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Abstract

Background: RNA sequencing (RNA-seq), a next-generation sequencing technique for transcriptome profiling, is
being increasingly used, in part driven by the decreasing cost of sequencing. Nevertheless, the analysis of the
massive amounts of data generated by large-scale RNA-seq remains a challenge. Multiple algorithms pertinent to
basic analyses have been developed, and there is an increasing need to automate the use of these tools so as to
obtain results in an efficient and user friendly manner. Increased automation and improved visualization of the
results will help make the results and findings of the analyses readily available to experimental scientists.

Results: By combing the best open source tools developed for RNA-seq data analyses and the most advanced
web 2.0 technologies, we have implemented QuickRNASeq, a pipeline for large-scale RNA-seq data analyses and
visualization. The QuickRNASeq workflow consists of three main steps. In Step #1, each individual sample is
processed, including mapping RNA-seq reads to a reference genome, counting the numbers of mapped reads,
quality control of the aligned reads, and SNP (single nucleotide polymorphism) calling. Step #1 is computationally
intensive, and can be processed in parallel. In Step #2, the results from individual samples are merged, and an
integrated and interactive project report is generated. All analyses results in the report are accessible via a single
HTML entry webpage. Step #3 is the data interpretation and presentation step. The rich visualization features
implemented here allow end users to interactively explore the results of RNA-seq data analyses, and to gain more
insights into RNA-seq datasets. In addition, we used a real world dataset to demonstrate the simplicity and
efficiency of QuickRNASeq in RNA-seq data analyses and interactive visualizations. The seamless integration of
automated capabilites with interactive visualizations in QuickRNASeq is not available in other published RNA-seq
pipelines.

Conclusion: The high degree of automation and interactivity in QuickRNASeq leads to a substantial reduction in
the time and effort required prior to further downstream analyses and interpretation of the analyses findings.
QuickRNASeq advances primary RNA-seq data analyses to the next level of automation, and is mature for public
release and adoption.
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Background
RNA sequencing (RNA-seq) has emerged as a powerful
technology in transcriptome profiling [1–3]. Our previ-
ous side-by-side comparison between RNA-seq and
microarray in investigating T cell activation demonstrated
that RNA-seq analysis has many advantages over micro-
array analysis [4]. In contrast to hybridization-based
microarray analyses, RNA-seq has the extra benefits of
obtaining transcription start and stop sites, alternative
spliced isoforms, and genetic variants in addition to gene
expression levels. One apparent shortcoming of early non-
stranded (standard) RNA-seq protocols is that a sequence
read loses the strand origin information, thus making it
difficult to determine accurately the expression levels of
overlapping genes transcribed from opposite strands. A
comparison of stranded with non-stranded RNA-seq led
us to conclude that stranded RNA-seq provides a more
accurate estimation of gene expression levels than non-
stranded RNA-seq [5].
Short reads generated by RNA-seq experiments must

first be aligned, or mapped, to a reference genome or
transcriptome assembly. The general objective of map-
ping or aligning a collection of sequence reads to a refer-
ence is to discover the true location (origin) of each read
with respect to that reference. Although a large number
of read mapping algorithms have been developed in re-
cent years [6–10], the accurate alignment of RNA-seq
reads is still a challenge. Indeed, some features of a ref-
erence genome such as repetitive regions, assembly er-
rors, and assembly gaps render this objective impossible
for a subset of reads. Furthermore, because RNA-seq li-
braries are constructed from transcribed RNA, intronic
sequences are not present in exon-exon spanning reads.
Therefore, when aligning the sequences to a reference
genome, reads that span exon-exon junctions have to be
split across potentially thousands of bases of intronic se-
quence. Many of the RNA-seq alignment tools, including
STAR [11], GSNAP [12], MapSplice [13], and TopHat
[14], use reference transcriptomes to inform the alignment
of junction reads. The benefits of using a reference tran-
scriptome to map RNA-seq reads have been demonstrated
clearly in our previous RNA-seq analyses [15, 16].
The second important step in most RNA-seq analyses

is gene or isoform quantification. A common method to
estimate gene or transcript abundance from RNA-seq
data is to count the number of reads that map uniquely
to each gene or transcript. RPKM (reads per kilobase
per million reads) is widely used to represent the relative
abundance of mRNAs for a gene or transcript. A num-
ber of algorithms have been developed to infer gene and
isoform abundance [17, 18], including RSEM [19, 20],
Cufflinks [21], IsoEM [22], featureCounts [23], and
HTSeq [24]. A gene can be expressed in one or more
transcript isoforms; accordingly, its expression level

should be represented as the sum of its isoforms. How-
ever, estimating the expression of individual isoforms is
intrinsically more difficult because different isoforms of
a gene typically have a high proportion of genomic over-
lap. Accordingly, a simpler union exon-based approach
has been proposed, in which all overlapping exons of the
same gene are first merged into union exons, and the
total length of the union exons is taken to represent the
gene length. We carried out a side-by-side comparison
between union exon-based approach and transcript-
based method in RNA-seq gene quantification [25], and
found that gene expressions were significantly underesti-
mated when the union exon-based approach was used.
Therefore, we strongly discourage using the union exon-
based approach in gene quantification despite its simplicity.
Although the time and cost for generating RNA-seq

data are decreasing, the analysis of massive amounts of
RNA-seq data still remains challenging. Numerous soft-
ware packages and algorithms for basic data quality con-
trol (QC) and analyses have been developed, which has
led to the need to apply these tools efficiently to obtain
results within a reasonable timeframe, especially for
large datasets. Based on our own experience with in-
house analyses of multiple RNA-seq datasets of varying
size using open source tools, the main challenges, gaps,
and bottlenecks for large-scale RNA-seq data analyses
can be summarized as follows:

