Popa et al. BMC Genomics (2016) 17:52
DOI 10.1186/512864-016-2384-0

Pateamine A-sensitive ribosome profiling

BMC Genomics

@ CrossMark

reveals the scope of translation in mouse

embryonic stem cells

Alexandra Popa, Kevin Lebrigand, Pascal Barbry” and Rainer Waldmann

Abstract

Background: Open reading frames are common in long noncoding RNAs (IncRNAs) and 5'UTRs of protein coding
transcripts (UORFs). The question of whether those ORFs are translated was recently addressed by several groups
using ribosome profiling. Most of those studies concluded that certain INcRNAs and uORFs are translated, essentially
based on computational analysis of ribosome footprints. However, major discrepancies remain on the scope of
translation and the translational status of individual ORFs. In consequence, further criteria are required to reliably

identify translated ORFs from ribosome profiling data.

Results: We examined the effect of the translation inhibitors pateamine A, harringtonine and puromycin on murine
ES cell ribosome footprints. We found that pateamine A, a drug that targets elF4A, allows a far more accurate
identification of translated sequences than previously used drugs and computational scoring schemes. Our data
show that at least one third but less than two thirds of ES cell IncRNAs are translated. We also identified translated
UORFs in hundreds of annotated coding transcripts including key pluripotency transcripts, such as dicer, lin28,

trim71, and ctcf.

Conclusion: Pateamine A inhibition data clearly increase the precision of the detection of translated ORFs in
ribosome profiling experiments. Our data show that translation of INncRNAs and uORFs in murine ES cells is rather
common although less pervasive than previously suggested. The observation of translated uORFs in several key
pluripotency transcripts suggests that translational regulation by uORFs might be part of the network that defines

mammalian stem cell identity.
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Background
LncRNAs are an emerging family of RNAs, which are
typically defined as being longer than 200 nucleotides
and lacking long or conserved ORFs (reviewed in [1]).
For a small but steadily growing set of IncRNAs a direct
functional role of the RNA was demonstrated, consistent
with a noncoding role of at least a subset of this family
of transcripts. Yet, most IncRNAs have ORFs, raising the
question of whether those transcripts are translated.

The majority of human IncRNAs were found to be
enriched in polyribosomal complexes [2] and recent high
throughput proteomics identified peptides specific for
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117 human IncRNAs [3], suggesting active translation of
at least a subset of IncRNAs. Conversely, another recent
high throughput proteomics study rather suggests that the
vast majority of IncRNAs do not yield proteins that are
sufficiently stable for mass spectrometric detection [4].
ORFs are also common in 5 untranslated regions
(5" UTRs) of protein coding transcripts. They are found in
40 — 50 % of human or rodent 5° UTRs [5]. Translation of
an upstream ORF (uORF) is thought to generally decrease
translation of the principal coding sequence and can target
transcripts with downstream exon junctions towards non-
sense mediated decay (reviewed in [5, 6]). Thus, uORFs
likely represent an important, yet currently underestimated,
regulatory mechanism to modulate translation and mRNA
abundance. However, translation has been experimentally
validated for just a few mammalian uORFs so far [7]. This
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is mainly due to the fact that a transcriptome-wide identifi-
cation of uORF translation was not feasible until recently,
since the peptides encoded by uORFs are often too short or
might not be sufficiently stable for a reliable identification
by mass spectrometry [5].

The question of whether ORFs in noncoding RNAs or
5 UTRs are translated was recently addressed by Ingolia
et al. [8] who applied high throughput sequencing to
probe active translation, based on an approach initially
developed by Wolin and Walter [9]. This “ribosome pro-
filing” approach is based on the fact that translating ri-
bosomes render the occupied coding sequences highly
RNAse resistant. Thus, high throughput sequencing of
RNAse resistant mRNA fragments provides information
on the ribosome density on each mRNA at a
transcriptome-wide scale. To score the ribosome density,
Ingolia et al. [8] initially introduced a translation effi-
ciency (TE-) score, which essentially corresponds to the
ratio of ribosome footprints to whole transcriptome
reads, and found widespread RNAse resistance of ORFs
in IncRNA and 5’'UTRs and concluded pervasive transla-
tion of those ORFs.

Yet, RNAse resistance of an mRNA fragment does not
necessarily imply translation, since other RNA binding
proteins or strong RNA secondary structure can also
render RNA resistant to RNAse. Thus, one key challenge
when analyzing ribosome profiling data is to efficiently
distinguish translation related signal from noise [10].
Several groups have introduced computational scoring
schemes for the analysis of ribosome profile data to
overcome the limitations of the TE-score. The principal
authors of Ingolia et al. [8] and others reanalyzed their
initial dataset with the “Ribosome Release (RR-) Score”,
an indicator of the preferential RNAse resistance of cod-
ing over 3’ untranslated regions [11]. They concluded
that the RR-scores of IncRNAs resemble those of clas-
sical noncoding RNAs (e.g. snoRNAs) and that IncRNAs
do not code for proteins in murine embryonic stem
cells. The Floss-score, recently introduced by Ingolia et
al. [12] essentially scores the size distribution of RNAse-
resistant fragments. It led to the conclusion that transla-
tion of IncRNAs in murine embryonic stem cells is per-
vasive. Alternative scoring schemes were developed by
others such as the disengagement score (similar to the
RR-score) [13] and the ORF-score [14], which takes ad-
vantage of the fact that footprints on translated se-
quences are located preferentially on a specific codon
position. Combinations of several scores were also tested
in supervised machine learning models [13]. The current
consensus from computational analysis of ribosome pro-
filing data is that translation of ORFs in noncoding
RNAs and 5 UTRs is rather common.

However, computational scoring alone might be insuf-
ficient to define comprehensively the translational status
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of each individual transcript with high confidence, a
concern raised by Guttman et al. [11] for the RR-score .
Computational analysis of ribosome profiling data typic-
ally scores patterns such as phasing on codons (ORF-
score), match lengths (Floss-score), coding region vs. 3’
UTR footprint (RR-score). Identifying such patterns with
confidence typically requires a sufficiently high number
of footprints (hundreds or thousands for the floss score
[12]), a signal which is often difficult to obtain for the
typically low expressed IncRNAs. Furthermore, non-
translation related footprints located within an ORF
(RR-score) or footprints of the right size (Floss score) or
position (ORF score) can vyield false positives. Thus add-
itional criteria are required to define the translational
status of a particular ORF with high confidence.

One option that has been investigated in yeast and
HEK 293 cells [12] is to target specifically translating ri-
bosomes by immuno-precipitation of RNA fragments
that are associated with large ribosomal subunits. Yet
this approach typically requires heterologous expression
of a tagged ribosomal protein and cannot be readily ap-
plied to any cell type.

Translation inhibitors appear a prime choice to distin-
guish translation regulated signal from noise. However,
most translation elongation inhibitors used so far, such
as cycloheximide, stall ribosomes on translated
sequences and are not suited to identify translated se-
quences since they only weakly affect footprint densities.
Harringtonine, an atypical elongation inhibitor com-
monly used in ribosome profiling experiments, was
shown to stall ribosomes to some extent selectively at
start codons [8, 12]. Harringtonine was subsequently
used to define translation start sites. Accumulation of
footprints on translation start sites was also reported for
puromycin [15] and lactimidomycin [16].

In our hands, the translation elongation inhibitor har-
ringtonine or the aminocyl-tRNA mimic puromycin
were rather inefficient to block footprints on short ORFs
that are typically found in 5" UTRs and IncRNAs. We
thus sought for a more efficient drug that allows a sensi-
tive and precise identification of translated sequences.

We show here that: (i) pateamine A [17], a drug that
targets elF4A, specifically and potently blocks ribosome
footprints on coding sequences. It allows a more sensi-
tive and precise identification of translated ORFs than
previously used translation inhibitors. (ii) While compu-
tational scoring of ribosome profiling data performs ra-
ther badly for ORFs on low expressed transcripts,
pateamine A inhibition is robust and accurate even for
rare transcripts. (iii) ORFs with drug-sensitive ribosome
footprints are commonly detected on IncRNAs, suggest-
ing that many noncoding RNAs in murine ES cells are
translated, although to a lower extent than previously
proposed [8]. (iv) Open reading frames in 5° UTRs are
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frequently translated and are present in key transcripts
of the ES cell pluripotency network.

Results

We applied several modifications to the Ribosome Pro-
filing technique [8] (see Methods section for details).
We essentially skipped the initial gel purification of
RNAse resistant RNA fragments, a step that in our
hands, resulted in important loss of material and thus li-
brary complexity. We rather computationally filtered the
match lengths that yield a periodic triplet pattern typical
for translation related footprints after sequencing
(retained 26—36 nts., Additional file 1: Figure S1), which
is clearly less biased than size selecting RNA fragments
on gels. The protocol is robust, reproducible and allows,
after calibration of the read positions (Fig. 1a, Additional
file 1: Figure S1), a definition of the position of the ribo-
some at a single nucleotide level.

