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Abstract

Background: RNA-editing is a tightly regulated, and essential cellular process for a properly functioning brain.
Dysfunction of A-to-I RNA editing can have catastrophic effects, particularly in the central nervous system. Thus,
understanding how the process of RNA-editing is regulated has important implications for human health. However, at
present, very little is known about the regulation of editing across tissues, and individuals.

Results: Here we present an analysis of RNA-editing patterns from 9 different tissues harvested from a single mouse.
For comparison, we also analyzed data for 5 of these tissues harvested from 15 additional animals. We find that tissue
specificity of editing largely reflects differential expression of substrate transcripts across tissues. We identified a
surprising enrichment of editing in intronic regions of brain transcripts, that could account for previously reported
higher levels of editing in brain. There exists a small but remarkable amount of editing which is tissue-specific, despite
comparable expression levels of the edit site across multiple tissues. Expression levels of editing enzymes and their
isoforms can explain some, but not all of this variation.

Conclusions: Together, these data suggest a complex regulation of the RNA-editing process beyond transcript
expression levels.
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Background
RNA-editing is an enzyme-mediated post-transcriptional
modification whereby individual nucleotide residues are
altered in the nascent RNA transcript molecule [1]. In
contrast to the traditional dogma of DNA makes RNA
makes protein, RNA-editing is a non-heritable change to
the RNA, which can result in both increased diversity of
the transcriptional repertoire, and of the resulting peptide
products.
The most common RNA-editing alteration is enzymatic

deamination of adenosine nucleotides to inosine, by the
family of ADAR enzymes [2, 3]. These are referred to as
canonical A-to-I editing events. Since much of the cellular
machinery treats inosine as a guanine nucleotide, A-to-I
events are typically discovered and referred to as A-to-G
in sequencing data.
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There are 3members of the ADAR family in vertebrates:
Adar, Adarb1, and Adarb2 (also called Adar1, Adar2,
and Adar3, respectively). A number of substrates are
reported to be edited by Adar and Adarb1 [4–6]. However,
there is no evidence to support the enzymatic activity of
Adarb2 [7].
The gene for Adar produces two main protein isoforms.

Expression of the longer Adar isoform, p150, is inducible
by interferon stimulation [8] and has both nuclear and
cytoplasmic localization [9, 10]. The shorter isoform of
Adar, p110, is more constitutively expressed and nuclear
localized [10]. It has been suggested that the nuclear Adar
proteins edit pre-mRNAs prior to splicing, while the cyto-
plasmic p150 isoform may edit viral RNAs or microRNAs
in the cytoplasm [4, 11–14].
Owing to the role of interferon in defense against micro-

bial infection, the p150 isoform of Adar has been thought
to function in the editing of double stranded viral RNA.
In humans, double stranded RNA structures often form
in the long 3’ UTR regions of genes when juxtaposed Alu
repeat elements are present. These inverted transposable
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elements, which are remnants of ancient viral insertions,
thus form the secondary structure substrate for hyper-
editing [15].
In contrast to the hyper-editing of many adenosine

residues in close proximity, site-selective editing tends to
occur consistently at specific residues, and even within the
coding sequence of transcripts. Aside from the propen-
sity of RNA substrate to form hairpin structures, little
is known about other mechanisms regulating this more
selective form of editing. The importance of site-selective
editing events is highlighted by the necessity of an Adarb1
mediated edit in the neurotransmitter receptor protein
GluR-B for developmental viability in mice [16].
The ADAR gene family is highly conserved across

metazoans, and highly expressed in the nervous system
[4, 17, 18]. This pattern of evolutionary constraint sug-
gests an important role of RNA-editing in the develop-
ment and maintenance of the metazoan nervous system.
RNA-editing deficiencies are observed in epilepsy, amy-
otrophic lateral sclerosis (ALS), Aicardi-Goutieres syn-
drome (AGS), schizophrenia, suicidal depression, and
other neurodegenerative diseases [19–21].
RNA-editing has also been implicated in functions and