1. Selecting appropriate software packages and setting
software-specific parameters. Making the right or
best choice can be difficult because many similar
tools are available. Setting software parameters is
even harder if not impossible, because it often
requires both an in-depth understanding of the
algorithms and sufficient hands-on experience,
which disadvantages researchers new to this field.

2. Writing scripts to make different components work
seamlessly in a pipeline. A variety of algorithms have
been designed to perform different tasks, but they
have been developed (and/or maintained)
independently by different research groups and often
use different programming languages. Moreover,
those algorithms do not understand each other well,
and the output(s) from one algorithm often cannot
be used as input(s) for another algorithm. As a
result, additional bridging scripts are necessary,
which ideally requires a data analyst who is familiar
with a number of programming languages, including
Shell script, Perl, Python, Java, C/C++, and R.

3. Integrating and summarizing analyses results from
individual samples. In general, most algorithms are
implemented to process an individual sample.
Consequently, the results of primary RNA-seq data
analyses have to be further processed, integrated,
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and summarized for reporting, presentation, and
downstream analysis. Usually, data integration and
summarization are tedious and not easy to execute
efficiently.

4. Identifying RNA-seq sample outliers. It is not
uncommon that some samples have low quality and
often substitute samples are not available, especially
for RNA-seq of clinical specimen. RNA-seq is a
complicated multistep process that involves sample
collection/stabilization, RNA extraction, fragmentation,
cDNA synthesis, adapter ligation, amplification,
purification, and sequencing. Any mistake in this
complex sequence of protocols can result in biased
or even unusable data. Therefore, it is necessary to
establish stringent RNA-seq data quality metrics to
identify outliers that should be excluded from further
downstream data analysis.

5. Detecting sample swapping and mislabeling. For
large-scale RNA-seq studies in which hundreds or
even thousands of RNA samples are sequenced and
analyzed, it is not unusual that some samples are
mishandled and appear to be swapped or sequenced
more than once. Such errors can become a serious
problem for downstream data analyses and
interpretation of results, especially for longitudinal
sample analyses. It is difficult to identify such
mistakes based only on RNA-seq QC metrics
and/or gene expression profiles. To confirm whether
samples are from the same subject, it is more reliable
to compare genetic markers among samples, such as
single nucleotide polymorphisms (SNPs).

6. Sharing the results of RNA-seq data analyses with
experimental scientists. Nearly all RNA-seq data
analyses are performed using Linux clusters or
workstations; however, analyses results in Linux are
often inaccessible to most experimental scientists.
RNA-seq data analyses typically generate a large
number of files and large amounts of data that
are difficult to comprehend or digest directly by
experimental scientists. Therefore, easily accessible
interfaces are needed that not only provide a quick
and easy way for non-expert users to obtain
high-level visualizations of the main RNA-seq
analyses outputs (e.g., QC results), but also allow
them to drill down further or export the results into
additional analysis applications of their choice. To
the best of our knowledge, very few RNA-seq related
open source packages provide all these options.

To address these challenges, we have implemented a
new pipeline named QuickRNASeq to advance the auto-
mation and visualization of RNA-seq data analyses results,
and have constantly improved and refined its implemen-
tation since its inception. QuickRNASeq significantly

reduces data analysts’ hands-on time, which results in a
substantial decrease in the time and effort needed for the
primary analyses of RNA-seq data before proceeding to
further downstream analysis and interpretation. Addition-
ally, QuickRNASeq provides a dynamic data sharing and
interactive visualization environment for end users. All
the results are accessible from a web browser without the
need to set up a web server and database. The rich
visualization features implemented in QuickRNASeq en-
able non-expert end users to interact easily with the RNA-
seq data analyses results, and to drill down into specific
aspects to gain insights into often complex datasets simply
through a point-and-click approach.

Implementation
QuickRNASeq is designed for simplicity and visual inter-
activity. A few important principles dictate its imple-
mentation. First, all components of the pipeline are
freely available in the public domain. Second, it is easy
to deploy and use. Third, all analyses results including
RNA-seq QC metrics, sample correlations, and gene
quantifications are accessible via a web browser and can
be further explored interactively. An overview of
QuickRNASeq (Fig. 1) illustrates its three main steps.
Step #1 performs RNA-seq read mapping, counting,
aligned read QC, and SNP calling. Step #1 processes
each sample completely independently of each other,
and is computationally intensive. Therefore, all samples
can be processed in parallel in a high performance com-
puting cluster (HPC), or in a serial fashion on a standa-
lone workstation. Step #2 merges the results from the
individual sample and generates an integrated and inter-
active project report for data interpretation in Step #3.