Pateamine identifies coding sequences with high
confidence

We reasoned that inhibition of an early step of transla-
tion should efficiently deplete transcripts from ribo-
somes and allow a reliable identification of translation
related footprints. Since inhibitors of Eif4E , the CAP-
binding protein, were not available, we examined the ef-
fect of pateamine A, a drug that targets elF4A [17], a
component of the translation initiation complex Eif4F,
on ribosome footprints. We compared the pateamine A
analog desmethyl,desamino-pateamine A (DMDA-PatA)
[17]with the previously used inhibitors harringtonin
[18], an elongation inhibitor and puromycin, a structural
aminoacyl-tRNA analogue that causes premature chain
termination.

On a typical ribosome footprint profile, RNAse resist-
ant fragments are mainly concentrated on the coding se-
quence, with some signal on the 5° UTR, and generally
very few or no RNAse resistant footprints on the 3’ UTR
(Fig. 1a, Additional file 1: Figure S1D). All three transla-
tion inhibitors efficiently blocked the ribosome foot-
prints on the coding sequence of eEF2 (Fig. 1a), while
their effects on footprints located on the 5° UTR differed
significantly. DMDA-PatA strongly reduced footprints in
the 5" UTR, consistent with the fact that the drug targets
a step upstream of 5 UTR scanning. Conversely, har-
ringtonine and to a lesser extent puromycin induced
peaks in the 5" UTR (Fig. la) of eEF2. Such harringtonine
[8, 12] or puromycin [15] induced peaks were used previ-
ously to define translation start sites. Yet, those drug-
induced peaks are often not located on sequences consist-
ent with translation start sites (Fig. 1a, discussed in detail
later).

DMDA-PatA, the most potent blocker, inhibited ribo-
some footprints of all the 8461 well expressed (more
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than 100 transcriptome reads) ES cell coding transcripts
with a median inhibition of 22 fold (Fig. 1b, Additional
file 1: Figure S2 A). With harringtonine or puromycin,
the median inhibition was 8.7 and 6.3 fold, respectively
(Fig. 1c-d, Additional file 1: Figure S2B-C).

Previously, a selective effect of low concentrations of the
elF4A inhibitor silvestrol for mRNAs with 5" UTRs that are
either long and structured or contain G-quadruplex struc-
tures was reported [19] [20]. Conversely, DMDA-PatA
inhibited translation of mRNAs with very short 5 UTRs
(<25 nt) and very long 5 UTRs (>1 kb) with similar effi-
ciency (Additional file 1: Figure S2A). Both the fact that we
used rather high concentrations (1 uM) of DMDA-PatA
and the particular action mechanism of the drug are likely
reasons for the widespread and potent inhibition we ob-
served with this inhibitor. DMDA-PatA binding to elF4A
does not inhibit eIlF4A activity but induces eIF4A hyper-
activity and weakens the interaction between elF4A and
elF4G [17]. Mechanistical studies suggested that translation
inhibition by DMDA-PatA is not related to the effect of the
drug on elF4A activity but rather to a perturbation of pro-
tein complexes required for translation initiation [17].

DMDA-PatA does not inhibit translation initiation at
internal ribosome entry sites (IRES) that do not require
elF4A [17] (e.g. HCV like IRESes). The widespread in-
hibition of translation of protein coding transcripts sug-
gests that translation initiation at HCV-like IRESes is
not the predominant mechanism of translation initiation
for coding transcripts in our dataset.

DMDA-PatA was reported to affect DNA synthesis
[21], an effect that might possibly be due to unknown
targets of DMDA-PatA or alternatively just reflect an
impact of a profound shut down of protein synthesis on
DNA replication. It appears unlikely that such potential
off-target effects affected our DMD-PatA ribosome pro-
filing data, since we used only short incubation times
(10 min) and did not observe a significant impact of
DMD-PatA on bona fide noncoding RNA footprints
(Fig. 2a, b, Additional file 1: Figure S4).

The sensitivity to the different inhibitors varied among
transcripts by more than two orders of magnitude
(Fig. 1). While for DMDA-PatA and harringtonine dif-
ferences in drug sensitivity of transcripts (e.g. sensitivity
towards Eif4F depletion for DMDA-PatA) might be par-
tially responsible for those differences, such a transcript-
selective effect appears unlikely for puromycin, a well
characterized aminoacyl tRNA mimic that triggers chain
termination. Obviously, translation inhibitors can only
affect footprints that are due to moving, actively trans-
lating ribosomes. We noticed that transcripts that are
very weakly affected by translation inhibitors, in particu-
lar by harringtonine and puromycin, often have pro-
nounced ribosome pileups typically on the translation
start site (Fig. 1b-d, Additional file 1: Figure S2).
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Fig. 1 Translation Inhibitors Block Ribosome Footprints on Protein Coding Sequences. a Distribution of whole transcriptome reads (black) and
ribosome footprints in the absence of translation inhibitors (blue) and after translation inhibition by DMDA-PatA (red), harringtonine (green) or
puromycin (yellow) on the eEF2 transcript. The grey box shows a zoom onto the junction between 5" UTR and coding sequence. Note: ribosome
pileup on the AUG start codon in the control ribosome profiling sample and the appearance of peaks on non-initiation codons in the presence
of harringtonine. b — d Scatter plots of the translation efficiency (TE-) score (ratio of number of RNAse resistant footprints to the number of whole
transcriptome reads) on annotated protein coding sequences (CDS) versus the fraction of ribosome footprints that resist to treatment by the
translation inhibitors DMDA-PatA (B), harringtonine (C, Harr) and puromycin (D, Puro). The following subfamilies of mRNAs are highlighted:
Histones (yellow circles), huge CDS of more than 15 kb (red squares), transcripts with ribosomes stalled on the AUG translation initiation
codon (>30 % of CDS ribosome footprints on AUG +/— 1 nucleotide, blue circles). e Cumulative frequency distribution of the fraction of
drug resistant ribosome footprints for annotated protein coding transcripts (solid lines) and ORFs of snoRNAs (squares). b—e Data shown
are from annotated protein coding sequences that have at least 100 whole transcriptome reads and at least 100 ribosome footprints. The
same cutoffs were used for snoRNAs in (E). See also Additional file 1: Figure S2

Ribosomal stalling at the translation initiation codon is  translation initiation site is evident for 19 out of 35 his-

rather widespread: 36 % of the transcripts with at least
500 ribosome footprint reads have a more than 10 times
higher ribosome density on the AUG initiation codon
(AUG +/- 1 nt) than on the rest of the coding sequence
(Additional file 1: Figure S3A). Extreme stalling at the

tone mRNAs which have more than 50 % of their CDS
ribosome footprints located on the AUG start codon
(AUG +/- 1 nt) (Additional file 1: Figure S3C). Ribo-
some stalling at the start codon and the rather low
DMDA-PatA sensitivity of certain histones might be due
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Fig. 2 Pateamine A identifies translated ORFs in IncRNAs. a, ¢ Scatter plots of the translation efficiency (TE-) score versus the fraction of ribosome
footprints that resist treatment with the translation inhibitors DMDA-PatA (A) and harringtonine (c). All annotated CDS (gray), annotated CDS
smaller than 300 nucleotides (blue), snoRNAs (yellow) and IncRNAs (red). b, d Cumulative frequency distribution of the fraction of drug resistant
ribosome footprints (B, pateamineA; D, harringtonine) for annotated protein coding sequences (black), annotated CDS smaller than 300 nucleotides (dark
blue), range of scores or inhibition from 1000 bootstrappings of protein coding transcripts sampled to the same mRNA expression distribution as INcCRNAs
(light gray), all ORFs of IncRNAs (red), all ORFs of snoRNAs (yellow) and Refseq “other noncoding” RNAs (orange). e-g cumulative frequency
plots for RR-score (e) ORF score (f) and Floss score (g) for the same subgroups of transcripts as in B and D. In A — G only data for transcripts
with at least 20 transcriptome reads and more than 4 RNAse resistant footprints on the ORF are shown. ORFs on noncoding transcripts are
only shown if at least 10 % of the RNAse resistant footprints of the transcript are located on the ORF to avoid analysis minor footprint peaks
trailing major peaks. Noncoding RNAs that overlap annotated coding RNAs were excluded. h Pie charts showing the number of IncRNAs with
ORFs that have: low footprint density ( TE score < 0.1, black); ORFs with below threshold number of ribosome footprints (<4 reads, gray);
ribosome footprints on at least one ORF that are blocked at least 4 fold by pateamine (red), 2 fold by harringtonine (red), or both, at least 4
fold by DMDA-PatA and two fold by harringtonine (red); at least one ORF with above threshold number of ribosome footprints but no ORF

are shown

with an above threshold effect of the translation inhibitors (blue). Only data for INcCRNAs that have at least one ORF with at least 20 transcriptome reads

to their particular mechanism of translation initiation
where the initiation complex bypasses 5UTR scanning
and tethers in vicinity of the AUG start codon [22].
However, we also observed pronounced ribosome stalling
for transcripts which likely initiate translation by the canon-
ical pathway such as the oncogene Jun (Additional file 1:
Figure S3D). Ribosomal stalling will obviously decrease the
efficiency of translation and protein output. Further studies
will be required to answer the question of whether riboso-
mal stalling at the start codon is just a static property of a
particular transcript or reflects a novel as for yet unknown
mechanism of translational regulation.

