con-
trol group), 5, 7.5, and 10 mmol L™ NaHCOs. After 21 d,
the growth phenotype, root length, fresh weight, and
MDA content of seedlings were measured. Simultan-
eously, the expression level of oxidative stress response
genes OsAPX2 (AB053297), OsCAT (AB020502), OsCu/
Zn-SOD (AK059841), and OsRGRC2 (AY136765) were an-
alyzed. Procedures for RNA extraction and real-time PCR
were similar to those described and listed in Table 1.

MDA content measurements

MDA content was determined using the previously
described thiobarbituric acid reaction [23]. Absorbance
levels at 532 and 600 nm were determined using a

Table 1 The primers used in gene clone and gRT-PCR
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spectrophotometer. After subtracting the non-specific
absorbance at 600 nm, MDA concentration was deter-
mined using its extinction coefficient 155 mM - cm ™.

Data analysis
Analysis of variance (AVONA) and multiple comparison
by software data processing system (DPS) (version 7.05).

Results

OsLOLS5 is a LSD1-like zinc finger gene

OsLOLS5 was successfully cloned using RT-PCR with spe-
cific primer pair OsLOL5-P1 from O. sativa L. ssp. cv.
“LongJing 11”7 with alkaline stresses then inserted into
the pMD18-T vector. Sequencing results confirmed that
the OsLOL5 sequence was identical to GenBank No.
AJ620677. Sequence analysis showed that the full-length
sequence encoded 163 amino acids, with predicted mo-
lecular mass and isoelectric point of 17.6 kDa and 6.03,
respectively. Based on structural properties indicated by
SMART programs, the predicted protein contains two
LSD1-like zinc finger domains. The LSD1-like zinc fin-
ger domains contain the sequence C-X,-C-X;4-C-X,-C,
where X can be any amino acid. The subscripts indicate
the number of residues. Homology alignment analysis
using ClustalX software showed that the deduced
amino acid sequences were highly similar to several
previously isolated LSD1-like ZFPs in Arabidopsis and
rice (Additional file 1: Figure S1). We also found that
OsLOLS5 was clustered in the same group with A¢2LOL2 be-
cause they share the highest similarity in terms of
identities. Therefore, OsLOL5 was determined to be
an LSD1-like ZFP.

OsLOL5 localized in the nucleus

Online analysis tool Psort predicted that OsLOL5 would
localize in the nucleus and cytoplasm with 47.8 and
34.8 % probability, respectively. To verify the prediction,
a pBI121:0sLOLS:GFP plasmid was transformed into
onion epidermal cells using gene gun bombardment.

Primer name Forward (5’-3") Reverse (5'-3")

OsLOL5-P1 GATGTCTCAGCTACCACTTGCA GGTCACCTTTCCTGTCTACAT
OsLOL5-P2 GGTACCATGTCTCAGCTACCACTTGC ACTAGTGGCTTCAGCTAGCCCTGAT
OsLOL5-P3 GCAACCCACAAGAACTAACTCATC GGCTTGTCCATACCATCTTGAAC
OsActin1 CTTCATAGGAATGGAAGCTGCGGGTA CGACCACCTTGATCTTCATGCTGCTA
OsLOL5-P4 GGTACCATGTCTCAGCTACCACTTGC GCAACCCACAAGAACTAACTCATC
OsLOL5-P5 GGTACCATGTCTCAGCTACCACTTGC ATCGGGGAAATTCGCTAGTG
OsAPX2P1 TCCTACGCCGACTTCTACCA CGGCGTAATCCGCAAAGAAG
OsCATP1 TACTTCCCATCCCGCTACGA TCCTTACATGCTCGGCTTCG
OsCu/Zn-SODP1 CAGGTTGAGGGAGTCGTCAC GGTTGCCTCAG CTACACCTT
OsRGRC2P1 GGCCAGCCAACTAAACCTGA CCAGCATAACAACCGCACAC
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35S::GFP

35S::0sLOLS

Fig. 2 Subcellular localization of the 35S5:0sLOL5:GFP fusion protein. a, d GFP, green fluorescence. b, e DIC, bright field. ¢, f Merge, green
fluorescence, and bright field superposition. Nucleus is marked with the red arrow

Cells were cultured for 18-24 h in the dark, and the
transformed onion epidermal cells were observed for
GFP signals using laser confocal fluorescence micros-
copy. When driven by promoter 35S, fusion protein
OsLOLS:GFP was expressed in onion epidermal cells
with green fluorescence in the nucleus, thereby suggest-
ing that OsLOL5 localized in the nucleus (Fig. 2).