Input files
In addition to raw sequence reads in FASTQ format, the
only other required inputs are a reference genome file in
FASTA format and a corresponding gene annotation file
in GTF (gene transfer format). QuickRNASeq can be ap-
plied to any species as long as its genome and gene an-
notations are available; for example, human, mouse, rat,
and cynomolgus or rhesus monkeys. A gene annotation
file can exist in many formats, but GTF has become the
de facto standard; however, not all tools accept gene an-
notation files in GTF format as input. For example,
RSeQC (RNA-seq quality control package) [26] accepts
gene annotation only in BED (browser extensible display)
format, though the majority of gene annotations in the
public domain are not available in BED format. To ensure
that the exact same annotations are used by the different
components in QuickRNASeq, we wrote Perl scripts to
convert gene annotation files from GTF to BED format.
This avoids any discrepancy or inconsistency among gene
annotations that are available in different formats.
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Step #1: single sample processing
This step consists mainly of read mapping, counting,
aligned read QC, and SNP calling, and the correspond-
ing algorithms used to perform these tasks are STAR
[11, 27], featureCounts [23], RSeQC [26], and VarScan
[28] respectively. STAR aligns spliced sequences of any
length with moderate error rates, provides scalability for
emerging sequencing technologies, and generates
output files ready for transcript/gene expression quanti-
fication [27]. The algorithms featureCounts [23] and
HTSeq [24] are comparable in terms of counting
results, but featureCounts is considerably faster than
HTSeq by an order of magnitude for gene-level
summarization and requires far less computer memory.
Read mapping and counting typically are very time con-
suming, and we chose STAR and featureCounts in
QuickRNASeq mainly because of their high speed and
accuracy.

The RSeQC [26] package provides a number of mod-
ules that can comprehensively inspect sequence quality,
nucleotide composition bias, PCR bias, GC bias, mapped
reads distribution, coverage uniformity, and strand spe-
cificity. All such QC metrics are valuable for outlier de-
tection. VarScan [28] is a platform-independent software
tool that can detect variants in RNA-seq data. It employs
a robust heuristic/statistic approach to call variants that
meet desired thresholds for read depth, base quality,
variant allele frequency, and statistical significance. To
verify samples from the same subject, it is unnecessary
to call SNPs across all chromosomes. In practice, it is
sufficient to use only SNPs from the chromosome that
contains the major histocompatibility complex (MHC)
genes. For human, mouse, and rat, these are chromo-
somes 6, 17, and 20, respectively. As mentioned earlier,
numerous software packages that can perform similar
tasks are freely available; however, we found that the

Fig. 1 Overview of the QuickRNASeq pipeline. Step #1 is computationally intensive, and processes individual samples independently. Step #2
integrates RNA-seq data analysis results from the individual samples in Step #1 and generates a comprehensive project report. Step #3 offers
interactive navigation and visualization of RNA-seq data analyses results
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combination of STAR, featureCounts, RSeQC, and VarS-
can represents one of the best toolsets.
Computational algorithms for RNA-seq analyses are

continuously being improved, including STAR, feature-
Counts, RSeQC, and VarScan. Therefore, we designed
our pipeline to be independent of its underlying software
version and ensured that it can handle RNA-seq samples
from a variety of species. To decouple the dependence
of QuickRNASeq pipeline upon underlying computa-
tional algorithms and species, we introduced a plain text
configuration file that can store project, species, and
software-specific parameters. This configuration file also
improves the reproducibility of RNA-seq data analyses
and simplifies the command lines in QuickRNASeq. For
the convenience of QuickRNASeq users, a configuration
file template has been provided for easy customization.

Step #2: data integration, QC, and summary
Step #2 aims mainly to merge results generated in Step #1
for each individual RNA-seq sample. Additionally, it runs
many across-sample calculations, such as correlation-
based QC and a SNP correlation matrix. As shown in
Fig. 1, the second step performs the following tasks:

1. Merge mapping, counting summaries, and RSeQC
metrics from individual samples.

2. Generate a read counting table ready for
downstream analysis of all annotated genes.

3. Calculate a SNP (and gene expression) correlation
matrix among samples.

4. Perform correlation-based sample QC, calculation of
MADScore (median absolute deviation score), and
data normalization.

5. Produce RNA-seq metrics and correlation plots
ready for PowerPoint presentations.

6. Generate a comprehensive HTML QC report for
individual sample.

7. Produce a dynamic and integrated QC metrics plot
for individual samples.

8. Generate a master HTML entry webpage for data
analyses results.

Each individual task listed above is performed by a
corresponding Bash, Perl, or R script, and a master
script coordinates the execution of all these tasks. The
main scripts and their functions are listed in Table 1. As
shown in Table 1, the primary RNA-seq data analyses can
be performed by as few as two shell command lines (star-
fc-qc.sh and star-fc-qc.summary.sh). All the plots gener-
ated in Step #2 are ready for presentations, and the gene
counting table can feed downstream differential analysis
algorithms. The highly automated features in Step #2
make QuickRNASeq an efficient tool for typical standard
RNA-seq analyses, and our pipeline substantially reduces