Harringtonine and puromycin only weakly affect the
footprints on the translation start codons and even lead
to an increased start codon footprint density for 39 %
and 43 %, respectively, of coding mRNAs (Additional file
1: Figure S3B). For puromycin, the most likely mechan-
ism for this ribosome accumulation is that premature
chain termination by the drug releases ribosomal sub-
units that become available for translation initiation and
accumulate at early stall sites. This mechanism would
imply that, at least in proliferating ES cells, the pool of
free ribosomal subunits is a limiting factor in mamma-
lian translation, as previously suggested for yeast [23].

All three inhibitors have a highly selective effect on
coding sequences since RNAse resistant footprints on
snoRNAs (Fig. le) and on RNAs that are part of ribo-
protein complexes such as RNAse P or Telomerase
(Additional file 1: Figure S4) were not, or only very
weakly affected.

Pateamine A inhibition identifies translated ORFs in
noncoding RNAs

ORFs are common in IncRNAs. All but one of the 332
mouse IncRNAs with at least 20 transcriptome reads in
our dataset have at least one ORF with an AUG start
codon. Although certain computational scoring schemes
yielded contradictory interpretations on the translational
status of IncRNAs [8, 11], most recent computational

scorings of ribosome profiling data rather suggest that
ORFs in IncRNAs are, to certain extent, translated [12—14].
Since translation inhibitors, in particular DMDA-PatA,
reliably identify translated sequences, we examined
how translation inhibitors perform in identifying trans-
lated ORFs in IncRNAs when compared to bioinformat-
ics scoring schemes.

LncRNAs have two properties that need to be considered
when comparing them to protein coding transcripts. First,
IncRNAs are typically expressed at lower levels than protein
coding transcripts. Amongst expressed ES cell transcripts
(>20 RNAseq reads), IncRNAs had a median of just 50
transcriptome reads while annotated coding sequences had
a median of 345 reads. Secondly, noncoding RNAs have
shorter ORFs when compared to annotated protein coding
sequences, since a maximal ORF size of 200 nucleotides is
typically one criterion used to classify an RNA as noncod-
ing. Thus, an approach suitable for probing IncRNAs for
translation has to correctly classify short and low-expressed
coding sequences.

Short annotated CDS are affected by DMDA-PatA to a
similar extent as all known CDS (Fig. 2a, b). It is not
surprising that DMDA-PatA inhibition is efficient for
short CDS, since DMDA-PatA targets elF4A and thus a
step before the start codon is encountered by the trans-
lation machinery. Conversely, with harringtonine, there
is clearly a reduced block of shorter CDS (Fig. 2c, d),
which is, at least partially due to the drug-induced
pile-up of ribosome footprints at the beginning of a subset
of translated CDSs, as often found with this drug
(Additional file 1: Figure S3A, B). The effect of CDS length
is most pronounced with puromycin (Additional file 1:
Figure S5A). This finding is in line with the mechanism
of action of puromycin which triggers chain termination.
The accumulated probability of chain termination increases
with each elongation cycle. In consequence, puromycin
blocks short ORFs only weakly and inhibition by this drug
is not a useful criterion to assess the translation of short
ORFs. All inhibitors performed well for low expressed
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transcripts (Fig. 2b, d, Additional file 1: Figure S5A). Foot-
prints on low expressed annotated coding transcripts were
only slightly less affected by the inhibitors than those of all
protein coding mRNAs. Thus, DMDA-PatA, and to a lesser
extent harringtonine, appear well suited to probe the short
ORFs of low expressed noncoding RNAs for translation.

DMDA-PatA induced a strong inhibition of ribosome
footprints on certain ORFs in noncoding sequences
(Fig. 2a, b). The median footprint inhibition was 6.8 and
7.6 fold for IncRNAs and Refseq ncRNAs, respectively.
Although this is close to the median DMDA-PatA inhib-
ition of small annotated CDS (11.3 fold), the frequency
distribution of DMDA-PatA inhibition for noncoding
RNAs displays a biphasic shape (Fig. 2b), which probably
reflects the presence of at least two populations. The
weak inhibition of certain ORFs in noncoding RNAs is
likely due to the fact, that for noncoding RNAs all pre-
dicted ORFs on each transcript were analyzed, although
it is unlikely that all are in fact translated. Conversely,
for protein coding transcripts only the actually translated
annotated ORF was taken into account. Although far
less potent than DMDA-PatA, the median harringtonine
inhibition of IncRNA ORFs (1.9 fold) and Refseq
ncRNAs footprints (2.8 fold) compared well with the
values obtained for small annotated CDS (Fig. 2d; me-
dian inhibition = 2.0 fold). Both DMDA-PatA and har-
ringtonine have a more profound effect on footprints on
IncRNA ORFs than on footprints on the entire tran-
script, a fact that further supports a widespread active
translation of ORFs of IncRNAs (Additional file 1: Figure
S5B, C).

We next compared DMDA-PatA inhibition to three
representative computational scorings (RR-, ORF- and
Floss score). While DMDA-PatA performed well even
with low-expressed transcripts (Fig. 2b; Additional file 1:
Figure S6A), we observed that all three computational
scores were highly affected by mRNA expression levels.
They tended to score low expressed coding transcript
as weakly or not translated (Fig. 2e-g; Additional file 1:
Figure S6B, E, H). The RR-score clearly performed
worst, since coding sequences, in particular the low
expressed, were very poorly discriminated from snoR-
NAs (Table 1; Fig. 2e; Additional file 1: Figure S6B, C).

This contradicts Guttman et al. [11] who reported that
RR-scores of annotated coding sequences are much
higher than those of structural RNAs or IncRNAs and
concluded that IncRNAs are not translated. While we
scored all transcripts the same way and used the 3’'UTR
until the first AUG that follows the stop codon for all
RR-score calculations (see methods section), Guttman et
al. computed the RR-score differently for coding and
noncoding sequences. They considered the entire 3’'UTR
for annotated coding transcripts but just the very short
3JUTR sequence until the next AUG for noncoding
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Table 1 Fraction of transcripts scored as protein coding

Coding Low expressed coding sNORNAs
DMDA-PatA 99.86 99.68 0
RR-Score 31.82 13.55 79.01
ORF-Score 7844 4345 16.05
Floss-Score 91.69 7112 1111

We computed the distribution of DMDA-PatA, RR-, ORF, and Floss scores for
ORFs of protein coding RNAs (Coding), low expressed protein coding transcripts
(Low Expressed Coding; see Fig. 2 and methods for transcript selection) and
snoRNAs. Coding sequences with a coding score better than the 10 % best
scoring snoRNAs were classified as coding. Similar, snoRNAs with a better
score than the 10 % worst scoring coding RNAs were classified as coding in
this table

RNAs. We noticed that the use of the entire 3'UTR
yields far higher RR — scores (11.4 fold higher for anno-
tated coding transcripts, Additional file 1: Figure S6D),
and suspect that the use of different scoring for coding
and noncoding sequences is the likely reason for the ob-
servation of Guttman et al.

Both the ORF score and the Floss score clearly per-
formed better than the RR- score, in particular for well
expressed (or translated) transcripts (Fig. 2e-g, Additional
file 1: Figure S6G, J). However, the scores for annotated
coding and snoRNA overlap significantly, leading to a false
classification of the translational status for an important
fraction of coding transcripts and snoRNAs. Conversely
DMDA-PatA inhibition classifies all snoRNAs and almost
all coding transcripts correctly (Table 1).