disease outside the nervous system. Site-specific edit-
ing of AZIN1 is associated with more aggressive tumor-
initiating potential in hepatocellular carcinoma [22], while
an overall decrease in hyper-editing of Alu repeats has
been found in brain, prostate, lung, kidney and testis
tumors [23]. Analysis of RNA-seq data from The Cancer
Genome Atlas (TCGA) demonstrated alterations in edit-
ing levels between tumors and matched normal tissues
from the same patients [24, 25]. In some cancers, the edit-
ing level correlated with patient survival [24]. Cell viability
assays for a small number of editing events that result in
protein alterations were observed to significantly effect
cell survival [25].
It is clear from these examples that RNA-editing is

functionally important, and must require tight regula-
tion to prevent dysfunction. However very little is known
about how this regulation occurs. We do not have a thor-
ough understanding of the variability in editing between
individuals, nor the intra-individual variability across tis-
sues to properly address this question. Furthermore, there
has not yet been a genome-wide study to address, in
an unbiased manner, the scope of functionally relevant
RNA-editing in healthy individuals.
Previous high throughput RNA-editing surveys have

been limited in the range of tissues studied, with a bias
towards central nervous system (CNS) tissues, or in their
genomic breadth. Transcriptome-wide RNA-seq analyses
of RNA-editing in mice have largely been limited to whole
brain and cerebral cortex [26, 27].
A valuable study of RNA-editing was performed across

seven distinct tissues from a single human individual.

However, the study used specific padlock probes, not
transcriptome wide RNA-seq, and resulted in only 569
putative RNA-editing sites [28].
In order to investigate the mechanisms underlying the

regulation of RNA-editing, we present an analysis of a
novel transcriptome wide RNA-seq dataset from nine tis-
sues in a single individual mouse. Additionally we present
a comparison and combined analysis of 20 previously pub-
lished RNA-seq samples from mice of the same strain
across a variety of tissues. To the best of our knowl-
edge, this is the only dataset for which we can address
in a genome-wide fashion, questions both on the vari-
ability of RNA-editing across tissues in a single individual
and within specific tissues across individuals. We then
use these data to investigate the underlying mechanisms
regulating the important process of RNA-editing.

Results
Collecting high confidence RNA-DNA differences
We obtained a high confidence set of RNA-DNA dif-
ferences (RDDs) by analyzing the RNA and DNA from
various tissues of a single adult mouse (Fig. 1). In paral-
lel, we processed 20 samples from 3 previously published
datasets to serve as biological replicates for our sam-
ples. The previously published samples included RNA-seq
from brain, cerebellum, heart, kidney, liver, and testis.
We identified 13,798 RDDs within our dataset, includ-

ing 5053 novel A-to-G changes not previously reported
in the Darned or Radar databases of RNA-editing sites
[29, 30]. In the non-brain samples we analyzed, the num-
ber of A-to-G RDDs detected increases with sequencing
depth (Fig. 2a). This suggests that many sites are edited at
a low frequency and the ability to detect these edits relies
on sufficient sequencing depth. The greater sequencing
depth of our samples, and the inclusion of tissues under-
represented in the mouse Darned and Radar databases
likely explains the high number (80 %) of A-to-G changes
we detect as novel in this study. Among the 9 high cover-
age samples that we generated, the brain has remarkably
more RDDs than the other tissues, even after accounting
for sequencing coverage. This is consistent with previous
evidence that RNA-editing is frequently observed within
transcripts of the central nervous system [31]. Interest-
ingly, much of the RNA-editing within the brain tissue
samples occurs within introns, rather than exons. Further
inspection reveals that the transcripts derived from the
brain samples have a higher proportion of reads that map
to intronic rather than exonic gene regions and that this
generally correlates with the proportion of genic RDDs
within introns (Additional file 1: Figure S2 and Additional
file 2: Figure S3). After removing RDDs that fall within
introns, the brain samples are no longer the marked out-
lier for the number of observed RDD sites (Fig. 2b). Thus
both the sequencing depth of coverage, and genic context



