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Abstract

Background: For the last decade the conceptual framework of the Genome-Wide Association Study (GWAS) has
dominated the investigation of human disease and other complex traits. While GWAS have been successful in
identifying a large number of variants associated with various phenotypes, the overall amount of heritability
explained by these variants remains small. This raises the question of how best to follow up on a GWAS, localize
causal variants accounting for GWAS hits, and as a consequence explain more of the so-called “missing” heritability.
Advances in high throughput sequencing technologies now allow for the efficient and cost-effective collection of
vast amounts of fine-scale genomic data to complement GWAS.

Results: We investigate these issues using a colon cancer dataset. After QC, our data consisted of 1993 cases, 899
controls. Using marginal tests of associations, we identify 10 variants distributed among six targeted regions that
are significantly associated with colorectal cancer, with eight of the variants being novel to this study. Additionally,
we perform so-called ‘SNP-set’ tests of association and identify two sets of variants that implicate both common
and rare variants in the etiology of colorectal cancer.

Conclusions: Here we present a large-scale targeted re-sequencing resource focusing on genomic regions implicated
in colorectal cancer susceptibility previously identified in several GWAS, which aims to 1) provide fine-scale targeted
sequencing data for fine-mapping and 2) provide data resources to address methodological questions regarding the
design of sequencing-based follow-up studies to GWAS. Additionally, we show that this strategy successfully identifies
novel variants associated with colorectal cancer susceptibility and can implicate both common and rare variants.

Background
We live in the era of the Genome-wide Association
Study [GWAS]. Large numbers of samples have been
collected and genotyped in a bid to associate Single
Nucleotide Polymorphisms [SNPs] with phenotypic
variation. In the context of human disease, the design of
such studies and, in particular, the so-called SNP-chip
technology that underpins them, has aimed to exploit the
common disease, common variant hypothesis (e.g.), [1, 2].
This assumes that common diseases will frequently be
associated with common (>1–5 % frequency) variants.

There is now a long history of GWAS studies, and
large numbers of variants have been found to be associ-
ated with disease [3]. However, such studies do not
come without financial cost, and there has also been a
lively discussions regarding whether such a track record
should be regarded as a success or failure [4, 5]. Our
purpose here is not to add to that discussion, but rather
to focus on what will often be a frequent ‘next step’ in
such studies.
While it is undeniable that GWAS has uncovered large

numbers of variants that are associated with disease, it
has also become clear that, while these variants do ap-
pear to be associated with disease, they can only explain
a fraction of the phenotypic variation that is observed.
Unfortunately, this fraction is general very low (e.g.),
[6]; but see, also, [7]. Such demonstrations of missing
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heritability have lead to some skepticism about the
common disease, common variant hypothesis [e.g., 5].
There are many possible explanations for missing her-

itability (see, e.g.), [4, 5] for discussions. These include
rare variants, complex genetic architectures, structural
variation such as copy number variation, the joint effects
of large numbers of variants each of small effect margin-
ally, and so-called phantom heritability (e.g.), [5, 7, 8]. In
this paper we focus on the first of those hypotheses: the
discovery of nearby, and possibly rare variants that drive
GWAS signals.
Because of their focus on common variants, SNP-chip

platforms were not well placed to discover associations
between disease and rare genetic variants. Theoretically,
discovery through so-called synthetic associations with
common variants is possible [9], although we note that
there is some discussion regarding whether such phe-
nomena are likely to explain most GWAS signals (e.g.),
[10, 11]. However, given this possibility, combined with
the recognition that an initial GWAS may well be find-
ing SNPs that are not causative in themselves, but are
instead linked with nearby causative polymorphisms,
there has been a move towards following-up GWAS stud-
ies by sequencing studies (e.g.), [12]. Here, the hope is that
a signal of association that has been found in GWAS can
be refined, and strengthened, by sequencing the region of
the genome that surrounds the focal SNP (the SNP that
was observed to have a small p-value in the original
GWAS). Alternative strategies, that are not the subject of
the present paper, include whole-genome or whole-exome
sequencing (e.g.) [13].
However, before such a sequencing study can be con-