Pairwise comparison between the different scoring
schemes reveals a rather poor correlation in the predic-
tion of the translational status of snoRNA and IncRNA
ORFs by the RR-score when compared to the Floss or
OREF score, respectively (Additional file 1: Figure S6G, J).
The ORF- and Floss-score correlate better but it remains
that the prediction of the translational status of many
IncRNAs and snoRNAs are contradictory for both scores
(Additional file 1: Figure S6K). Thus, while globally both
the Floss and the ORF score suggest that certain
IncRNAs are translated, they clearly perform worse than
DMDA-PatA in identifying a particular translated ORF
in a typically low expressed IncRNA with high
confidence.

We next sought to define the scope of IncRNA trans-
lation in murine ES cells. We initially used the transla-
tion efficiency (TE-) score to define transcripts with low
coding probability, considering that a very low TE-score
indicates a low or no ribosome occupancy. Amongst the
160 IncRNAs in our dataset that have at least 20 tran-
scriptome reads on an ORF, 26.3 % (42) have no ORF
with a TE-score above 0.1, a score that is exceeded for
99 % of annotated protein coding sequences in our data-
set (Fig. 2a, Additional file 2: Table S1). Those RNAs
likely represent real noncoding RNAs or are translated
with very low efficiency. Another subset of IncRNAs that
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represents 18.1 % has an above threshold TE-score but
less than four ribosome footprints on an ORF. This low
number of footprints is clearly insufficient for a reliable
analysis of the effect of translation inhibitors and thus
the translational status of the corresponding RNAs. We
then analyzed the remaining ORFs that have both, an
above threshold TE-score and a minimum of 4 ribosome
footprints for the effect of translation inhibitors to iden-
tify translated IncRNAs. We found an above four fold
DMDA-PatA or more than two fold Harringtonine in-
hibition for ORFs in 43 % or 33 % of the expressed
IncRNAs respectively (Fig. 2h), suggesting that at least
one third of the IncRNAs expressed in murine embry-
onic stem cells are translated.

Even classical members of the IncRNA family, such as
Malat 1, have multiple ORFs that show clear signs of
translation (Fig. 3). Analysis of ribosome footprints on
Malat 1 reveals an elevated RNAse resistance on the first
600 nucleotides of the Malat 1 transcript. The ribosome
footprints are principally located on four ORFs and are
potently inhibited by DMDA-PatA, while RNAse resist-
ant reads downstream of this ORF cluster are not inhib-
ited (Fig. 3d). Puromycin and to a lesser extent
harringtonine cause ribosome pileup at five AUG start
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codons (Fig. 3), suggesting that translation is to some ex-
tent stalled on those Malat 1 ORFs. The fact that this
ribosomal accumulation is exactly localized on the AUG
start codon of the respective ORF further supports the
conclusion that the footprints on ORFs of Malat 1 are
due to translation. While our data support translation of
four ORFs in Malat 1, translation of essentially the first
ORF of Malat 1 was recently deduced from Floss score
analysis of ribosome profiling data [12]. Translation of
several ORFs associated with ribosome stalling at the
start codon is not uncommon in IncRNAs. Five ORFs of
the IncRNA Gm14074 accumulate ribosome footprints
on start codons (Additional file 1: Figure S7A). Stalling
of ribosomes on two AUG codons is also evident for
the principal ORF of the snoRNA host gene Gasb
(Additional file 1: Figure S8). The fact that the foot-
prints on the intronic snoRNAs encoded by the Gas5
gene are not inhibited by DMDA-PatA (Additional file 1:
Figure S8D) further emphasizes the high selectivity of
DMDA-PatA for translation related RNAse footprints.
Other IncRNAs, rather behave as classical mRNAs.
This is the case for 1500011K16Rik (Additional file 1:
Figure S7B), which has ribosome footprint profiles that
resemble those of annotated CDSs with footprints
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distributed over just one longer ORE, suggesting efficient
translation of the encoded peptide.

Upstream open reading frames are frequently translated
Upstream open reading frames with AUG or CUG start
codons are found in 42 % or 63 % of the 5° UTRs of an-
notated mouse protein coding transcripts (Mus muscu-
lus release mm10), respectively. This raises questions on
the scope of uORF translation in the mammalian
transcriptome.

Peaks of ribosome footprints in the presence of har-
ringtonine [8, 12] or puromycin [15] have been previ-
ously postulated as translation start sites, leading to the
classification of numerous uORFs candidates with AUG,
CUG and near- or non-cognate start codons. Yet, har-
ringtonine is an A-site elongation inhibitor [24] that is
somewhat selective, but not specific for translation initi-
ation sites. Puromycin is an aminoacyl-tRNA analog that
causes premature chain termination. Thus, an accumula-
tion of footprints on translation stall sites rather than on
translation start sites would be consistent with the well
defined action mechanism of this drug.

We examined at a transcriptome wide level whether
footprints in control and drug treated samples accumu-
late selectively on translation start codons in 5 UTRs
(Fig. 4a). Without translation inhibitor, 5° UTR foot-
prints accumulate over average on AUG, and to a lesser
extent on CUG codons. Except for UUG that has a
slightly over average footprint density we did not detect
any over-representation for other near-cognate start co-
dons. A selective stalling of ribosomes on translation
start codons by harringtonine should result in an in-
creased relative density of footprints on translation start
codons. Surprisingly, we noticed the opposite (Fig. 4a), a
decreased accumulation of footprints on AUG and CUG
codons after harringtonine treatment. This is clearly not
consistent with a selective stalling of ribosome footprints
on translation start codons in the presence of harringto-
nine. Puromycin did not trigger an accumulation of foot-
prints on start codons in the 5 UTR neither (Fig. 4a).
Predominant translation initiation at non-canonical initi-
ation sites in 5° UTRs was recently deduced from har-
ringtonine [8, 12] or puromycin-induced [15] ribosome
footprint peaks. We also frequently noticed an accumu-
lation of footprints at sites that are not canonical trans-
lation initiation sites after harringtonine or puromycin
treatment. On eEF2, for instance, multiple peaks induced
by harringtonine are located on the 5 UTR sequences
AGAATCCGT (Fig. 1a) and on CCGTA within the an-
notated CDS. With puromycin, the principal footprint
pileup is on GACTC in the 5 UTR of eEF2. However
there is little overlap between the sites of puromycin and
harringtonin induced ribosome pileup. This and the fact
that we did not observe an increased footprint
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accumulation on canonical start codons after harringto-
nine or puromycin treatment (Fig. 4a) suggest that the
presence or absence of such peaks should not be consid-
ered as a proof for the presence or absence of translation
initiation respectively.

We next examined whether translation inhibitors re-
duce footprints on ORFs in 5" UTRs and whether those
drugs allow a reliable identification of translated uORFs.
Puromycin is clearly not well suited for the identification
of translated uORFs. The drug affects footprints on
AUG uORFs only weakly, to a similar extent as the foot-
prints on the entire 5 UTRs (Fig. 4b). The small effect
of puromycin on 5" UTR footprints is thus not selective
for ORFs. The lack of puromycin inhibition of the typic-
ally short uORFs is not surprising since puromycin af-
fects only weakly short coding sequences (Additional file 1:
Figure S5A). Harringtonine performed better than Puro-
mycin and displayed some selectivity for uORFs when com-
pared to the entire 5 UTR (Fig. 4b). Yet, harringtonine was
largely outperformed by DMDA-PatA (Fig. 4b). The effect
of DMDA-PatA on 5 UTR footprints was mainly concen-
trated on ORFs with AUG start codons that were inhibited
more potently (Median = 8.5 fold) than the gross 5° UTR
signal (Median 3.1 fold, Fig. 4b). This selective effect of
DMDA-PatA on AUG ORFs in the 5" UTR suggests that
translation of those ORFs is rather common. uORFs with
CUG start codons are far more frequent in 5" UTRs than
AUG uORFs. We found 65,864 CUG uORFs (10,642 tran-
scripts) and 16,246 AUG uORFs (5911 transcripts) in the
14,537 annotated coding transcripts expressed in ES cells
(>8.5 mean transcriptome reads). However, translation of
CUG uORFs appears far less common, since footprints on
CUG uORFs were only slightly more affected by DMDA-
PatA (Median 3.9 fold, Fig. 4c) than the gross 5 UTR foot-
prints (Median 3.1 fold, Fig. 4c).

We next sought to identify actively translated uORFs.
We first selected ORFs with at least 20 RNAse resistant
footprints that are blocked at least three fold by DMDA-
PatA. Visual inspection of the ribosome footprint pro-
files revealed that this simple selection scheme yields a
too high false discovery rate, principally due to the fact
that uORFs often overlap and DMDA-PatA sensitive
reads are attributed to non-translated uORFs that over-
lap with a translated uORF.