Huntley et al. BMC Genomics  (2016) 17:61 Page 3 of 14

Brain Heart Thymus Lung Kidney Spleen Liver Skin Testis

RNA-seq

WGS

100bp PE
28-77M umr

75bp PE
586 & 445M umr

Preprocessing  & quality filtering of reads

GSNAP alignment of reads to the mm9 
reference genome

Call variants from bam files using 
VariantTools

Apply additional filters to remove spurious sites

Require ≥ 10X in RNA
Require ≥ 2 unique variant reads with base quality ≥ 23

Require variant not to be within 10 bp of read ends
Require overlap with an annotated gene

Remove variants that overlap genes with > 1 strand

Remove sites within homopolymers ≥ 5bp
Remove sites within Repeat Masker elements 
Remove sites with UCSC mappability score < 1

Remove sites within self-chain regions
Remove sites within 5bp into an intron

Filter variants

Require > 20X in DNA 
Require zero variant reads in DNA

Assign strand of variant using annotated gene

Call RDDs

8 week old C57BL/6J male

b

a

Fig. 1 Experimental design (a) and sequencing processing workflow to call RNA-DNA differences (RDDs) (b). Tissues were harvested from an 8 week
old male C57BL/6J mouse. RNA was isolated from 9 tissues and individually used for 100 bp paired-end RNA-sequencing. After alignment to the
mm9 genome the number of uniquely mapped reads (umr) was between 28 million and 77 million for each tissue sample. DNA was extracted from
the brain and spleen tissues, and sent for 75 bp paired end whole genome sequencing, to average depths of 31X and 23X coverage (586 and 445
million uniquely mapped reads, respectively)

of potential editing sites plays a large role in the ability to
detect RNA editing events.

Genic context of editing sites
To investigate the functional relevance of the A-to-G
RDDs identified from our analysis, we used RefSeq gene
annotations to determine the genic context and pre-
dicted functional consequence (ie. synonymous, non-
synonymous) of each RDD. Across all tissues, most of the
RDD sites occurred within introns (Fig. 3). This is some-
what surprising since the standard poly-d(T) library prep
for RNA-sequencing should enrich for mature mRNA
transcripts whose introns have already been spliced out.
Less than 5 % of A-to-I RDDs fall within coding exons,
and only 159 would result in a non-synonymous change.
Further inspection of the genic context of editing sites
revealed consistent results across samples within the
same tissue. For example, all eight brain tissue samples
showed a much higher proportion of intronic RDDs to

coding exon RDDs than any of the other tissues. Like-
wise, the two heart samples had the highest coding
exon RDD to intronic RDD ratio. Therefore RNA edit-
ing preferentially occurs within intronic sequence, and the
amount of intronic substrate available appears to be tissue
dependent.
We next considered whether certain classes of genes

were preferentially edited within our samples as this might
reveal a regulatory aspect of the editing process. Within
each tissue, we collected genes containing protein alter-
ing RDDs and tested for enrichment of any functional
category amongst the genes normally expressed within
that tissue. We performed a Gene Ontology analysis for
each tissue individually, where the universe of genes was
simply the set of genes with an RPKM expression level
≥ 10 within that tissue. Additional file 3: Table S1 reports
the results of this analysis, filtering for odds ratios > 10,
and at least 2 edited genes per category. Only the edited
genes within brain and within testis show significant
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Fig. 2 The total number of A-to-G RNA-DNA differences (RDDs) called in each sample, versus the number or analyzed base pairs (number of uniquely
mapped reads × length of reads) (a). The nine samples with the largest number of analyzed base pairs correspond with the high coverage samples
generated in this study. The lower coverage samples were derived from previously published datasets. The high coverage brain sample in this study
is remarkable for having a higher amount of RDDs. However, when all RDDs that overlap an intron are discarded the high coverage brain sample is
no longer a strong outlier compared to the other high coverage tissues (b)
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enrichment for any gene ontology. We find that genes
involved in ionotropic glutamate receptor signalling are
enriched for non-synonymous RDDs amongst all genes
expressed within brain tissue. This result is observed in
both the high and low coverage brain tissue samples.
These sites are highly important for normal brain func-
tioning and often have editing frequencies near 100 %.
However, the same six edited genes (Gria2, Gria4, Grik2,
Grik5, Fcho2, and Cadps) are found to recur in most of the
significant GO categories for the brain samples. Likewise
for the testis results, three edited genes (Nup153, Ddx25,
and Plekha8) account for the results. Thus there are few
ontologies enriched for protein altering RNA-editing, and
these are driven by a very small number of edited genes.