the hands-on time (not the computational time) that data
analysts have to spend on primary RNA-seq data analyses.
We implemented a correlation-based QC to detect po-

tential outliers in the RNA-seq data by calculating a
MADScore for each sample. In general, an outlier appears
to deviate markedly from other samples in a RNA-seq
study, and thus its correlation with other samples will be
relatively low. The MADScore is calculated as follows. For
each sample, calculate the correlation difference, which is
simply the difference between the average of all the pair-
wise correlations that involve the sample and the average
of all the pairwise correlations that do not involve the
sample. If a sample is an outlier, then the difference will
be negative. Accordingly, there will be a vector of values
(one for each sample). Then this vector of difference is
converted to MADScores (robust Z-scores) by subtracting
the medians and dividing it by median absolute deviations
(MAD). A standard MADScore cutoff (e.g., −5) is set to
determine the outliers.

Step #3: interactive data visualization
Primary RNA-seq data analyses results are represented
by a standard file folder structure, and an integrated

Table 1 Description of main scripts in the QuickRNASeq
package

Script Function

star-fc-qc.sh Master script for Step #1 in Fig. 1

star-fc-qc.ws.sh Same as star-fc-qc.sh, but implemented for a
standalone workstation

star-fc-qc.summary.sh Master script for Step #2 in Fig. 1

get-star-summary.pl Merge STAR mapping summary

get-fc-summary.pl Merge featureCounts counting summary

get-read-dist.pl Merge read distribution from RSeQC

get-snp-corr.pl Calculate all-against-all pairwise SNP
correlations

get-expr-table.R Merge counts table from individual samples

get-expr-qc.R Perform correlation-based QC, and calculate
normalization factor

plot-rnaseq-metrics.R Plot the summaries for read mapping,
counting, or read distribution

plot-corr-matrix.R Plot a correlations matrix

plot-expr-count.R Plot the number of genes with varying
RPKM cut-offs

RSeQC-html.pl Generate a HTML QC report for individual
sample

make_HTMLs.sh Generate a comprehensive, integrated, and
interactive project report

gtf2annot.pl Utility to extract gene annotation from a
GTF file

gtf2bed.pl Utility to convert a gene annotation from GTF
to BED format

star-fc-qc.config.template Template configuration file for customization

Zhao et al. BMC Genomics  (2016) 17:39 Page 5 of 15



report provides comprehensive QC metrics and a gene
expression table. RNA-seq data analyses typically gener-
ate a variety of files and large amounts of data, and the
master entry webpage generated in Step #2 makes data
navigation and visualization more convenient. More im-
portantly, the project report offers interactive visualiza-
tions of RNA-seq QC and gene expression levels, and
provides analytical tools to gain insights into the data.
All required JavaScript libraries have already been pack-
aged into the QuickRNASeq project report; thus, de-
ployment of the data into a web server is optional.
JavaScript has become the hallmark of the web 2.0

technologies because it greatly enhances interactive visu-
alizations. The availability of JavaScript-based open
source visualization libraries has fueled the adoption of
this technique. We implemented the interactive data
visualization in QuickRNASeq using these libraries, in-
cluding JQuery [29], D3 (Data-Driven Documents) [30],
canvasXpress [31], SlickGrid [32], and Nozzle [33]. JQuery
[29] makes HTML page traversal, manipulation, event
handling, and animation simple. D3 [30] manipulates
HTML documents based on input data using HTML5,
SVG, and CSS (cascade style sheet). canvasXpress [31]
supports a large number of plotting types and offers sam-
ple grouping, data transformation, and many other fea-
tures that are usually only seen in commercial software.
SlickGrid [32] is a powerful web-based spreadsheet com-
ponent that supports searching, sorting, and pagination of
tabular datasets, and can be scaled to handle millions of
data points. Nozzle [33] is an R package that provides an
API (application programming interface) to generate
HTML reports with dynamic user interface elements.
Nozzle is designed to facilitate summarization and rapid
browsing of complex results in data analysis pipelines
where multiple analyses are performed frequently on big
datasets. By combining these visualization libraries with
RNA-seq analyses results, we created multiple dynamic
HTML pages to present the RNA-seq QC metrics, and to
present gene expression profiles in boxplot and heat map
formats dynamically and interactively.

Results and discussion
Test run of QuickRNASeq on a publicly available dataset
GENCODE annotation [34, 35] is based on Ensembl
[36] but with improved coverage and accuracy, and thus
is used by the ENCODE consortium [37] as well as
many other projects (e.g., 1000 Genomes [38]) as the
reference gene set. Therefore, we chose the GENCODE
annotation for our test run. GENCODE Release 19 was
downloaded from the GENCODE web site [35]. An ana-
lysis of RNA-seq data from 1641 samples across 43 tis-
sues of 175 individuals in the Genotype-Tissue
Expression (GTEx) project [39, 40] revealed the land-
scape of gene expression across tissues, and catalogued

thousands of tissue-specific genes. For our test run, we
selected 48 GTEx samples from five donors. The sample
identifiers, annotations, and RNA-seq mapping summar-
ies for all 48 samples are listed in Table 2. Note that a
sequence read can be aligned uniquely to a reference
genome, or mapped to multiple locations. Some reads
cannot be mapped to the reference genome at all. The
percentages of reads that were uniquely mapped,
mapped to multiple locations, or unmapped are given in
Table 2. The complete report for our test run of the
GTEx dataset can be downloaded directly from the
QuickRNASeq project home page, and is briefly de-
scribed below.