ducted, several design questions must be resolved (where
to sequence, at what depth, etc.). With this in mind,
NIH formed the GWASeq consortium, in which mul-
tiple groups were funded to conduct sequence-based
follow-up to GWAS, and thereby create a pool of
publically-available data that could both a) provide the
potential for refinement of GWAS signal for the pheno-
types of interest, and b) provide a publically-available re-
source that the wider community might use to help
guide their approach to such design questions for their
own studies. The study we describe in this paper is one
member of the GWASeq consortium. As such, the data
are in the process of being made publically available
through dbGaP, the NCBI’s repository for data that at-
tempt to relate genotype to phenotype (http://www.ncbi.
nlm.nih.gov/gap).
It should be noted, of course, that a large number of

studies outside the GWASeq consortium are also attempt-
ing to follow-up GWAS hits using NGS technology, and
examples are beginning to appear. An early example of
this is Nejentsev et al. [14], in which the authors se-
quenced exons and splice-sites for ten candidate genes

that contained previously associated common SNPs for
type-1 diabetes in order to identify rare functional variants.
Likewise, there are also a growing number of exome-
sequencing studies, e.g. Liu, et al. [13], that focus on test-
ing for rare functional variants.
Our study focuses on colorectal cancer. Colorectal can-

cer is the fourth-most common cancer and the second-
most common cause of cancer death in the United States,
with approximately 148,810 new cases and 49,960 deaths
estimated in 2008 [15]. There is known to be a strong gen-
etic component to CRC risk, and individuals with a family
history of colorectal cancer are at increased risk of the dis-
ease. For example, having a first-degree relative with CRC
roughly doubles the risk, [16]. Further evidence of herit-
ability is seen in twin studies. For example, in a large twin
study, up to 35 % (95 % CI: 10 % to 48 %) of CRC risk
could be explained by inherited factors [17]. GWAS
hits have been found in a number of regions: 8q23.3
(rs16892766), 8q24 (rs6983267, rs7014346, rs10505477)
[18–22], 9p24 (rs719725) [19, 20], 8q23.3 (rs16892766,
EIF3H) and 10p14 (rs10795668) [18], 11q23 (rs3802824)
[22], 12q13.13 (rs7136702), 14q22.2 (rs4444235), 15q13.3
(rs4779584) [23], 18q21 (rs4939827, SMAD7) [22, 24], and
20q13.33 (rs4925386). It is these regions that form the
basis for follow-up in our experimental design.
Our data consist of samples from the Colon Cancer

Family Registry [CCFR, http://www.coloncfr.org] [25].
The CCFR includes data and biospecimens from over
42,500 total subjects (~15,000 probands and 27,500 se-
lected unaffected and affected relatives and unrelated
controls). The consortium consists of six research insti-
tutions. In the present study we include germ-line sam-
ples from 5 of those centers (Table 1). A total of 4,052
samples were sequenced. A sub-set of these samples
consisted of pedigree-based samples (~1,000 samples) –
these do not form part of the analysis described in this
paper. After a variety of Quality Control checks (see
Methods), we conducted our analyses using 1993 cases
and 899 controls.

Table 1 Sample information for all samples sequenced in
this study

CCFR center Num. samples Population based Pedigree Buccal

Australia 1,664 1,155 509 2

USC 370 88 282 266

Seattle 910 778 132 0

Mt. Sinai 1, 007 924 83 0

Hawaii 101 101 0 0

Totals 4,052 3,046 1,006 268

Both population based and pedigree based samples were included in the
sequencing. The majority of samples were sequenced from genomic DNA
extracted from stored blood, with a sub-set of samples that were sequenced
from stored buccal swabs
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Results
Sequencing
Our samples were sequenced at the Baylor College of
Medicine [BCM] sequencing center. In all, 4,052 samples
were successfully sequenced and passed all of the BCM’s
internal quality controls. An overview of the sequencing
results is presented in Table 2. For each sample, approxi-
mately 5.8 MB of the genome was sequenced to an aver-
age depth of 76X (Fig. 1). To explore how well each
targeted region was covered by the sequencing we calcu-
lated the breadth of coverage across each targeted re-
gion. On average, approximately 80 % of the targeted
regions were covered at 30X or greater (Table 2). The
distribution of coverage was similar among all the tar-
geted regions except for the 20q13.33 region. We ori-
ginally suspected that the differences in the observed
coverage for this region might be due to structural
variation affecting mapping, but after closer inspection
we did not detect any large-scale structural variation
in this region. Rather, it is the case that a subset of our
samples appears to have lower coverage over all regions,
and, for reasons that are unclear, this effect appears to be
magnified for the 20q13.33 region. There is no evidence of
differential coverage rates between cases and controls (see
Additional file 1).