For the majority of annotated protein coding se-
quences, we observed an accumulation of ribosome foot-
prints on the translation start codon (Additional file 1:
Figure S3A). Interestingly, we noticed the same for most
upstream ORFs with AUG start codons and to a lesser
extent for uORFs with CUG start codons (Fig. 4d). The
strongly increased footprint density on AUG codons in
5" UTRs likely reflects a widespread translation of AUG
uORFs there. We reasoned that filtering for ORFs with
footprints on the start codon should partially eliminate
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(See figure on previous page.)

Fig. 4 Widespread translation of AUG uORFs. a Box plots showing the relative footprint density on different codons (three reading frames) in 5’
UTRs for control, harringtonine, puromycin and DMDA-PatA treated samples. For the three forward reading frames footprints located on the center
nucleotide of a codon were assigned to the corresponding codon for each transcript. Footprints principally accumulate on the center nucleotide of a
codon with the read start offset we used (Additional file 1: Figure S1). To calculate relative footprint densities for a codon in a given 5" UTR, the average
number of footprints on a codon was divided by the average footprint density of all codons of the respective 5" UTR. The box plots show data
for transcripts with at least 50 footprints in the 5" UTR. The right panel is a magnification of the left one. Numbers (n) indicates the number of
transcripts with at least one such codon that pass the filters. A median relative density of above one indicates that a codon has an above average number
of footprints in the majority of 5" UTRs. b Cumulative frequency distribution of the fraction of drug resistant ribosome footprints for: (i) ORFs
with AUG start codons in the 5" UTRs of annotated protein coding transcripts (solid lines). Only ORFs with at least 20 ribosome footprints are
shown (n=2078, median and mean ORF sizes are 72 and 51 nt. respectively). (i) The entire 5" UTR of transcripts that contain above cutoff
(>20 footprints) ORFs (dashed lines, n=1256). The last 10 nucleotides of the 5" UTRs were clipped to avoid carryover of footprints flanking the
start codon of the annotated coding sequence. Inhibitors used were: puromycin (Puro), harringtonin (Harr) and DMDA-Pateamine A (PatA).

c Cumulative frequency distribution of the fraction of drug resistant ribosome footprints for: annotated protein coding sequences (black);
Upstream ORFs with AUG (orange) or CUG (blue) start codons; entire 5" UTR (yellow). Only data for ORFs with at least 20 ribosome footprints
(AUG, n=2078; CUG, n=6998) are shown. d Cumulative frequency distribution of the accumulation of ribosome footprints, on the translation
start codons AUG (red) and CUG(blue) of ORFs in the 5" UTRs of annotated protein coding sequences. The ratio of footprints per nucleotide
for the translation start codon +/— 1 nucleotide and the footprints per nucleotide for the entire ORF provide a measure of footprint accumulation on the
translation start codon. Cutoffs for ORFs and 5" UTRs were as for B and C. e Boxplots showing the distribution of a Kozak consensus sequence score
(methods section and [25] for all AUG uORFs of transcripts expressed in murine ES cells (>85 normalized transcriptome reads, n = 16246), UORFs without
footprints (n = 5486), with at least 20 footprints (n=2911), DMDA-PatA (n = 1195). f A well translated uORF in Collagen 3al. The inset shows a zoom on
the region flanking the UORF which codes for a 3 amino acid peptide. The principal peak of ribosome footprints is located on the AUG start codon of the
UORF. The number of ribosome footprints on the annotated coding sequence (CDS, 823) and on the UORF (382) are shown in the histogram. g An
upstream ORF that codes just for one amino acid in the small GTP-binding protein Rab10. h The uORF of TGFB-Induced Factor 1 extends into the CDS.

The uORF is not in frame with the CDS. The insets show incremental zoom levels on the UORF and on the translation start codons. The main peaks of
ribosome footprints are located exactly on the AUG start codons of the UORF and the CDS respectively. In f- h data are shown for control samples
(no drug, blue), DMDA-PatA (red), harringtonin (green) and puromycin (yellow)

overlapping untranslated uORFs. Filtering for uORFs
with at least 8 ribosome footprints on the start codon
(+/- 1 nucleotide) and 20 footprints on the entire ORF
that are at least three-fold inhibited by DMDA-PatA
yielded a list of 1195 AUG ORFs in 884 transcripts and
1316 CUG ORFs in 857 transcripts (defined thereafter
as the “PatA uOREF set”).

An objective validation of our uORF selection with a
set of confirmed uORFs is not possible since translation
of only few mammalian uORFs were experimentally con-
firmed as for yet [7] and just a handful is expressed in
murine ES cells. We visually inspected the footprint pro-
files and drug effects for 282 randomly selected AUG
and 202 CUG uORFs from our DMDA-PatA uORF set.
We scored them (Additional file 1: Figure S9) blindly
using a scale from 0 (not translated) to 10 (highly likely
translated). For our PatA uORF set, we noticed ribosome
footprint patterns and drug effects consistent with an ac-
tive translation (Score > = 6) for 76 % of AUG and 18 %
CUG ORFs (Additional file 3: Table S2).

Thus, we efficiently enriched for translated AUG
uORFs with AUG start codons, while for CUG uORFs a
high number of false positives passed the filters. CUG
uORFs were about four times more frequent and about
three times longer than AUG uORFs (median OREF sizes:
AUG = 39 nt., CUG =102 nt.). In consequence untrans-
lated CUG uORFs extensively overlapped with other
translated uORFs and a higher number of false positives
passed our filters.

We also examined whether scoring the presence of a
“Kozak consensus sequence”, which is generally consid-
ered as a favorable context for efficient translation and
frequently used to predict the quality of an ORF [25], al-
lows to further refine the identification of translated
uORFs. We examined whether the sequences flanking
the start codons of translated uORFs were enriched for
this motif. Yet, the distribution of Kozak consensus
scores [25] of our DMDA-PatA selected set of uORF
candidates (n = 1195), though highly enriched for trans-
lated uORFs, differed only slightly from the scores ob-
tained for all AUG uORFs (1 = 16246), which are mainly
untranslated (Fig. 4e). This suggests that the quality of
the Kozak consensus sequence flanking the start codon
is not a criterion that efficiently discriminates translated
from untranslated uORFs.

Our data suggest that AUG uORFs are actively trans-
lated in at least 700 murine ES cell transcripts. We fil-
tered rather stringently and likely missed uORFs that are
weakly translated or don’t accumulate footprints on the
start codon. Application of the same filters on annotated
protein coding sequences yields just 3916 transcripts
that pass those filters. This suggests that translated
uORFs are rather common in the ES cell transcriptome.

Translation of uORFs can be highly efficient. For Col-
lagen 3al (Fig. 4f), the 4392 nt. coding sequence accu-
mulated just about twice as much ribosome footprints
as the tiny 12 nt. uORF. The footprint density on the
uORF was thus 170 times higher than on the Col3al
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CDS. Translated uORFs can be as small as three nucleo-
tides. Such a tiny uORF accumulated DMDA-PatA sen-
sitive ribosome footprints for the RAS oncogene family
member Rabl0 (Fig. 4g). Ribosome accumulation on
such tiny, one amino acid uORFs was not uncommon
and also found in other transcripts such as Klf3, Sap30,
Rrp9, Ppap2c. Upstream ORFs that terminate before the
annotated CDS are typically short. Their median size is
33 and 60 nt. for AUG and CUG uORFs, respectively, in
our DMDA-PatA uORF set. Translation of such short
uORFs is thought to generally reduce translation of the
downstream CDS under certain conditions, without ne-
cessarily excluding subsequent translation [6]. Con-
versely, translation of a uORF that extends into the main
CDS and translation of the CDS are obviously mutually
exclusive if the uORF and the CDS use different reading
frames. Such overlapping uORFs represent 13 % and
43 % of our DMDA-PatA selected AUG (median size
117 nt.) and CUG uORFs (median size 165 nt.), respect-
ively. An example is shown in Fig. 4h.

Finally we examined the presence of translated uORFs
in transcripts critically involved in embryonic stem cell
pluripotency and self-renewal. Previously, translation of
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four uORFs in the 5 UTR of Nanog, a key transcription
factor for the control of ES cell identity, was deduced
from harringtonine induced footprint peaks [8]. While
our DMDA-PatA inhibition data clearly support transla-
tion of an AUG and a CUG initiated uORF in the Nanog
5 UTR (Additional file 1: Figure S10), the two additional
UUG initiated uORFs that were previously reported by
Ingolia et al, 2011, were not detected in our experi-
ments. We neither observed evidence for the truncated
forms of Nanog that were proposed to initiate transla-
tion at harringtonine induced footprint pileups within
the CDS [8]. Harringtonine induced peaks within the
CDS were located on GTT and TTT codons, which
hardly correspond to known translation initiation sites
(Additional file 1: Figure S10). Besides for Nanog, we ob-
served DMDA-PatA-sensitive ribosome footprint pro-
files that suggest uORF translation for several other
transcripts that code for proteins critically involved in
stem cell renewal and identity such as CTCF, Dicerl,
Lin28b and Trim71 (Lin41) (Fig. 5).