All analyses results accessible from a single entry webpage
A screenshot of the entry webpage for the results of the
test run is shown in Fig. 2. The page uses Noozle’s pres-
entation template, which collates sections into a single
neat web page with functionalities to expand or collapse
individual or whole sections. In the “QC Metrics” sec-
tion, both static images and interactive plots are pro-
vided for a variety of QC measures, including read
mapping summaries, read counting statistics, SNP corre-
lations among samples, number of expressed genes at
various RPKM cutoffs, and correlations among gene ex-
pression profiles. All static QC plots can be enlarged
into a new window by clicking on the iconized image,
and the corresponding more dynamic and interactive
plots are accessible by clicking the pointing hand icon.
The interactive plots of QC measures offer many inter-
active features over static images, such as zooming in
and zooming out. The raw data that was used to gener-
ate these figures can be accessed simply by clicking the
corresponding hyperlinked text. The “Parallel Plot” and
“Expression Table” sections in Fig. 2 are detailed later.
Furthermore, all the result files and figures are directly
accessible by expanding the “Raw Data Files” section
shown at the bottom of Fig. 2. The entry webpage makes
data navigation and visualization more convenient and
intuitive, especially for experimental scientists.

SNP correlation to detect mishandled samples
SNP correlation plots help to verify whether samples are
from the same subject or not. By definition, SNP con-
cordance among samples from the same subject will be
much higher than those samples from different subjects.
In the first case, typical examples may be samples of dif-
ferent tissues from the same subject or longitudinal sam-
ples from the same subject. For simplicity, we selected
samples from three donors to illustrate the usefulness of
the SNP concordance plot (Fig. 3). As we expected, the
SNP correlation plot in Fig. 3a is clustered by the do-
nors. The corresponding correlation plot after the swap
of SRR598044 and SRR608096 is shown in Fig. 3b where
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Table 2 Annotation and mapping summary for the 48 samples used in the QuickRNASeq test run