Variation in RNA-editing within and across individuals
After examining aggregated trends in RNA-editing across
tissues and individuals, we next surveyed the variation
in editing per site. This finer scale analysis is driven by
the assumption that functionally relevant editing sites
should be recurrently edited across individuals, and possi-
bly across tissues. We first looked at the number of A-to-I
RDD sites that were shared among the 9 tissue samples
from our single male mouse (Fig. 4a). An editing site was
considered shared if it was called as an RDD in more than
one sample. Thus the frequency of editing at a given site
was ignored, and the site was treated as a binary variable:

edited (called as an RDD) or not edited (RDD was not
called). Only 15.5 % of sites are shared between any two
tissues, and even fewer (0.7 %) are shared across all 9
tissues. These numbers both increase slightly when only
RDDs within coding exons are considered (19 % and 2 %,
respectively). This might suggest that more functionaly
relevant RDDs, such as those within coding regions, are
more likely to be shared across tissues. However, for RDDs
predicted to be non-synonymous, and thus more likely to
cause a functional change in the resulting protein product,
the proportion that are shared across tissues decreases to
8 %. Thus, the recurrence of editing sites across tissues
is low, but increases modestly when considering only
synonymous editing events within coding exons.
We next looked at the inter-individual variability of call-

ing RDDs. If RDDs are functionally important, we assume
that their presence will be consistent across individuals,
when looking in the same type of tissue. Here we included
the previously published RNA-seq samples (excluding the
male samples from Brawand et al. (2011) due to insuffi-
cient sequencing depth), to serve as biological replicates
for four of our tissues. We had 7 adult brain samples, and
2 samples each for the heart, kidney, and liver tissues.
Within the 7 brain samples we found a much higher

proportion of RDD sites that were shared (by any two indi-
viduals, and by all individuals) than across tissues within a
single individual (Fig. 4b). Thus there is more similarity in
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the editing of brain transcripts from different individuals
than from different tissues within the same individual. We
also observe an increase in the proportion of brain RDDs
shared between individuals when we consider coding and
then non-synonymous sites. Thus shared RDDs within
brain transcripts, which we presume to be functionally
relevant, appear enriched for non-synonymous sites.
We next wanted to see if this pattern held true in the

other tissues. Since we only had 2 samples per tissue
for the heart, kidney, and liver, for consistency we sub-
set our brain samples to include only 2 samples (one
from our generated data, and one from Brawand et al.
(2011)). The brain samples had the highest consistency
in RDD recurrence within coding and non-synonymous
sites (Additional file 4: Figure S4). The other tissues had
higher consistency than brain overall, but not for cod-
ing and non-synonymous sites. Additionally, except for
kidney, there was more similarity in editing within a tis-
sue from different individuals than across tissues. Thus,
for the presumed most functionally relevant RDDs, we
observe more differences between tissues than between
individuals.

Tissue specific RNA-editing
Having established a baseline for the intra- and inter-
individual variability of RDD sites, we then investigated
the possible mechanisms by which we observe differ-
ences in editing across tissues. There are several possible
hypotheses to explain differential or tissue specific RNA-
editing. One hypothesis is that the transcript being edited
is not available or at sufficient abundance to be detected
in one sample versus another. A second hypothesis is
that there is instead a difference in the editing enzymes
between the samples. We tested the first hypothesis and
found that in the majority of cases where we observed an
RDD within one tissue specifically, and not the other tis-
sues, this was simply a result of insufficient expression of
the transcript in the other tissues (Fig. 5). This result held
true even when the previously published samples were
included (Additional file 5: Figure S5). Therefore, differ-
ential expression of the substrate transcript seems to be a
main cause of tissue specific RNA-editing.