Widespread translation of uORFs, with a more fre-
quent initiation at near- and non-cognate start codons
than at cognate start sites, has been previously deduced
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Fig. 5 Translated uORFs in transcripts implicated in stem cell self-renewal and identity. a — d upstream ORFs in CTCF (a) Dicer1 (b) Lin28b (c) and
Trim71 (d). The right panels show the footprint profiles for the entire transcripts. On the left, expanded views of the regions flanking uORFs are
shown. UORFs are indicated. Different colors indicate different reading frames. Footprint profiles for control (blue) and DMDA-PatA - treated (red)
samples are shown. The principal footprint peak(s) are indicated (¥). Profiles shown are for ENSMUST00000005841 (CTCF), ENSMUST00000041987
(Dicer1), ENSMUST00000079390 (Lin28b) and ENSMUST00000111816 (Trim71)
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by others from ribosome profiling data based on har-
ringtonine [8] or puromycin [15] induced peaks in the 5’
UTR footprint profiles. Yet, the theoretical probability
that any nucleotide in a random sequence is positioned
on such a near cognate codon (AUG with one mutation,
except CUG) is very high (37.5 % - see methods section)
and the probability that a 5’UTR footprint is somewhere
within such an ORF is even higher. In our opinion, a
genome-wide association of ribosome footprints with
such degenerated motifs is not reliable. The only other
such codon that showed an above average footprint
density in 5" UTRs is UUG (Fig. 4a). During visual in-
spection of 5 UTR footprint profiles we observed
DMDA-PatA—sensitive footprints on UUG uORFs that
are typically characterized by just a pronounced peak of
footprints on the putative UUG start codon (Additional
file 1: Figure S12). Yet, translation of near cognate initi-
ated uORFs seems to be far less common when com-
pared to the widespread translation of AUG uORFs.

Filtering for translated ORFs is always a trade-off be-
tween sensitivity and specificity. Visual inspection of
ribosome footprint profiles and examination of the effect
of different translation inhibitors is in our opinion cur-
rently the most reliable way to examine a particular
RNA of interest for translated ORFs. For ORFs with a
decent number of footprints, examination of the ORF-
and the Floss score can further support the translational
status of a specific ORF.

In order to facilitate this analysis, we have developed a
dedicated JavaFX GUI application to access our data
(Additional file 1: Figure S13, http://caire.ipmc.cnrs.fr/
RibosomeProfileViewer/BMC/).

The software allows inspection of ribosome footprints
on spliced transcripts, ORFs, drug effects and several
bioinformatics scores such as RR-score [11], TE-score
[8] and ORFscore [14] in our dataset at single nucleotide
resolution.

Discussion

We show here that the eIlF4A targeting translation in-
hibitor DMDA-PatA outperforms computational scoring
in classifying coding and noncoding sequences from
ribosome profiling data. While DMDA-PatA inhibition
clearly discriminates annotated coding sequences and
snoRNAs, computational scores falsely classify a subset
of, mainly low-expressed, coding sequences as noncod-
ing and certain snoRNAs as potentially coding (Fig. 2,
Additional file 1: Figure S6, Table 1). Furthermore the
different scores agree only partially on the translational
status of particular RNAs (Additional file 1: Figure S6).
In consequence computational scoring alone appears in-
sufficient to define whether a particular ORF in a
IncRNA or 5 UTR is translated.
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While all but one report that used scoring algorithms
agree with our principal conclusion that translation of
IncRNAs is rather common, the major difference be-
tween the previous reports and our study lies in the ex-
tent of translation of IncRNAs and the precision in
inferring the translational status of particular IncRNAs.
Our data suggest that about one third of the IncRNAs
expressed in murine ES cells have at least one translated
OREF (Fig. 2h), while about the same fraction of IncRNAs
are apparently void of significantly translated ORFs.
Conversely Ingolia et al. (2011, 2014) concluded using
the TE and Floss score respectively, that the majority
of IncRNAs are translated in murine ES cells, while
Guttman et al. (2013) found that the RR-scores of
IncRNAs rather resemble those of bona fide noncod-
ing RNAs such as snoRNAs.

Certain translated IncRNAs with just one translated
principal ORF (e.g. 1500011K16Rik, Fig. S7B) are likely
just coding RNAs misannotated due to the arbitrary fil-
ter generally used, that classifies ORFs of less than
200 nt. as noncoding. The IncRNA 1500011K16Rik
codes for a 56 amino acid peptide that is highly con-
served in other mammals (e.g. the human orthologue
LINCO00116 codes for a 95 % identical peptide) suggest-
ing strong evolutionary selection for this peptide.

Conversely, for other translated IncRNAs we observed
multiple short ORFs that are translated to a similar ex-
tent (e.g. Malat 1, Fig. 3, Gm14074, Additional file 1:
Figure S7A). This is rather untypical for eukaryotic pro-
tein coding transcripts which generally are monocistro-
nic. Furthermore, the ribosome footprint profiles on
these ORFs often have pronounced peaks at the transla-
tion start codon, suggesting a stalled, unproductive
translation. Interestingly, the machine learning algorithm
Chew et al. [13] used to classify ribosome footprint pat-
terns suggested similarity between IncRNAs and 5" UTRs
where translation initiation at multiple, sometimes very
short ORFs is also frequent (Fig. 5). Translation of many
of those multiple short ORFs in noncoding RNAs might
just reflect the fact that the translation machinery scans
capped transcripts irrespective of their coding potential.
When the 43S pre-initiation complex encounters a start
codon in a favorable context, translation would initiate
more or less efficiently. The multiple translated ORFs
we frequently observed in IncRNAs might just be, as
uORF translation in 5 UTRs, the result of the complex
combination of ORF skipping by a subset of scanning
ribosomal subunits and re-initiation of some ribosomal
subunits that continued scanning and became again ini-
tiation competent after translating an upstream ORF. In-
efficient protein output or generation of unstable, likely
biologically irrelevant, peptides from translated IncRNA
OREFs is also supported by both the finding that the
IncRNA encoded peptides typically are only weakly
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conserved between species [11, 13] and the fact that
high throughput mass spectrometry failed to detect any
peptide for 92 % of GENCODE v7 IncRNAs [4].

Translation of those apparently multicistronic mRNAs
raises the question of whether translation of those ORFs
has a physiological role. Translation likely generates a
certain level of noise which might provide an important
evolutionary playground to test novel peptide designs for
evolutionary fitness. Yet, translation has other conse-
quences beyond protein output. Even a low level of ac-
tive translation or a stall of the translation machinery
can render an RNA susceptible to various translation as-
sociated decay pathways such as nonsense mediated
decay (NMD) or no go decay [26]. Targeting certain
cytosolic IncRNAs towards decay pathways such as
NMD might be a means to regulate cytosolic IncRNA
expression as it was suggested for Gas5 [27] and to elim-
inate IncRNAs with mainly nuclear functions or poten-
tially detrimental spurious transcripts generated by
transcriptional noise from the cytosol.

As previously suggested by Chew et al. [13], the major-
ity of translated IncRNA likely do not code for physiolo-
gically relevant peptides. Thus they could actually be
classified as bona fide noncoding RNAs. Yet, the strict
classification of RNAs into either coding or noncoding
RNAs might be outdated anyway, since one mRNA can
do both, code for an important protein and act directly
as an RNA. One example for such a bi-functional coding
mRNA is the Oskar transcript in drosophila, where the
3 UTR is required for oogenesis, independent of the
encoded protein [28] which is required for the formation
of the posterior pole plasm in the egg. Just a few exam-
ples of coding RNAs with noncoding functions were re-
ported so far (reviewed in [29]). Yet, this does not imply
that such functions are rare, since effects after invalida-
tion of a coding gene are typically attributed to the pro-
tein and most noncoding functions of coding transcripts
likely remained undiscovered. Protein coding transcripts
often have long 3" UTRs and are typically expressed at
far higher levels than most IncRNAs. From that perspec-
tive, untranslated sequences of protein coding tran-
scripts likely even represent a far more abundant and
complex pool of noncoding sequences in a mammalian
cell than the often low expressed IncRNAs.