Variant calls
We identified a total of 192,991 polymorphic sites in the
4,052 samples. Of these sites, 139,394 were found to be
novel (~72 %) and had not been previously identified in
either dbSNP (version 137) or as part of the 1000 Ge-
nomes project (The 1000 Genomes Project Consortium,
2010). After filtering (see Methods), we retained 158,774
(~82 %) of the originally identified polymorphic sites.

For the non-novel variants, we compared ‘consistency' of
our variant calls with those of the 1000 Genomes pro-
ject. Specifically, we checked whether the variant allele
observed in our data was the same as that seen in the
1000 Genomes data. The consistency between our raw
and filtered variant call sets compared with 1000 Ge-
nomes data was ~97.49 % for both call sets. This similar-
ity in consistency between our raw and filtered call sets
is reflective of the fact that both call sets accurately de-
tected the more “common” variant sites from the 1000
Genomes data set. The vast majority (>89 %) of variants
identified in this study have a MAF < = 0.01 (Fig. 2).

Sample QC
Overall call rates and concordance between genotypes
identified in the sequence data as compared to geno-
types called from previously collected SNP array data
(where they exist) was high. We identified 33 samples
where the concordance between the sequence-based
genotype calls and one or more array-based genotype
calls was low and therefore we removed those samples
from the analysis. Given the high concordance between
our sequence-based genotype calls and the array-based
genotype calls we believe that the number of mis-
identified or mis-labeled samples in our final data set is
negligible.
The logistical constraints of this study, in which data

was shipped from a variety of centers at a variety of
times, and sequencing was necessarily performed in
batches at a third-party center, meant that we were not
able to explicitly design the study to guard against batch
or center effects during sequencing. However, we care-
fully examined the sequence data for batch and center
effects and found none. We saw no evidence of any

Table 2 Summary of 11 genomic regions sequenced

SNP Band Region sequenced Total
sequenced (bp)

Mean
coverage

% of target
with > = 30X

Uncorrected
p-value (0 PCs)

Uncorrected
p-value (2 PCs)

rs16892766 8q23.3 8:117,291,701–117,930,819 639,118 69.58 77.25 0.04119 0.03253

rs10505477 8q24 8:127,830,818–128,730,818 900,000 80.17 82.35 0.02315 0.01395

rs719725 9p24 9:5,891,100–6,558,270 667,170 62.40 66.81 0.05862 0.05821

rs10795668 10p14 10:8,376,087–8,772,195 396,108 81.17 81.86 0.002037 0.00187

rs3802842 11q23 11:110,644,790–110,794,790 150,000 85.54 86.64 0.002948 0.002393

rs3802842 11q23 11:111,047,966–111,504,790 456,824 85.54 86.64 - -

rs7136702 12q13.13 12:50,497,179–51,330,290 833,111 64.97 80.70 0.003239 0.006124

rs4444235 14q22.2 14:54,370,768–54,840,250 469,482 73.01 78.49 0.5992 0.746

rs4779584 15q13.3 15:32,958,831–33,432,615 473,784 78.31 82.85 0.08478 0.4264

rs4939827 18q21 18:45,936,002–46,556,002 620,000 92.27 86.52 0.02014 0.008508

rs4925386 20q13.33 20:60,840,110–60,995,164 155,054 74.18 72.77 0.1239 0.0981

Totals 5,760,651 76.16 79.62

The first column indicates the focal GWAS SNP that the region was designed around. Sequencing coverage for each region was calculated as the mean coverage
across the entire targeted region and as the breadth of coverage. The breadth of coverage is defined as the number of bases per targeted region that are
coverage at > = 30X coverage
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clustering by center in PC plots, nor variation in cover-
age by center. We also examined SNP density, π , for
each center and means were very similar (ranging from
0.00100 to 0.00106).
In addition, we performed a Principal Component ana-

lysis to identify other apparent sample outliers. We re-
moved 2 samples that were revealed as outliers by
plotting data on PC axes (Fig. 3, see Methods for more
details) and then recalculated PC axes based on the
remaining samples.

Association tests
In this paper we focus upon testing for association in
the population-based samples that passed the preceding
QC checks (1993 cases, 899 controls). Analysis of the

family-based data is ongoing and will be presented in a
separate paper.