ADAR expression and isoform usage
Interestingly, we did find some examples of RDDs for
which the transcript was sufficiently expressed, but where
the editing frequency varied across tissues. To examine
what might be causing this variability in editing frequency
across tissues, we used the RNA-seq data to investigate
the expression and isoform usage of the ADAR enzymes.
This provided us with the unique opportunity to study the
quantitative effect of ADAR expression on RNA-editing.
There are three members of the Adar family of enzymes

that are expressed within vertebrates: Adar, Adarb1, and

Adarb2 (also called Adar1, Adar2, and Adar3, respec-
tively). Our RNA-seq data provides us with both the over-
all expression level estimates for the Adars, and isoform
level estimates based on splice junctions (Fig. 6).
Adar is most highly expressed in the brain and spleen

samples, which is consistent with brain and spleen hav-
ing higher number of observed RDDs after accounting for
sequencing depth (see Fig. 2a). Adarb1 has the highest
expression in brain, and seems to be more brain spe-
cific in its expression than Adar. However both Adar and
Adarb1 have relatively modest expression in brain, with
RPKMs lower than 50 in all samples. Adarb2 is exclu-
sively expressed in the brain, however it is expressed at a
very low level, and to date, there is no evidence support-
ing the editing activity of this enzyme [7]. Thus, Adarb1
and Adarb2 have nearly exclusive expression within brain
tissue, while Adar has more appreciable expression across
multiple tissues.
From the literature, it is expected that there are dif-

ferences in Adar isoform usage across tissues, with the
shorter p110 isoform more highly expressed in CNS tis-
sues. Therefore, it is important to study gene expression
at the isoform level as well. When we examined the data
across our samples, we confirmed the elevated expression
of the p110 isoform within brain samples (Fig. 6b). The
longer p150 isoform was observed more frequently within
the non-brain samples.
While spleen and thymus have Adar expression levels

similar to those found in brain, the difference in iso-
form usage may result in differential regulation of editing
between these tissues. There are some reported motifs
prefered by Adar and Adarb1, but little is known about
the specificity differences between the p110 and p150
isoforms of Adar. Both isoforms contain a z-alpha DNA
binding domain at their N-terminal end, but the alter-
native 5’ UTR and splice of the p150 isoform encodes a
second z-alpha domain upstream of the first. This extra z-
alpha domain could potentially direct the editing enzymes
to prefer a subset of nascent transcripts with proximity to
a particular DNA sequence that interact with the z-alpha
domains. Thus differences in the resulting protein iso-
formsmay provide a mechanism for different selectivity of
editing substrates.
We also discovered a correlation of the p110 (J1 junc-

tion) with an internal in-frame alternative splicing event
(J9) that results in the addition of 26 amino acids between
the second double stranded RNA-binding domain and the
deamination domain. This region includes four poten-
tial phosphorylation sites. The functional effect of this
change, in altering the relative position of the deamina-
tion domain to the bound RNA transcript, could play a
role in the sequence context of RNA-editing events. Thus
isoform usage may influence and correlate with specific
motifs surrounding editing sites within a sample.
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To test this hypothesis, we analyzed the neighboring
nucleotides surrounding edited sites across tissues to
look for tissue specific patterns that might elucidate edit-
ing specificity of the Adar isoforms (Additional file 6:
Figure S6). We did not observe a strong difference in
motifs surrounding edit sites across tissues. However, we
did find that the genic context of the site appeared to have
an effect, with sites in 3’ UTRs having the most consistent
neighboring nucleotides across tissues.