Sample Subject Tissue Sex Total_reads Uniq_Ratea Multi_Rateb Unmap_Ratec

SRR607214 GTEX-N7MS Blood M 39769361 54.59 23.5 21.91

SRR615261 GTEX-N7MS Blood Vessel M 47785162 79.69 2.21 18.1

SRR603068 GTEX-N7MS Brain M 53339811 59.45 2.15 38.4

SRR821282 GTEX-N7MS Esophagus M 44678159 65.58 2.62 31.8

SRR608096 GTEX-N7MS Heart M 58482196 72.91 2.8 24.29

SRR612839 GTEX-N7MS Muscle M 52016412 70.81 2.37 26.82

SRR816609 GTEX-N7MS Pituitary M 38214685 62.27 2.37 35.36

SRR821518 GTEX-N7MS Testis M 61509101 83.31 3.85 12.84

SRR607679 GTEX-N7MS Thyroid M 80820067 51.37 2.38 46.25

SRR809283 GTEX-N7MT Blood F 48818685 64.62 10.77 24.61

SRR808044 GTEX-N7MT Blood Vessel F 44714926 81.42 2.92 15.66

SRR598671 GTEX-N7MT Brain F 45163430 70.26 3.12 26.62

SRR598509 GTEX-N7MT Heart F 44403911 71.19 4.3 24.51

SRR600784 GTEX-N7MT Lung F 28065576 76.74 2.3 20.96

SRR813208 GTEX-N7MT Pancreas F 53422565 72.34 4.37 23.29

SRR821573 GTEX-N7MT Pituitary F 54452379 85.61 3.52 10.87

SRR810945 GTEX-NFK9 Blood M 41131423 60.85 18.12 21.03

SRR811819 GTEX-NFK9 Blood Vessel M 49527122 85.48 2.81 11.71

SRR820689 GTEX-NFK9 Esophagus M 33541344 81.35 3.4 15.25

SRR602106 GTEX-NFK9 Heart M 65071994 80.04 4.76 15.2

SRR607166 GTEX-NFK9 Lung M 58741362 76.22 2.91 20.87

SRR598044 GTEX-NFK9 Muscle M 58643842 80.85 3.36 15.79

SRR614287 GTEX-NFK9 Nerve M 47388876 70.58 2.4 27.02

SRR811029 GTEX-NFK9 Pancreas M 51304957 71.95 7.01 21.04

SRR815280 GTEX-NFK9 Prostate M 85593813 80.46 4.55 14.99

SRR820839 GTEX-NFK9 Testis M 51113138 66.02 2.89 31.09

SRR603834 GTEX-NFK9 Thyroid M 61642193 79.4 3.49 17.11

SRR808836 GTEX-NPJ8 Blood Vessel M 53974446 80.59 3.31 16.1

SRR598124 GTEX-NPJ8 Brain M 55608656 65.46 3.1 31.44

SRR817306 GTEX-NPJ8 Esophagus M 62209065 79.22 3.9 16.88

SRR598148 GTEX-NPJ8 Heart M 53693956 68.13 3.35 28.52

SRR603750 GTEX-NPJ8 Lung M 25962857 67.55 3.24 29.21

SRR601695 GTEX-NPJ8 Muscle M 96240522 43.22 1.77 55.01

SRR615790 GTEX-NPJ8 Nerve M 61182017 58.84 2.45 38.71

SRR819771 GTEX-NPJ8 Pancreas M 60265701 80.07 4.82 15.11

SRR807949 GTEX-NPJ8 Pituitary M 95246707 85.12 3.44 11.44

SRR820234 GTEX-NPJ8 Prostate M 60423220 79.72 3.97 16.31

SRR810899 GTEX-NPJ8 Testis M 57950635 81.5 3.71 14.79

SRR602951 GTEX-NPJ8 Thyroid M 100317976 38.72 2.1 59.18

SRR815494 GTEX-O5YT Blood M 61808169 65.24 4.9 29.86

SRR809785 GTEX-O5YT Blood Vessel M 60730604 86.73 2.59 10.68

SRR814003 GTEX-O5YT Esophagus M 64985455 85.69 3.07 11.24

SRR820316 GTEX-O5YT Heart M 66455677 81.96 2.79 15.25

SRR821525 GTEX-O5YT Lung M 56250586 78.65 2.75 18.6
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Table 2 Annotation and mapping summary for the 48 samples used in the QuickRNASeq test run (Continued)

SRR815044 GTEX-O5YT Muscle M 65449073 84.77 2.96 12.27

SRR812080 GTEX-O5YT Nerve M 58246823 86.85 3.1 10.05

SRR810761 GTEX-O5YT Pancreas M 64065959 73.8 5.49 20.71

SRR818850 GTEX-O5YT Testis M 64388347 84.18 3.52 12.3

The samples are from the Genotype-Tissue Expression (GTEx) project [39, 40]
aUniq_Rate, percentage of reads that were uniquely mapped. bMulti_Rate, percentage of reads mapped to multiple locations. cUnmap_Rate, percentage of
unmapped reads

Fig. 2 Representative entry webpage for a QuickRNAseq project report. The page layout and printable version of the page can be controlled by
the top icons. The QC Metrics section provides QC results in plain text, static plot, and interactive plot formats accessible by clicking on the
corresponding hyperlinked texts, the iconized figures, and pointing hand, respectively. The Parallel Plot of QC values offers an integrated view of
linked QC measures for a single sample or a group of samples (see also Fig. 4). The Expression Tables section provides links to raw read counts, a
normalized RPKM table, and interactive display of gene expression levels (see also Fig. 6)
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the correlation pattern indicates that the two samples
are wrongly labeled. The true identifiers for the two
swapped samples are indicated on the right of the plot.
Sample swapping is typically very difficult to detect
when it occurs. We have tried different methods to rect-
ify mislabeled or swapped samples and found that a SNP
correlation-based approach gave the best results (data
not shown).

Integrated QC metrics for individual sample
The parallel plot in Fig. 4 is a common way to visualize
high-dimensional data and it is used widely in multivari-
ate data analysis. We implemented the parallel plot to
link all related QC measurements for all samples into
one plot. Each axis within the plot represents a sample
feature or a QC measurement. There are multiple ways
users can control the look and feel of the plot, such as
selecting a subset of samples to view, changing the order
of the axes by drag-and-drop, and removing unwanted
axes for a clearer view by dragging them off the plot to
either side. The linked table is searchable, and for any
selected sample in the table, its corresponding QC mea-
sures are highlighted simultaneously on the plot with
tooltips showing the measurement values.
MAD, an alternative and more robust measure of dis-

persion has been proposed to detect outliers [41]. We
extended MAD to implement a correlation-based QC to
detect potential outliers. The MADScore was calculated
as described above, and is listed in the table in Fig. 4. To
determine whether a potential outlier identified from the
correlation-based QC is a true outlier, we recommend
that the corresponding QC report is also checked. The

comprehensive QC report for an individual sample can
be accessed by clicking the corresponding sample identi-
fier in the table in Fig. 4. For example, some representa-
tive RNA-seq QC metrics for SRR603068 (highlighted in
Fig. 4) are shown in Fig. 5. The metrics correspond to
reads duplication rate, distribution of reads versus per-
centages of GC content, nucleotide composition bias,
distribution of read quality score, plot of junction satur-
ation, and characteristics of the splicing junction sites.
Two strategies are used to determine the read duplica-

tion rate, as indicated in Fig. 5a. For the sequence-based
strategy, reads with exactly the same sequence content
are regarded as duplicated reads, whereas, for the
mapping-based strategy, reads mapped to the same gen-
omic location are regarded as duplicated reads. For
spliced reads, reads mapped to the same starting pos-
ition that splice the same way are regarded as duplicated
reads. SRR603068 is a brain sample, and its nucleotide
composition is biased towards A/T, as indicated in
Fig. 5c. For RNA-seq data, we often want to know
whether the sequencing depth is enough for the ana-
lyses, and the saturation plot shown in Fig. 5d is very
valuable for this. For a well annotated organism, the
number of expressed genes in a particular tissue is al-
most fixed so the number of splice junctions is also
fixed. These numbers should be rediscovered from satu-
rated RNA-seq data. The plot in Fig. 5d indicates that
more reads should be sequenced for performing alterna-
tive splicing analyses. In Fig. 5f, all multiple splicing
events spanning the same intron have been consolidated
into one splicing junction, and a novel junction is con-
sidered as complete_novel if neither of the two splice