Population structure and candidate region studies
It is traditional to control for population structure in a
GWAS context. In order to do this, global genome-wide
structure and relatedness between samples is evaluated
using a genome-wide set of (roughly unlinked) markers.
In the present study, which amounts to a study of 11
candidate regions, this is impossible. While we chose to
calculate PCs as part of the QC process, to uncover ob-
vious outliers, it is entirely unclear that such PCs will re-
liably capture genome-wide patterns of relatedness.
Neither do we have ‘SNP-chip’ data for every sample in
our data. We have a total of just ~ 5.8 MB of data per

Fig. 1 Mean coverage across all 11 targeted regions. The x-axis is the mean coverage for each sample. The y-axis is the number of samples at a
given coverage. See text for discussion of the bimodal distribution of coverage across chr20:60840111–60995164
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sample, divided into 11 short (~500 KB) regions. As
such, we believe it is likely that PCs calculated form this
data may capture local, rather than global structure. In-
deed we see no correspondence between PCs calculated
on the samples retained for the association analysis and
ethnicity or center of collection. We also note that the
first PC explains <4 % of the variation in the sample.
This lack of structure is consistent with the vast majority
(>97 %) of our samples being comprised of Caucasian
individuals, and is further consistent with the structure
that is observed in earlier GWAS analyses using CCFR
samples and common SNPs.
For this reason, while for comparison’s sake, we

present results for analyses that include both 0 and 2
PCs, we propose to focus on the results for the analysis
containing 0 PCs. We return to this point in the next
section.

(Non-rare) variant associations
As a reflection of the reduction of power to detect asso-
ciations as variant MAF decreases, we focus our mar-
ginal tests of association on variants with MAF > 0.005.
This results in us testing a total of 23,855 variant posi-
tions. We identified 10 variants (or 9 in the analysis that
includes 2 PCs) distributed among six of the targeted re-
gions at a FDR significance level of 0.01 (Table 3). Eight
of the 10 variants were novel to this study. All of these
variants were located in non-coding regions of the

genome. Of the 10 variants, 7 were located in the in-
tronic regions of the genes KIAA2026, CERS5,
TMPRSS12, FMN1, CTIF and LOXHD1. The remaining 3
variants were located in the intergenic regions between
genes LINC00708 and LINC00709, BMP4 and CDKN3,
and SGG5 and GREM1 (see Table 3 for distances). Detailed
regional plots for the above significant associations and all
regions tested are presented in Additional file 2.
We note that we see no evidence of overall inflation of

p-value across our regions, despite our choice not to in-
clude PCs, or to include just 2 PCs, in the association test
(Fig. 4, see Additional file 3 for a breakdown of this plot
by region). Rather we see p-value that are distributed as
expected under the null, with the exception of an excess
of small p-value, which is what one would hope to see in a
study such as ours in which we are following–up on puta-
tive hits from earlier studies (albeit, in general, from
samples not included in the present study).
It is of particular interest to examine the strength of

association found with each of the ‘focal’ SNPs around
which the 11 regions we defined. This is recorded in the
final two columns of Table 2. (Here, we report uncor-
rected p-value, as if one were conducting a validation
study of that SNP alone). We note that, with the exception
of rs4444235 and rs4779584 we see a strong tendency for
these tests of association to return small p-value. This is,
at the very least, encouraging regarding the veracity of
those original signals.

Fig. 2 Distribution of allele s with a MAF of less than 0.01 for the 2,838 population based samples
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Fig. 3 a and b. PCA analysis of the population based samples. a. PCAs colored by CCFR center. b. PCAs colored by race with all non-Caucasian
individuals colored in red and Caucasian samples colored in black
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Rare variant associations
To test for associations with rare variants (MAF ≤0.01)
we first annotated the genomic locations of all variants
in our call set into either exonic, intronic, intergenic, up-
stream 1 kb or downstream 1 kb of a known gene,
UTRs, or non-coding RNAs categories. Based on these
classifications we defined 307 variant sets that were used
to test for associations using the SKAT combined test
[26]. We identified two variant sets (summarized in
Table 4) that showed a significant association after cor-
recting for multiple tests. The two significant variant

sets were the 3′ UTR of the gene C11orf53 (0 PCs p =
0.0486, 2PCs p = 0.0275) and the 5′ UTR region of the
gene ATF1 (0 PCs p = 0.0032, 2 PCs p = 0.0056).
We then performed SKAT tests for each individual

targeted region (see Table 2) separately and conditioned
on the original focal GWAS SNP. The single resulting
significant variant set is the 5′ UTR of ATF1 (0 PCs p =
0.0055, 2 PCs p = 0.0052) (Table 5). The C11orf53 vari-
ant set was no longer significant once the focal GWAS
SNP was added into the analysis as a covariate.