Regulation of differential editing
To test the hypothesis that editing enzyme expression lev-
els might account for differences in editing frequency per

site across tissues, we first needed a collection of sites
that were sufficiently expressed across multiple tissues,
and varibly edited. For this we required sites that had a
minimum of 10X coverage in at least 2 samples, and for
an RDD to have been called at the site within at least 1
sample.
We found 1831 such sites, 232 of which were within

coding exons, and 136 were predicted to result in non-
synonymous changes. Only 42 of these non-synonymous
sites had sufficient coverage inmore than half the samples.
We highlight here three examples of non-synonymous
RDD sites that are variably edited across multiple samples
(Fig. 7).
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have a shorter, typically brain specific protein isoform (referred to as p110), and a more ubiquitously expressed longer protein isoform (p150). These
two isoform variants are distinguished by the alternate 5’ UTRs that are used by the J1 and J2 mutually exclusive splicing events. J1 produces the
shorter p110 isform while J2 produces the longer p150 isoform. Of note, an internal alternative splicing event, J8, tends to co-occur with the p150
isoform, while the J9 splice appears more frequently in samples with higher p110 isoform usage

Weobserved an RDD site in the gene Tmem63bwhich is
expressed in all 9 tissues, but edited only within the brain
samples. This site is found within the fifth coding exon
upstream of the 3’ UTR, and results in a non-synonymous
change from a glutamine to an arginine. The editing fre-
quency at this site within brain samples ranges from 41
to 74 %. We also observed this brain specific pattern of
editing in the human Tmem63b gene, using the human
Illumina BodyMap 2 RNA-seq dataset (NCBI GEO acces-
sion GSE30611, Additional file 7: Figure S7).
The gene Flnb contains a previously reported non-

synonymous RDD [26]. The authors investigated RNA-
editing within mouse brain tissue, and these samples are
included in our analysis. We also observe RNA-editing at
this site within our brain samples, but additionally observe
a wide range of editing frequencies across tissues. In our
samples, this site is most highly edited within brain and
heart tissue, and this pattern is also found within the
human Illumina Body Map 2 dataset (Additional file 7:
Figure S7).
We also observed a non-synonymous RDD in the gene

Copa. This site was previously unreported in mouse, but
has been studied in human. This RDD has a much lower
editing frequency, with the highest being 27 %, in one of
the heart samples. This variably edited RDD site was one

of the very few for which brain did not have the highest
editing frequency. Curiously, the pattern of editing fre-
quency across our mouse tissues was not consistent with
that observed in the human Illumina Body Map 2 dataset
(Additional file 7: Figure S7).
Having identified a collection of variably edited sites,

we then tested the hypothesis that editing enzyme expres-
sion levels could explain the variations in editing across
samples. To do this we calculated RPKM expression levels
for the Adar genes (across coding exons), and RPKM esti-
mates for the mutually exclusive 5‘ exons that distinguish
the p110 and p150 isoforms of Adar. These expression
levels were used to look for correlations with per site
editing frequencies across samples.
Within coding exons we found 16 RDD sites whose

variable editing frequencies had significant positive corre-
lations with at least one of the editing enzymes or isoforms
tested. After multiple testing correction the editing site
within the gene Tmem63b remains significant. While the
other 15 sites are not statistically significant after correct-
ing for multiple testing, interesting trends were observed.
Two distinct patternsmay explain the regulation of editing
(Fig. 8). The first is a binary pattern where editing appears
to be on or off at a given site. In this situation, there is
likely a threshold for the editing enzymewhich determines
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Fig. 7 The variability in editing frequency per site across tissues. Three sites where the RDD encodes a non-synonymous change were selected and
presented here (Tmem63b, Flnb, and Copa). Only samples with ≥ 10X coverage at these sites are plotted

if the substrate becomes edited or not. The second pattern
is continuous rather than binary. In these cases, the edit-
ing frequency increases with the expression of the editing
enzyme. Thus we are able to detect a small number of
non-synonymous RDDs where the expression of the edit-
ing enzyme or isoform trends with the editing level of a
ubiquitously expressed substrate transcript.