A second class of ORFs in noncoding sequences that
are extensively translated are uORFs in 5 UTRs of pro-
tein coding transcripts. We mainly detected active trans-
lation for uORFs with AUG start codons and to a lesser
extent for CUG initiated uORFs in at least 10 % of the
transcripts expressed in murine ES cells. Previous stud-
ies [8, 12, 15] likely over-estimated both the scope of
uORF translation and the use of near- and non-cognate
translation initiation sites, assuming that harringtonine-
or puromycin induced peaks in ribosome footprint
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profiles correspond to translation start sites, an assump-
tion that is not supported by our own data (Figs. 1a, 4a,
Additional file 1: Figure S10).

Interestingly, we found single or even multiple trans-
lated uORFs in transcripts coding for proteins that are
critically involved in the complex network of pathways
that maintains the delicate balance between self-renewal
and multilineage differentiation in embryonic stem cells.
Several of those transcripts are involved in microRNA
biogenesis and function (Fig. 5), which is crucial for
stem cell identity [30]. We identified translated uORFs
in dicerl, an RNAse III required for microRNA biogen-
esis [31], in lin28b, an RNA-binding protein that inhibits
maturation of the microRNA let-7 [32], and in trim71
(lin41), an E3 ubiquitine ligase which is known to co-
operate with the miRNA machinery and to promote
stem cell self-renewal and maintenance [33]. We also
observed translated uORFs in the transcription factor
Nanog (Additional file 1: Figure S10, also reported in
[8]), a core element of the transcriptional network that
defines ES cell identity and in CTCE, a key regulator of
genome organization [34] and lineage specific gene ex-
pression. Some of those uORFs (e.g. in dicerl, lin28b)
are highly conserved in vertebrates (Additional file 1:
Figure S11). Re-initiation following uORF translation is
generally inefficient and translation of an uORF is
thought to generally impair translation of a downstream
coding sequence [35]. It seems likely that the translated
uORFs in transcripts critical for stem cell identity affect
protein output and are part of the network that post-
transcriptionally fine tunes the ES cell proteome for
maintenance of pluripotency and self renewal.

It was previously shown that the 5 UTR footprint
density decreases during ES cell differentiation [8], sug-
gesting a globally lower uORF translation after differen-
tiation. The impact of uORFs on protein output is
subject to complex regulations as it was shown for the
regulation of Atf-4 translation during cellular stress [36].
While stress is so far the principal known modulator of
uORF translation in mammals, modulation of uORF
translation by a 5" UTR interacting protein was recently
reported in drosophila [37]. It seems likely, that regula-
tion of uORF translation and re-initiation will turn out
far more complex than currently anticipated. Defining
the pathways that regulate uORF translation and the im-
pact of uORF translation on protein output remain im-
portant future challenges. Both require a reliable
identification of translated uORFs, a task that is greatly
facilitated by the fact that DMDA-PatA efficiently identi-
fies translation of even tiny uORFs.

Ribosome profiling allows to define ribosome density
but it does not provide direct information about protein
output. A transcript with very dense ribosome footprints
due to stalled ribosomes could conceivably yield far less
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protein than a transcript with a much lower footprint
density but rapidly processing ribosomes. Unlike computa-
tional scores, translation inhibitors address to some extent
the dynamics of ribosomes on transcripts — ribosomes that
don’t move are unaffected by translation inhibitors.
Ribosome run off analysis after brief incubations with
harringtonine have previously led to the conclusion
that translation speed is affected by the adaptation of
codons to the tRNA pool, amino acid charges and
mRNA secondary structure [38]. Yet, since harringto-
nine acts after initiation, those run-off experiments tar-
geted only elongation and there is accumulating
evidence that translation initiation is an important rate
limiting step of translation (reviewed in [39]). Run-off
experiments with DMDA-PatA, which acts upstream of
translation initiation, should provide important insights
in the dynamics of translation on the entire transcript
and not just on the coding sequence. Finally such fu-
ture studies need to combine ribosome profiling and
quantitative proteomics to better understand the im-
pact of uORF translation on protein output and cellular
function.

Conclusions

We show that inhibition of translation with DMDA-
PatA allows a reliable identification of translated ORFs
in ribosome profiling data even for rare transcripts (e.g.
IncRNAs) for which previously used computational scor-
ing often perform badly. We found evidence of transla-
tion for one third of the IncRNAs in murine ES cells.
Yet, IncRNA translation is often characterized by stalled
ribosomes and likely inefficient suggesting that in most
cases it rather serves a regulatory role than protein out-
put. DMDA-PatA inhibition also allowed us to identify
hundreds of translated uORFs in murine ES cells. The
widespread translation of uORFs and in particular the
presence of translated uORFs in key pluripotency tran-
scripts suggests an important role of uORF translation
stem cell identity.

Defining the scope of translation with DMDA-PatA,
eventually combined with certain current or yet to be
developed computational scoring approaches, should in-
crease the precision of ribosome profiling data analysis
and the value of the generated data for our understand-
ing of the scope, regulation and role of translation.

Methods

Data shown in figures

If not stated otherwise, normalized means of two bio-
logical replicates were used for all figures.

Cell culture and drug treatment
Murine embryonic stem cells (CGRS8, passage 17 — 23)
were cultured feeder free in gelatin-coated 75 cm? flasks
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in DMEM, 15 % FCS, glutamine, pyruvate, nonessential
amino acids, p-mercaptoethanol and leukemia inhibitory
factor. Drug stock solutions were DMDA pateamineA
[17] (Jun O. Liu, Texas A&M University), 500 uM in
DMSO; harringtonine (Santa Cruz Biotechnology, TX),
4 mg/ml in DMSO; puromycin (Sigma, St.Louis, MO),
20 mg/ml in H,O. Drug concentrations and incubation
times were: DMDA-pateamine A, 1 puM, 10 min; har-
ringtonin, 2 pg/ml, 10 min; puromycin, 0.2 mg/ml,
20 min. Cells were kept at 37 °C after drug addition. The
amount of DMSO was adjusted to be equal in all sam-
ples. We omitted a Cycloheximide incubation at 37 °C
to avoid changes in the ribosome footprint distribution,
that might be induced by this drug. We rather stopped
translation by cooling cells rapidly to 0 °C with ice cold
PBS and added Cycloheximide during all subsequent
manipulations of the cell extracts which were carried
out on wet ice or at 4 °C. Cells were washed twice with
ice cold PBS, 100 pg/ml Cycloheximide, scraped, pel-
leted and suspended in 200 pl ice cold 50 mM Tris/Cl
pH 7.5, 100 mM KCl, 6 mM MgCl,, 5 mM DTT,
100 pg/ml Cycloheximide, 0.25 M Sucrose. Cells were
lysed by adding 200 pl of the same buffer with 1 % NP40
and 1 % Deoxycholate. The ionic detergent Deoxycho-
late was added to improve the recovery of cytoskeleton
and membrane associated polysomes that are partially
lost when just the non-ionic detergent NP40 is used for
solubilization [40]. Nuclei and the bulk of mitochondria
were removed by two 7 min 10,000 g centrifugations at
4 °C. 100 pl of the lysate was used directly for prepar-
ation of total RNA. To the rest, 40 U RNAsel (Fermen-
tas), 4U DNAsel (Promega, WI) were added and
incubated for 1 hr at 30 °C. Monosomes were pelleted
by a 2 hr centrifugation at 140,000 g and RNA isolated
using a Qiagen small RNA isolation kit.

Spike-in normalization for ribosome profiling samples

To allow normalization of drug treated and control sam-
ples, a spike-in RNA was added to the ribosome profil-
ing samples. To prepare the RNA spike-in, the
PsiCheck2 vector (Promega, WI) was linearized with
BamHI and a 4.5 kb cRNA was synthesized with T7
RNA polymerase using standard techniques. The RNA
was heat fragmented for 40 min at 95 °C in Ambion
(Austin, TX) RNAse III reaction buffer to an average size
of 30 nt. Total RNA was supplemented with 20 pg of
spike-in RNA per pg before ribosomal RNA depletion.

Sequencing library preparation

Ribosomal RNA was depleted with biotinylated antisense
cRNA covering the murine 28S and 18S rRNA se-
quences and biotinylated antisense oligonucleotides
complementary to the 5.8S and 5S rRNA.
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For non RNAse treated samples, RNA was fragmented
in Ambion (Austin, TX) RNAselll buffer for 8 min at
95 °C. RNA fragments from the heat fragmentation or
RNAse I digestion were kinased with polynucleotide
kinase. Libraries were prepared with the New England
Biolabs NEBnext small RNA library preparation kit for
Solid and the samples were sequenced on a Life Tech-
nologies Solid 5500 WF sequencer. Read length was 50
nucleotides for all libraries.