Fig. 3 Representative SNP correlation plots to detect sample swapping. a Samples are nicely clustered by donors, as expected. b Clustering is
disrupted after purposely swapping SRR598044 and SRR608096
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sites can be annotated by a gene model. Otherwise, it is
partial_novel, meaning that one of the splice site (5′SS
or 3′SS) is new, while the other splice site is annotated
(known). While the majority of junctions in Fig. 5f are
annotated, over 20 % are either complete_novel or
partial_novel.

Interactive visualization of gene expression profiles
One of the most important objectives in many RNA-seq
studies is to estimate gene expression levels under cer-
tain biological or disease conditions. With the help of
the visualization tools shown in Fig. 6, differences in
gene expression levels across samples under different
conditions can be highlighted easily by a few mouse-
clicks either in the boxplot (Fig. 6b) or heat map view
(Fig. 6c). A keyword search box at the top of the table
(Fig. 6a) provides an easy way to look at related genes
such as kinases and interleukins. Gene expression profiles
can be grouped and split on the fly according to the sample
annotations, such as tissue type, visiting time, and treat-
ment arms. Moreover, the look and feel of a plot, such as
font size, color, plot type, and scales for x-axis and y-axis,
can be customized by right clicking on the plot and select-
ing relevant options from the dropdown menu. An anno-
tated heat map (Fig. 6c) is informative in comparing gene
expression profiles across different conditions, and can

help reveal the relationships between gene expression
levels and corresponding biological conditions. Detailed in-
structions on how to use advanced visualization features of
the interactive plot are described in the QuickRNAseq user
guide that is bundled with the QuickRNASeq package.

Scalability of QuickRNASeq
All samples can be processed in parallel in Step #1 of
the QuickRNAseq pipeline (Fig. 1). In principle, there is
no limitation to the number of RNA-seq samples, as
long as enough storage is available. For easy data shar-
ing, the web 2.0 visualization tools allow user to interact
with the analyses results without the need of a web ser-
ver and/or database. Therefore, in QuickRNAseq we
pack all the data into JavaScript objects within a HTML
document. For a RNA-seq project with 1000 samples,
the number of gene expression data points can exceed
20 million, assuming that more than 20,000 genes are
expressed. As a result, most browsers such as Internet
Explorer, Safari, Firefox, and Chrome fail to load such
huge datasets because they surpass the memory limit al-
located to these web browsers. To solve this problem,
we used pako [42], a web-based compression technique,
to significantly reduce the number of objects to be cre-
ated without compromising the end user experience.

Fig. 4 Parallel plot and table of multi-dimensional QC measures. Top panel displays one representative sample with each measure shown in a
shaded tooltip. Bottom panel provides sample annotation and the full QC measures in a searchable table. Hovering the cursor over a sample in
the table highlights the corresponding sample in the parallel plot. Parallel plots can be customized using the controls instructions below the plot
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Fig. 5 RNA-seq quality control metrics for the SRR603068 sample. a Duplication rates of the reads determined using a sequence-based and a
mapping-based strategy. b Distribution of reads based on their percentage GC content. c Nucleotide composition bias of the reads. d Distribution
of read quality scores. e Plot of junction saturation among the reads. f Characteristics of the splicing junction sites
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Limitations and running of QuickRNASeq
QuickRNASeq is presumed to be executed in a HPC en-
vironment, which can process multiple samples in paral-
lel. The out-of-the-box QuickRNASeq pipeline has been
fully tested in a HPC computing environment using the
IBM Platform’s Load Sharing Facility (LSF) [43], a
powerful workload management platform for demand-
ing, distributed HPC environments. The IBM Platform’s
LSF provides a comprehensive set of intelligent, policy-
driven scheduling features that enable users to utilize all
the computing infrastructure resources and ensure opti-
mal application performance. In addition to LSF, many
other notable job scheduling software are available [44].
For a cluster that uses a job scheduler other than LSF,
star-fc-qc.sh (implementation of Step #1 in Fig. 1) needs
to be customized accordingly. The only required change
in the script is the way of job submission, and this

command is dependent the job scheduling software. For
researchers with no access to a HPC computing environ-
ment, we implemented star-fc-qc.ws.sh, a customized
script that runs on a standard Linux workstation. Of
course, analyzing large RNA-seq datasets on a single
workstation is not typical and not recommended.
For gene quantifications, QuickRNAseq requires a

complete genome sequence and well-annotated genes as
inputs. The pipeline is not intended for the discovery of
novel isoforms. QuickRNASeq is designed for use by
bioinformaticians, experimental biologists, and geneti-
cists in the fields of genome-scale analysis, functional
genomics, and systems biology; however, downloading,
installing, and running the QuickRNASeq pipeline in a
Linux environment will require some basic computer-
based expertise. A README.txt is provided along with
the QuickRNASeq package, which explains step-by-step