Discussion
Here we present a large-scale data set that we hope will
serve as a powerful resource to investigate ways to design
a successful strategy for using next-generation sequencing
technologies to follow up on GWAS. Given that a GWAS
has been preformed and significant associations have iden-
tified suspected regions, targeted re-sequencing provides a
powerful method to further investigate the fine-scale gen-
omic structure in these regions. However, there are few
guidelines as to how such a follow-up study should be per-
formed. For example, design issues include, but are not
limited to, the following:

1. Which samples should be sequenced?
2. Which regions should be sequenced?
3. What depth of coverage should be used and how far

around the focal SNP should we sequence?
4. To what extent can we rely upon imputation?
5. What designs are more efficient for variant

discovery and testing associations?

There are at least two ways one could try to answer
design questions such as this. The first is to conduct a
large simulation study. Here, data are simulated under a

Table 3 Most significantly associated SNPs identified in the PLINK analysis

Chr: Position rs ID
number

Feature Base
change

MAF: Cases
(Controls)

Gene
(distance to
nearest genes)

Uncorrected
p-value (0PCs)

FDR corrected
(0PCs)

Uncorrected
(2PCs)

FDR corrected
(2PCs)

9: 5,980,030 Novel intronic A to G 0.048(0.065) KIAA2026 5.323e–008 0.0002117 1.587e–007 0.0005407

10: 8,542,529 Novel Intergenic T to G 0.016(0.028) LINC00708(232261),
LINC00709(775047)

3.576e–007 0.0009478 2.461e–007 0.000734

12: 50,554,103 Novel intronic A to G 0.026(0.033) CERS5 2.926e–007 0.0008725 6.119e–007 0.001622

12: 51,243,510 Novel intronic A to T 0.049(0.057) TMPRSS12 7.362e–008 0.0002509 1.104e–007 0.0004388

14: 54,603,486 rs116055771 Intergenic A to T 0.013(0.022) BMP4(179,932),
CDKN3(260,187)

4.085e–011 3.248e–007 2.014e–010 1.602e–006

15: 33,008,360 Novel Intergenic A to C 0.034(0.054) SCG5(19,062),
GREM1(1,845)

6.384e–009 3.046e–005 2.652e–008 0.0001265

15: 33,345,877 Novel intronic A to C 0.004(0.011) FMN1 2.048e–011 2.443e–007 6.591e–011 7.861e–007

18: 46,119,756 Novel intronic T to C 0.010(0.021) CTIF 2.128e–009 1.736e–006 5.41e–010 3.226e–006

18: 46,119,757 rs76590328 intronic C to T 0.031(0.054) CTIF 6.103e–013 1.456e–008 1.98e–012 4.724e–008

18: 46,503,254 Novel intronic A to G 0.031(0.057) LOXHD1 2.722e–006 0.006494 4.838e–006 0.01154

Fig. 4 QQ-plot for marginal associations between common
polymorphism and cancer status across all sequenced regions. X-axis
shows expected –log(p-value); y-axis shows observed –log(p-value)
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variety of possible disease models, and for a variety of
population models and designs for GWAS and subsequent
sequencing study. A very large number of variables are at
play here, but the advantage of a simulation-based study is
that it is possible, at least in principle, to simulate a wide
variety of possibilities. The disadvantage, of course, is that
the conclusions one draws may or may not be robust to
inaccuracies in the underlying simulation model. As was
famously noted by George Box, “All models are wrong;
some are useful” [27]. The hope is that the conclusions
drawn from such an analysis will be useful despite their in-
evitable (and admitted) inaccuracies. Such studies are ex-
tremely computationally intensive, which limits the range
of model and design parameters that might be considered,
but examples do exist. For example, [28] conducted such
an analysis based upon simulating populations of 10,000

genotypes designed to mimic a breast cancer study [29].
They demonstrated that informative sampling based on
disease and phenotype status jointly, could improve power,
as could incorporating phenotype data from extended
pedigree information, in family-based studies.
The second approach to resolving these design ques-

tions is data- rather than simulation-based. Here the goal
is to collect data in which sequencing has been used to
follow-up GWAS hits, and to attempt to draw robust con-
clusions from those data. Now, as Box might say, the
‘model’ is correct. The data got there however disease data
got there (i.e., the model is reality itself). However, the
price we pay here is lack of replication - we have a rela-
tively small number of such datasets. Therefore, the chal-
lenge will be in drawing robust conclusions from these
studies. Our hope is that the data resource described by