Expression pattern of OsLOL5 under abiotic stress
treatments

To obtain an overview of the OsLOLS5 expression pattern
under different abiotic stress conditions, qRT-PCR was
performed to examine its transcript in rice after saline, al-
kaline, and oxidative stress treatments. OsLOLS5 expression
was significantly induced in both leaves and roots by
150 mmol L™ NaCl treatment. The maximum 17.7-fold
increase compared with the untreated control in leaves
occurred 48 h after treatment, but a 5.8-fold increase
compared with the control in roots occurred 24 h after
treatment (Fig. 3a). OsLOLS was upregulated in leaves and
roots subjected to 30 mmol L' NaHCO; treatment and
peaked after 24 h. OsLOL5 expressions were 19- and 6-
fold higher than the untreated control in leaves and roots,
respectively (Fig. 3b). OsLOLS5 expression dramatically in-
creased by 25-fold in leaves after 24 h of 5 mmol L' H,0,
treatment compared with the untreated control (Fig. 3c).
However, H,O, treatment had no significant effect in
OsLOLS5 expression in roots. OsLOL5 was a stress-
responsive ZFP, and exhibited differential expression pat-
terns in leaves and roots under SA treatments.

OsLOL5 improved yeast tolerance to NaHCO; and H,0,
To gain a preliminarily understanding of the function of
OsLOLS in abiotic stress, we surveyed growth characteristics
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Fig. 3 Real-time quantitative expression analysis of the OsLOL5 gene
under a salt (150 mmol L' NaCl), b alkali (30 mmol L' NaHCO5),
and ¢ oxidative (5 mmol L™ H,0,) stress treatments, respectively
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Fig. 4 Analysis of the sensitivity of yeast expressing pYES2:0sLOL5 to a (0, 0.8, and 1.0 mol-L~" NaCl); b (30, 32, and 40 mmol - L~ NaHCO5); and
¢ (3,32, and 34 mmol - L' H,0,). The mean dilution rates of YPD were 10°,107',107%, 1073, 107 and 107>
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Fig. 5 Analysis of OsLOL5 transgenic plants to NaCl treatment. a, b, ¢, and d show phenotypes of OsLOL5 transgenic and WT lines subjected to 0,
100, 125, or 150 mM NaCl treatment, respectively. e, f, and g show fresh weight, endogenous MDA levels, and root length changes in OsLOL5
transgenic and WT lines, respectively
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of INVScl yeast containing pYES2 or pYES2-OsLOL5
under the following stresses: 0, 0.8, and 1 mol-L™* NaCl;
30, 32, and 40 mmol-L™' NaHCO;; and 3, 3.2, and
3.4 mmol - L™t HyO, stress. INVScl yeast cells containing
pYES2 or pYES2-OsLOLS5 were cultured in YPD + galact-
ose media plates supplied with different concentrations of
NaCl, NaHCO;, and H,0O,. Growth conditions were
observed after 72 h of incubation at 30 °C (Fig. 4). As
NaHCOj3; and H,O, concentrations increased, yeast trans-
formed with pYES2-OsLOLS5 exhibited better growth con-
ditions than control yeast transformed with pYES2. More
clones were clearly present in the pYES2-OsLOL5-
transformed yeast, particularly in 40 mmol - L' NaHCOj
and 34 mmol-L™" H,0,, than in the control pYES2-
transformed yeast after dilutions of 10> and 107>, How-
ever, growth conditions between YES2 and YES2-OsLOL5
were not significantly different under NaCl treatment.
Thus, yeast cells expressing OsLOLS were more resistant
to NaHCO; and H,O, stress.