Fig. 6 Interactive visualization of gene expression. a Gene expression levels of selected genes are displayed in a searchable table. b Boxplot view
of the expression levels of CKM (creatine kinase, muscle). c Heat map view of gene expression levels of selected genes. Expression values can be
grouped or split according to the sample annotations, such as tissue type. Each plot is highly customizable on the fly by right clicking on the
plot and selecting relevant options from the dropdown menu
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how to run QuickRNASeq. In addition, users can exam-
ine the configuration and sample annotation file under
the test_run folder in the QuickRNASeq package.
QuickRNASeq can be run without a sample annotation
file, but it is strongly recommended that users provide
meaningful annotations for all samples. A proper anno-
tation file should be tab delimited, and QuickRNASeq
requires that the first and second columns correspond
to sample and subject identifiers, respectively. Sample
names should start with a letter, and should not contain
any white spaces.
In QuickRNASeq, we selected FeatureCounts, a union

exon based approach, for gene quantification. According
to our own most recent research [25], union exon based
approach is discouraged. Unfortunately, there is still a
long way to go for the switch from union exon based ap-
proach to transcript-based method in estimation of gene
expression levels because of the inaccuracy of isoform
quantification [25], especially for those isoforms with
low expression, and gene-based annotation databases.
Traditionally, functional enrichment analyses rely upon
annotation databases such as Gene Ontology (GO) [45],
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways [46] and other commercial knowledge systems.
All such annotations have been recorded and centered
on genes, not transcripts or isoforms. In practical RNA-
seq data analyses, the switch from gene to isoform in
quantification should ideally go with the switch in anno-
tation hand by hand.
The current version of QuickRNASeq focuses on the

automation of primary processing steps in RNA-seq
data analyses, and these steps are in general biological
question independent. We plan to expand QuickRNA-
Seq to downstream analyses in the future, including
differential analysis and pathway enrichment. Down-
stream analyses are usually driven by biological ques-
tions and experimental designs and thus different from
project to project. How to automate such analyses in a
user friendly manner remains a challenge for our prac-
tical implementation.

QuickRNASeq versus QuickNGS
While this paper was in preparation, Wagle et al. [47]
published QuickNGS, a new workflow system to analyze
data from multiple next-generation sequencing (NGS)
projects at a time. QuickNGS uses parallel computing
resources, a comprehensive backend database, and the
careful selection of previously published algorithmic ap-
proaches to build fully automated data analysis workflows.
An overview of our comparison of the QuickRNASeq
pipeline with the QuickNGS workflow is provided in
Table 3. In summary, compared with QuickNGS, QuickR-
NASeq is more tailored to RNA-seq data. In QuickRNA-
Seq, we developed scripts to perform RNA-seq-specific
data integration and to generate integrated and interactive
project reports in a fully automated manner. All the re-
sults from QuickRNASeq can be shared easily and further
explored from a web browser on a personal computer
even without internet access. Our pipeline QuickRNASeq
provides a noticeable advancement of RNA-seq data ana-
lyses by incorporating a high degree of automation to-
gether with interactive visualizations.

Conclusions
By combing the best open source tool sets developed for
RNA-seq data analyses and the most advanced web 2.0
technologies, we implemented the QuickRNASeq pipe-
line, which significantly reduces the efforts involved in
primary RNA-seq data analyses and generates an inte-
grated project report for data sharing and interactive
visualization. The dynamic visualization features enable
end users to explore and digest RNA-seq data analyses
results intuitively and interactively, and to gain deep
insights into RNA-seq datasets. The configuration file
contains project, species, and software related parame-
ters, and thus improves the reproducibly in RNA-seq
data analyses. We have already applied QuickRNASeq
to in-house large scale RNA-seq projects, and its
current version is stable and mature for public release
and adoption.

Table 3 Comparison of QuickRNASeq with QuickNGS

QuickNGS [41] QuickRNAseq

Scope and application Next-generation sequencing: WGS, RNA-seq,
miRNA-seq, Chip-seq

RNA-seq only

Dependence Requires external MySQL database and
web server support

None

Purpose of web interface Track the progress of data analysis and
provide access to result files

Provide access to analyses results and interactive visualization

Visualization Limited Interactive, very rich and dynamic interface built upon web 2.0 technology

RNA-seq functionalities Limited. Reduction of the hands-on time “ONE-STOP” integrated report. Particularly implemented to support
large-scale RNA-seq. High level of automation and efficiency
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Availability of software and supporting
Information
Project name: QuickRNASeq pipeline
Project home page: http://quickrnaseq.sourceforge.net
Operating system: Linux
Programming languages: Bash scripting, Perl, R,
JavaScript
Dependencies: R packages edgeR, reshape2 and ggplot2
Other requirements: None
License: GNU GPL version 3
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