Table 4 Composition of the significantly associated SNP sets identified in the SKAT combined analysis

GWAS
SNP

Gene Feature Position rs ID number MAF: Cases
(Controls)

PLINK
p-value

p-value
for SNP set

rs3802842 C11orf53 3′ UTR 11:111,156,836 rs3087967 0.32(0.27) 1.00 Uncorrected 3.17e–004
(1.79e–004)

C11orf53 3′ UTR 11:111,156,857 Novel 0(5.55e–004) NA FDR corrected 0.0486
(0.0275)

C11orf53 3′ UTR 11:111,156,877 Novel 2.51e–004(0)

C11orf53 3′ UTR 11:111,156,937 Novel 0(5.55e–004) NA

rs7136702 ATF1 5′ UTR 12:51,157,849 Novel 4.92e–003(7.96e–003) 0.8771 Uncorrected 1.04e–005
(1.83e–005)

ATF1 5′ UTR 12:51,157,852 Novel 1.04e–003(0) NA

ATF1 5′ UTR 12:51,157,863 rs61926301 0.58(0.61) 1.00 FDR corrected 0.0032
(0.0056)

ATF1 5′ UTR 12:51,157,886 Novel 2.55e–004(0) NA

ATF1 5′ UTR 12:51,157,960 Novel 2.59e–004(0) NA

ATF1 5′ UTR 12:51,157,996 Novel 2.62e–004(0)

ATF1 5′ UTR 12:51,158,010 Novel 2.61e–004(0) NA

ATF1 5′ UTR 12:51,158,027 Novel 0(5.97e–004) NA

ATF1 5′ UTR 12:51,158,045 Novel 7.82e–004(0) NA

ATF1 5′ UTR 12:51,158,047 Novel 2.61e–004(0) NA

Table 5 Composition of the significantly associated SNP sets identified in the SKAT combined analysis

GWAS
SNP

Gene Feature Position rs ID number MAF: Cases
(Controls)

PLINK
p-value

p-value
for SNP set

rs7136702 ATF1 5′ UTR 12:51,157,849 Novel 4.92e–003(7.96e–003) 0.8771 Uncorrected 8.08e–005
(7.59e–005)

ATF1 5′ UTR 12:51,157,852 Novel 1.04e–003(0) NA FDR corrected 0.0055
(0.0052)

ATF1 5′ UTR 12:51,157,863 rs61926301 0.5.(0.61) 1.00

ATF1 5′ UTR 12:51,157,886 Novel 2.55e–004(0) NA

ATF1 5′ UTR 12:51,157,960 Novel 2.59e–004(0) NA

ATF1 5′ UTR 12:51,157,996 Novel 2.62e–004(0)

ATF1 5′ UTR 12:51,158,010 Novel 2.61e–004(0) NA

ATF1 5′ UTR 12:51,158,027 Novel 0(5.97e–004) NA

ATF1 5′ UTR 12:51,158,045 Novel 7.82e–004(0) NA

ATF1 5′ UTR 12:51,158,047 Novel 2.61e–004(0) NA

This analysis was performed on each targeted sequencing region separately and including the focal GWAS SNP as a covariates
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this paper, and other members of the GWASeq consor-
tium, will help begin to provide those guidelines.
One perspective of the GWASeq consortium is to pro-

vide data that are rich enough to enable investigators to
assess the effectiveness of alternative designs by subset-
ting the available data. Given this view, the goal we
followed when designing the study was to be conserva-
tive in the sense of sequencing at greater depth, for
wider regions and more samples, than might otherwise
have been the case. This provides maximum scope for
assessment of efficiency of alternative designs.
For the 4,052 individuals included in this study we

were able to successfully sequence the majority (~80 %)
of the intended target region surrounding the GWAS
implicated SNP of interest to a sufficient depth to allow
us to accurately genotype previously unknown variants
in the region. Of the variants we identified, the vast ma-
jority (~90 %) of SNPs in our data set are comprised of
rare variants with a MAF of less than 0.01. This abun-
dance of rare variants is consistent with the findings of
other large-scale sequencing projects that have shown
very high levels of genetic diversity present in the human
population, driven by recent and rapid population ex-
pansion [30].
Of course, a primary interest when collecting data