OsLOL5 overexpression in A. thaliana enhanced SA stress
tolerance

To investigate the biological function of OsLOLS in
plants, we overexpressed OsLOLS in Arabidopsis under
the control of promoter CaMV 35S. PCR screening
results showed that the OsLOL5 band was detected in
five T1 (#1-#5) lines (Additional file 2: Figure S2A),
whereas the negative control did not amplify the target
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gene fragment. These results indicated that the OsLOLS
gene was inserted into the Arabidopsis genome. Further-
more, Northern blot analysis of the T3 transgenic lines de-
rived from the five identified T1 lines confirmed that
OsLOL5 was successfully overexpressed in the Arabidopsis
genome (Additional file 2: Figure S2B). Three T3 lines,
namely, T3-#1, -#2, and -#3 seedlings, were used for further
analysis.

To identify the function of OsLOLS5 in stress response,
the T3 generation OsLOLS-overexpressing lines were
subjected to SA tolerance assay. Under standard culture
conditions, no noticeable difference was observed be-
tween transgenic lines overexpressing OsLOL5 and non-
transformed plants. After 14 d of NaCl treatment, both
WT and transgenic plants experienced growth retardation
in a dose-dependent manner. However, retardation was
more apparent in WT plants than in transgenic plants
(Fig. 5a, b,c, and d). Moreover, a significant and dramatic
difference in fresh weight and root length between the
transgenic and WT plants was noted (Fig. 5e, g). Salt
stress can cause oxidative damage to cell membranes.
MDA content is an indicator of oxidative stress. In the
present study, MDA levels in transgenic lines decreased
significantly compared with those in WT plants (Fig. 5f).

Similarly, after 14 d of treatment, NaHCOj significantly
inhibited both transgenic and WT lines (Fig. 6), but the
fresh weight of the transgenic lines was significantly
higher than that of the WT controls. At high NaHCO;

Fig. 6 Analysis of OsLOL5 transgenic plants under NaHCOs treatment. a, b, ¢, and d show phenotypes of OsLOL5 transgenic and WT lines subjected to
0,2,4,and 6 mmol-L™" NaHCO; treatment, respectively. e and f show root length and fresh weight in OsLOLS5 transgenic and WT lines, respectively
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concentrations (4 mmol - L™ and 6 mmol - L™%), both WT
and transgenic plants exhibited chlorosis, but the
fresh weight and root length in WT was significantly
lower than in OsLOLS transgenic lines. These results
indicated that OsLOL5 played an important role in
the stress response, and increased the SA stress toler-
ance of plants.

OsLOL5 overexpression in rice increased alkaline stress
tolerance

The OsLOLS gene was introduced in O. sativa L. ssp. cv.
“Longjing 11” via Agrobacterium-mediated transformation
under the control of promoter CaMV 35S. Six T1 gener-
ation (#1-#6) OsLOLS transgenic lines were identi-
fied by PCR (Fig. 7b). To detect OsLOLS5 expression
in transgenic rice lines, Northern blot was performed
on young leaves of transgenic and NT rice. OsLOLS
overexpression in different levels was observed in T2
transgenic rice lines #1, #2, #3, and #5 (Fig. 7c¢).
Responses of transgenic rice lines (#1-#3) and NT
plants to NaHCO; stress were determined to further
investigate the roles of OsLOLS in rice. Under stand-
ard culture conditions, no noticeable difference
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between transgenic lines and NT plants was ob-
served. After 21 d of NaHCOj; treatment, NT plants
exhibited growth retardation and chlorosis, whereas
OsLOL5 overexpression lines exhibited continuous
growth and remained green (Fig. 7a). Moreover, a
marked difference in both root length, plant height
and fresh weight was observed between transgenic
and WT plants (Fig. 7d, e, f). These results further
indicated that OsLOLS played an important role in
stress response and increased the NaHCOj stress
tolerance of plants.