Transcript database

The transcript and gene annotations from Ensembl/EMBL
(release 76, mm10), miRBase (release 21), fRNAdb (ver.
3.4), RefSeq (release 65), and murine ES cell lincRNAs [11]
were combined into one GTF file. The GTF file we used
can be downloaded: http://caire.ipmc.cnrs.fr/RibosomePro
fileViewer/BMC/2015Waldmann.zip. Annotated noncoding
RNAs (IncRNAs, Refseq other noncoding) with exons that
overlap exons of annotated protein coding transcripts were
excluded from all analyses.

Sequence alignment
Reads from the Solid System were aligned in color space
to the mouse genome release mm10 with the LifeScope
software (Life Technologies) using default parameters
for RNA sequencing.

Filtering of matches

Most IncRNAs are expressed at much lower levels than
protein coding transcripts. In consequence erroneous as-
signment of reads (e.g. from repetitive regions) is a
source of errors. To avoid erroneous assignment of reads
that are not matched with high confidence to a unique
position on the genome, we excluded all reads that had
multiple matches on the mouse genome. For the Life-
scope matched Solid System reads, we filtered out
matches with match quality values of below 10 and we
also discarded reads that have multiple matches on the
genome. Furthermore, we also excluded reads with lead-
ing mismatches, since leading mismatches are an indica-
tor for badly matched reads. Filtering out non-unique
alignments obviously comes with a trade-off: Conserved
regions of homologous transcripts are not covered with
reads since the reads cannot be unambiguously assigned
to one transcript.

Unambiguous assignment of the short ribosome foot-
prints to one gene is error prone for pseudogenes. Short
read aligners such as Lifescope or Tophat/Bowtie ineffi-
ciently align those short reads to splice junctions. Pseudo-
genes typically have no or less introns. In consequence
reads originating from splice junctions of a multi exon gene
are preferentially mapped to a highly homologous pseudo-
gene and flagged falsely with a high mapping quality and as
unique matches in short read aligners such as Lifescope. In
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consequence we did not include pseudogenes in our ana-
lysis. Only matches of between 26 and 36 nucleotides, that
yielded a triplet pattern consistent with translation (for de-
tails see Additional file 1: Figure S1) were used for further
analysis.

Assignment of ribosome P-site positions

We plotted the distribution of the summed read starts
for each position flanking translation start and stop sites
for the 800 transcripts with the highest ribosome dens-
ity. The offset from the read start was calibrated as out-
lined in Additional file 1: Figure S1.

Transcript selection

When multiple transcripts were in the databases for one
gene, we selected one transcript: (i) Annotated tran-
scripts were favored over predicted transcripts. (ii) Cod-
ing transcripts were favored over noncoding. (iii)
Transcripts with both annotated start and stop codons
over those with just either one annotated. For annotated
coding transcripts, we observed that a simple selection
of the one with the longest coding sequence frequently
selected the wrong transcript (e.g. cMyc). For most tran-
scripts we observed an accumulation of footprints on
the translation start codon. When at least 2 % of the
coding sequence footprints of the control sample were
on the start codon +/- one nucleotide, we used this
characteristic; otherwise we selected the transcript with
the longest coding sequence. When we observed at least
2 % of the reads around the start codon we used the fol-
lowing selection scheme: If just one transcript had a
footprint accumulation on the start codon it was se-
lected. Otherwise we selected the transcript with the
highest number of CDS footprints. If our selection
yielded multiple transcripts with equal CDS length we
selected the longest transcript.

Data normalization

Unless stated otherwise, ribosome profiling data were
normalized to obtain equal read counts for the synthetic
spike-in RNA for all samples using the size factors of the
DESeq2 library in R [41]. Whole transcriptome data
were inter-replica (intra-condition) normalized with the
size factors of the DESeq2 library in R.

Sampling low expressed coding transcripts

LncRNAs are expressed at much lower levels than anno-
tated protein coding transcripts. To identify the effect of
mRNA expression on drug inhibition and RR-score we
selected a subset of annotated protein coding transcripts
with a similar expression level as IncRNAs. In our sam-
pling procedure, we used 13,196 annotated protein cod-
ing sequences and 365 IncRNA AUG-ORFs which have
at least 20 whole transcriptome reads and at least 4
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footprints in the control sample. We first divided the
distribution of IncRNA ORF whole transcriptome read
counts into 100 equal-sized bins. The sampling probabil-
ity of each bin is equal to its respective density of
lincRNA OREFs. Protein coding sequences are assigned
to the pre-defined 100 IncRNAs bins and then sampled
1000 times independently according to each bins
probability.

Scores used for ribosome profiling data

TE-score

For calculation of the “Translation Efficiency” (TE-)
score, mean whole transcriptome data were scaled to ob-
tain the same sum of reads as the mean ribosome profil-
ing control sample (no inhibitors). The TE-score is the
ratio of RNAse resistant footprints in the control sample
to the whole transcriptome reads.

RR-score

Both whole transcriptome and ribosome profiling raw
counts were inter-replica (intra-condition) normalized
for the relative library size with the size factors com-
puted by the DESeq2 library of the bioconductor
package in R [41].We used the RR-score [11] used

_ readsCDSy readsCDS,ip,
for IncRNAs. RRS = (readsSleTRWT)/(readsBpLITR,ibo) :

ReadsCDSwr and readsCDS,;,, are whole transcrip-
tome and ribosome footprints on the coding se-
quence, respectively. Reads3pUTRyt and
reads3pUTR,y,, are the reads matching to the 3'UTR
between the nucleotide following the stop codon and
the nucleotide preceding the first AUG codon in the
3 UTR or the end of the transcript if no AUG
codon is in the 3’ UTR. Gutman et al. [11] used a
different RR-score for coding RNAs where they used
the entire 3’'UTR and not just the sequence until the
AUG following the stop codon. Yet, this use of two
different scores for coding and noncoding RNAs
shifts the coding RNAs towards higher RR-scores
when compared to noncoding RNAs.

ORF score
The ORF score was calculated as described in [14].

- “1ifFy > FyUF; > F.
ORFscore = log2<<2?l<FF F>> + 1) X { JE o

lotherwise
F; are the number of reads on position i of the codon. With
our offset calibration the 2nd position of a codon (i=2)
typically accumulates the majority of reads. Codons that ac-
cumulate more than 70 % of the footprints of an ORF were
as in [14] ignored.

Floss score
The Floss score was calculated as described in [12] for
match lengths from 26 to 34 nucleotides.
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Kozak consensus sequence score

To score how well the sequences flanking the translation
initiation sequence matches the “Kozak consensus se-
quence” we adapted the scoring matrix defined in [25]
and computed scores with the following matrix.

-5 -4 -3 -2 -1 A UG 43 +4
A —1522 -1401 10006 1889 -—1778 0 O 0 1578 2855
T 2047 -1647 -3447 -2126 -2830 0 0 0 -2126 -2747
G —-1122 -2199 318 1778 —1522 0 0 O 4386 -1584
C 1733 7554 3000 5281 10006 0 O 0 -1343 5099

Frequency of near cognate initiation sites

The probability that a near cognate initiation codons
(AUG with one mutation, not CUG) starts at a position
of a random sequence is: 1/64 each for AUA, AUU,
AUC ,AAG ,ACG ,AGG ,TTG ,GTG - >1/8. The prob-
ability that a nucleotide is on either of the three nucleo-
tides of a near cognate start codon is 3/8.

Availability of supporting data

The data discussed in this publication have been depos-
ited in NCBI's Gene Expression Omnibus and are
accessible through GEO Series accession number
GSE67741 (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE67741).

Viewer software

A dedicated Java program was used for the scanning of
Bam files and the assignment of the reads (offset shifted,
see Fig. le) to the transcripts and ORFs. Java objects
(JPA) containing each the data for one gene are stored
in a Apache Derby database. The viewer software
(JavaFX GUI) retrieves the objects for the selected genes
and allows the visualization of the ribosome profiling
data. For data access and more information see http://caire.
ipmc.cnrs.fr/RibosomeProfileViewer/BMC/. For visual data
inspection we did not filter the matches for unique matches
but less stringently for just a minimal Map-QV of 10. Map-
QV is a measure of the difference in match quality between
best and second best match in the Lifescope (Life Tech-
nologies) software used for the matching of the reads.

Additional files

Additional file 1: Supplementary Figures S1-S13. (PDF 5152 kb)

Additional file 2: Table S1. RNA-seq and Riboprofiling data as well as
computational scoring for annotated coding sequences and ORFs of
noncoding transcripts (Microsoft Excel file). (XLSX 5949 kb)

Additional file 3: Table S2. RNA-seq and Riboprofiling data for upstream
ORFs of annotated protein coding transcripts (Microsoft Excel file).
(XLSX 8807 kb)
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