such as these is to determine whether stronger genotype-
phenotype associations will be found near the focal SNPs
from prior GWAS. Here, we employed two strategies to
detect associations and identify variants that confer risk
for colorectal cancer susceptibility. The first strategy fo-
cused on more “common” variants to determine if any of
the higher allele frequency novel variants identified in this
data set could be associated with disease susceptibility.
This strategy identified 10 new variants, none of which
have been previously associated with colorectal cancer.
The second strategy we employed was to look at the com-
bined effect of rare and common variants. Here we uncov-
ered associations with distinct variant sets containing both
common and rare variants in the 3′UTR of the gene
C11orf53, and the 5′UTR of the gene ATF1.
Previous work to identify the functional risk vari-

ants for colorectal cancer in the 11q23.1 region has
implicated several genes including C11orf53 as likely
factors in colorectal cancer etiology [31, 32]. Further-
more, Pittman et al. [33] found a variant (rs3087967)
in the 3′UTR of C11orf53 to be in high LD with SNP
rs3802842, which was the focal GWAS SNP that our
sequencing region was designed around. While we
did not detect a significant association with
rs3802842, the SKAT combined test did identify three
other variants in the same 190 bp region that com-
prises the 3′UTR of C11orf53. The 3′UTR contributes
to post transcriptional gene regulation through the
regulatory actions of miRNAs. If differences in

C11orf53 expression are involved in colorectal cancer
susceptibility, then mutations in the 3′UTR might
lead to changes in miRNA binding affinity and thus
lead to changes in the expression of that gene. In
fact, rs3087967 is directly adjacent to a miR-9 binding
sequence (microRNA.org).
Additionally, we detected a significant (p = 0.0230,

Fisher’s exact test) enrichment of novel variants in cases
as compared to controls within the 5′UTR region of the
activating transcription factor 1 (ATF1) gene, an import-
ant cAMP-responsive transcription factor. Two of these
novel variant positions lie within an upstream open
reading frame (uORF), and three of them lie within the
internal ribosome entry site (IRES) [34]. Both uORFs
and IRES elements contribute to overall gene expression
levels via translation control [35, 36]. In 2012, Huang, et
al. [37] showed that expression levels of ATF1 are posi-
tively correlated with survival in colorectal cancer
patients.

Conclusions
This study is likely to be one of a large number of
studies that perform targeted sequencing in order to
follow-up hits from earlier GWAS. The jury is still
out regarding how likely it is that stronger associa-
tions will be uncovered by such a strategy, but herit-
ability estimates for many diseases indicate that this
is a reasonable hope. In our own study we do find
such associations in a number of the regions that we
sequenced. However, it is also the case that in a num-
ber of the regions no significant signal was found. Re-
gardless, by placing such data in the public domain
we hope to enable other groups to better design their
own follow-up studies, and thereby increase their own
chances of successful discovery.

Methods
The study samples
The samples used in this study were taken from the
Colon Cancer Family Registry. Informed consent was
obtained from all study participants and the study
protocol was approved at each center. The over-
whelming majority of samples were from DNA ex-
tracted from blood samples (~93 %), with the
remaining being from buccal cells (~7 %). Each CCFR
center individually extracted total genomic DNA and
shipped the extracted DNA to the Baylor College of
Medicine for sequencing. All study protocols were ap-
proved by the USC Health Sciences Institutional Re-
view Board.

Regions sequenced
A total of 11 genomic regions were selected for targeted
re-sequencing (Table 2). For the purpose of this study
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we define a genomic region as the flanking sequence on
either side of a focal GWAS SNP. The amount of flank-
ing sequence surrounding each focal SNP was deter-
mined by the local LD structure around the focal SNP,
to ensure that the sequenced area extended beyond the
LD block containing the focal SNP. The targeted regions
were isolated from total genomic DNA using custom de-
signed NimbleGen Sequence Capture Microarrays (fol-
lowing the manufacturer’s protocols). Individual sample
libraries were multiplexed together and sequenced on an
Illumina HiSeq 2000 at the Baylor College of Medicine.
A total of ~5.8 MB of genic and intergenic sequence was
collected from each individual sample.