Expression of oxidative stress response genes were
enhanced in OsLOL5-overexpressing rice

SA stress can cause oxidative stress, and OsLOL5-
overexpressing lines show significant alkaline stress
tolerance. To verify whether the expression of oxidative
stress response genes is also enhanced in these trans-
genic lines, several oxidative stress response genes
(OsAPX2, OsCAT, OsCu/Zn-SOD, and OsRGRC2) were
chosen and compared between NT and OsLOLS5-overex-
pressing lines in response to NaHCOj; treatment. Real-
time PCR assay indicated that NaHCOj stress induced

Fig. 7 Analysis of OsLOL5 transgenic rice under NaHCOs; treatment. a

shows phenotypes of the OsLOL5 transgenic and NT lines subjected to 0, 5,
7.5, 0r 10 mmol - L™' NaHCOs5 treatment. b and ¢ show identification of OsLOL5 T1 and T2 lines in rice. d, e, and f show root length, fresh weight,
and plant height in OsLOL5 transgenic and NT lines. ** means significant level (p < 0.01) by T-test
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the expression of these genes, and the expression level
of oxidative stress response genes in OsLOLS-overex-
pressing lines was significantly higher than in NT plants
(Fig. 8). The expression of OsCu/Zn-SOD genes also
were upregulated in the absence of salt stresses. Without
NaHCOj; treatment, the expressions of most oxidative
stress response genes (OsAPX2, OsCAT, and OsCu/Zn-
SOD) were still notably higher in the OsLOLS5-overex-
pressing lines than in NT plants. This finding indicated
that OsLOLS overexpression promoted the constitutive
expression of oxidative stress response genes. Therefore,
higher expression of oxidative stress response genes
might also contribute to enhanced stress tolerance of
OsLOL5-overexpressing lines.

Discussion

Plant growth and development may be influenced by bi-
otic and abiotic stress, such as diseases, insects, low
temperatures, drought, high salinity, and wounding.
Plants have developed many complicated signal trans-
duction and regulatory mechanisms to adapt to environ-
mental changes and to continue to grow and develop
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under such harsh conditions [24]. ZFP expression can be
induced by the cold season, drought, and H,O, stress.
The OSISAP1ABA gene from Indian rice coding C2H2
ZFP is expressed under stress conditions, such as high
salt, low temperature, and drought; this behavior indi-
cates the relationship between OsISAPI and abiotic
stress [25]. In the present study, the OsLOLS gene was
cloned from rice cv. “Longjing11”, which contains two
LSD1-like zinc finger domains and shares a high
homology with AtLOL2 (Additional file 1: Figure S1).
This gene has a typical C-X2-C-X14-C-X2-C structure
(Additional file 1: Figure S1). OsLOL2 not only partici-
pated in growth development, but was also affected by
pathogenic microorganism stress. OsLOL2 overexpression
in tobacco enhances resistance to bacterial wilt and P.
syringae [18]. OsLOLS5 gene expression increased in
“Longjing11” leaf and Longjing root with SA stress (Fig. 3),
thereby indicating that OsLOLS was a broad spectrum-
resistant transcription factor. Stress is usually accompanied
with high salinity and numerous reactive oxygen species,
which can lead to lipid peroxidation of the cell membrane
in plants, mutation, DNA strand breaks, and protein
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damage. OsLOLS5 gene expression increased with H,O,
stress in rice leaf, which revealed that OsLOL5 may
respond to oxidation stress. Future studies may consider
predicting which gene can regulate expression to improve
tolerance for salinity stress. Experiments confirmed that
“Longjing11” OsLOLS localized and functioned in the nu-
cleus (Fig. 3). Yeast grows quickly, and its experiment cycle
is shorter than in plants; when galactosum is induced, it
exhibits high expression efficiency [26]. The present study
examined the expression of the GAL1 promoter [27, 28] to
establish the yeast INVScl OsLOL5, and enhanced resist-
ance to SA stress (Fig. 4). The yeast INVScI bacterium grew
significantly better than the control strain under NaCl,
NaHCO3;, and H,O, treatments, particularly under 3.2 mM
H,0, stress. These findings illustrated that OsLOL5 overex-
pression enhanced yeast resistance for SA stress through
active oxygen species.