Sequence mapping
Sequence reads were mapped to the 1000 Genomes
(b37) build of the human genome using BWA (version
0.6.2-r126) [38] with default settings. The resulting
alignments were further processed using the GATK (ver-
sion 2.3–9) [39] base quality score recalibration, indel
realignment, duplicate removal (picardtools, version
1.84), and read-reduction functions in accordance with
the GATK Best Practices recommendations [40].

Variant calling
Variant detection was performed for polymorphism
discovery and genotyping across all 4,052 samples
simultaneously using the GATK UnifiedGenotyper
(version 2.7–4). We applied an additional mapping
quality (MQ) filter of 50 during variant calling to re-
move false positive variants that result from poor
mapping (Additional file 4). The raw variant calls
were further refined using the variant quality score
recalibration (VQSR) methods according to the GATK
Best Practices recommendations [40, 41]. The final
variant call set was checked for concordance with
both dbSNP (version 137) and 1000 Genomes SNP
calls using the GATK AnnotateEval tool and func-
tional annotations were performed using the ANNO-
VAR annotation pipeline following the authors’
recommendations [42].

Sample QC
Given the number of samples, repository centers, and
individuals involved in the generation of the sequence
data, the possibility of some samples becoming mis-
labeled is a valid concern. Therefore, for those sam-
ples that had existing SNP array data (~2300 sam-
ples), we compared the genotype calls from the
sequence data to genotype calls from existing SNP
array genotyping data generated from the same sam-
ples to confirm the identity of as many of the se-
quenced samples as possible.

Additionally, we tested difference in coverage levels
between cases and controls in any of the sequenced
regions. Such a difference could induce biases, par-
ticularly in the rare variant tests. We found no evi-
dence of any statistically significant difference in
coverage between cases and controls in any of the re-
gions (see Additional file 1).

Subset of samples used for associations
A subset of the 4,052 samples that were sequenced con-
sisted of pedigree-based samples (~1,000 samples) -
these were removed from the analysis presented in this
paper. We also removed 33 samples that were suspected
of being mis-labeled (see Sample QC), as well as any
samples that lacked full covariate, or phenotypic data.
We then conducted a PC analysis, using a set of un-
linked variants that covered each of our sequenced re-
gions, using the SNPRelate package in R [43]. This
resulted in our removing two samples that represented
obvious outliers. PC axes were then recalculated for pos-
sible inclusion in association tests. The final data set
comprised of 2,892 population-based samples with 1993
cases, 899 controls.

Association tests
Common variants
Marginal tests for association were preformed using the
PLINK software package [44]. We used a logistic model
and included age at disease diagnoses, sex, CCFR center.
Only variants with a genotyping rate > = 95 %, and with
MAF > 0.005, were included in the analysis. To correct
for multiple testing we applied a false discovery rate
(FDR) [45] correction based on the total number of vari-
ants tested as implemented in the R function p.adjust.

Rare variants
In order to test for associations with rare variants we
employed a sequence kernel association test (SKAT)
using the SKAT package in R [26]. We employed the
combined SKAT test in order to test the combined effect
of both common and rare variants [46]. Variant sets
comprised of variants annotated in UTRs, exons, in-
trons, within 1 KB of a known gene, and the intergenic
sequence between two known genes for a total of 307
variant sets that were included in the analysis. To cor-
rect for multiple testing we applied a FRD correction to
the raw p-value generated by the combined SKAT test.

Availability of supporting data
All data used in this article are in the process of being
deposited in dbGaP. Readers are encouraged to contact
the authors for further details.
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Additional file 1: Boxplot of per-sample coverage by region, for each of
the sequenced regions, by case–control status. (TIFF 8219 kb)

Additional file 2: Regional plots of associations for each targeted
region. rs numbers and purple circles indicate the focal GWAS SNP
that the region was selected around. Colored circles indicate degree
of LD among SNPs. Grey circles indicate novel SNPs that lack LD
information based on the 2012 release of the 1000 Genomes data.
The rs number at figure top is centered around the location of the
focal SNP. (ZIP 1921 kb)

Additional file 3: ‘By region’ QQ-plot for marginal associations between
common polymorphism and cancer status. X-axes show expected –log(p-
value); y-axes shows observed –log(p-value). (TIFF 5627 kb)

Additional file 4: Distribution of mapping qualities (MQ) across all
samples. Reads with MQ < = 50 were excluded during variant calling to
reduce false positive variant calls. (TIFF 2774 kb)
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