MPKs can directly modulate ZAT10 gene expression
through the phosphorylation of transcription factors
[29]. Thirty-four (34) Medicago CCCH Zinc finger genes
have been identified in response to PEG-6000, NaCl, and
ABA stress conditions [30]. The LSD1-like family is a
multi-resistance gene family, although studies have
shown that transcription factor OsLOL2 is involved in
rice growth and disease resistance [31]. Arabidopsis-
transferred OsLOLS5 strains showed resistance after 14 d
compared with WT grown at 100, 125, and 150 mmol - L™
NaCl stress. Under stress treatment, the MDA content of
transgenic lines was lower than that of WT. OsLOL5 may
be involved in photosynthesis because overexpression
strains have high chlorophyll contents. Overexpression of
rice also showed resistance to alkaline salts of NaHCOs
(Fig. 8). Overexpression of Longjingll rice line under
7.5 mmol - L™ and 10 mmol- L™ stress resulted in signifi-
cantly higher (p<0.01) height, fresh weight, and chloro-
phyll content than Longjing 11. QRT-PCR detection of rice
treated with NaHCO; showed that OsAPX2, OsCAT,
OsCu/Zn-SOD, and OsRGRC2 genes were transcribed.
These genes were induced in both transgenic and NT lines,
but the increased rate in transgenic lines was much higher
than in NT. The highest expression level was observed in
OsAPX2, which was approximately 100-fold of the expres-
sion in untreated N'T. These results were consistent with
results on Arabidopsis AtLSD1 and AtLOL1, which were
controlled by negative and positive ROS-mediated signaling
pathways, respectively [32]. The present study showed that
the OsLOLS genes involved in the ROS signaling pathways
may combine with the model plant Arabidopsis and rice in
LDS1-type ZFP by ROS signaling pathways that regulate
cell necrosis [12]. We speculated that the OsLOL5 active
oxygen scavenging system may have coordinating roles.
The present study further revealed that OsLOL5 ZFP could
regulate oxidative stress function, but could also provide a
basis for salt-resistant rice strains.
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Conclusion

The yeast INVScI bacterium grew significantly better
than the control strain under NaCl, NaHCOs;, and H,0,
treatments. These findings illustrated that OsLOL5 over-
expression enhanced yeast resistance for SA stress
through active oxygen species. The present study
showed that the OsLOLS5 genes involved in the ROS
signaling pathways may combine with the model plant
Arabidopsis and rice in LDS1-type ZFP by ROS signaling
pathways that regulate cell necrosis. We speculated that
the OsLOLS active oxygen scavenging system may have
coordinating roles. The present study further revealed
that OsLOLS ZFP could regulate oxidative stress func-
tion, but could also provide a basis for salt-resistant rice
strains.

Additional files

Additional file 1: Figure S1. Homology alignment of OsLOL5 protein
with other LOL proteins from Arabidopsis and Rice. Zf-LSD1:C4-zinc finger
domain was marked with *. OsLOL2 (LOC_Os12g41700), OsLOL3
(Q6ASS2), AtLSD1 (At4g20380), OsLOL4 (Q84URO0), OsLSD1
(LOC_0s08g06280), AtLOL1 (At1g32540), OsLOL5 (AJ620677), AtLOL2
(At4g21610). (JPG 2330 kb)

Additional file 2: Figure S2. PCR analysis of OsLOL5-overexpressing T1
and T3 strains. Northern hybridization of (A) WT: wild-type Arabidopsis
thaliana; #1-#5: T1 OsLOL5-overexpressing A. thaliana strain; (B) WT: wild-
type A. thaliana; #1-#3: T3 OsLOL5-overexpressing A. thaliana strain.

(JPG 55 kb)
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