Discussion
Previous studies suggest that RNA-editing is prevalent
within transcripts of the central nervous system. In fact,
themost well knownA-to-I editing sites occur within cod-
ing regions of neuronal signalling genes. Among these,
the transcripts of several genes involved with ionotropic
glutamate signalling are typically edited at 100 % fre-
quency. This begs the question of why these sites are not
simply changed in the genome rather than edited in the
transcript. Several studies report the importance of these
editing events in modulating receptor activity in a devel-
opmental manner [11, 32–36] and provide a rationale for

why these changes are not simply genomically encoded
instead. This highlights an advantage of regulating tran-
scriptome diversity via RNA-editing.
Here we have quantified that the number of sites which

undergo A-to-I editing is remarkably higher in transcripts
derived from the brain. While the ability to detect editing
events increases with sequencing depth [22, 37], we con-
tinue to observe the brain transcriptome as an outlier even
after accounting for this difference. We also confirm pre-
vious findings [38, 39] that the average editing frequency
per site is elevated in brain tissues. These findings are
now consistent across humans, non-human primates, and
mice, suggesting a conserved role for RNA-editing in the
neural transcriptome.
Interestingly, in our study, the vast majority of edited

sites within brain samples occurred in intronic regions
of genes. This enrichment for intronic editing accounted
for the abnormally high amount of editing sites in brain
tissues. The abundance of editing events within intronic
sequence is intriguing as we did not expect high levels of
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dc

Fig. 8 The correlation of editing frequency per site across samples with editing enzyme expression. Binary (edited vs. not edited) correlation
patterns were observed for the non-synonymous edits in Tmem63b and Itgb5 with Adarb1 and Adar p150, respectively (a, b). Continuous
correlation patterns were observed for the exonic editing sites in Grik2 and Rbbp4 with Adar p110 and Adar p150, respectively (c, d). Only samples
with ≥ 10X coverage at these sites are plotted

sequencing coverage over introns. The RNA-sequencing
library prep used in this study was a standard poly-d(T)
protocol which should enrich for fully mature, poly-
adenlyated mRNA transcripts that have already under-
gone splicing. However, intron retention appears to be
a more common phenomenon within neural transcripts
[40]. The recently reported phenomenon of recursive
splicing in vertebrates [41] may result in slower processing
of introns within the brain, and this may explain the abun-
dance of intronic sequence we observe within our brain
tissue data.
Previous studies have found that RNA editing in mice

occurs less frequently than in humans [42]. This is
thought to be related to hyper editing of Alu repeat ele-
ments within the 3’ UTRs of human transcripts. Alu
repeats are an active primate specific SINE retrotranspo-
son and are abundant within the human genome. When
Alu sequences are juxtaposed within transcripts, they
can form a double-stranded RNA hairpin loop structure

which is an ideal substrate for ADAR enzymes. Mice
do not have Alu repeats, but they do have four related
active SINEs (B1, B2, 1D, and B4). The higher divergence
between these mouse repeats is thought to result in lower
editing levels than those observed within the Alu elements
of humans, as fewer double stranded hairpin loops are
expected to form within mouse transcripts. However, we
do still observe a high proportion of editing sites within
the 3’ UTR of transcripts. In spleen and thymus, the
majority of the editing occurs within these exons. There-
fore, despite lower levels of editing in mouse samples, the
distribution of edited sites is largely consistent between
humans and mice.
RNA-editing patterns varied across all tissues examined

and sites edited in multiple tissues were not common. We
demonstrate that tissue specific editing is largely a con-
sequence of the tissue specific expression of the edited
transcript. While our data do not argue against the exis-
tence of tissue specific editing cofactors, it appears that a
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major regulator of editing is the expression of the edited
transcripts.
However, we did find evidence for a small number of

transcripts expressed in multiple tissues but with variable
levels of editing. In several of these cases a change in the
expression or isoform usage of the editing enzymes corre-
lates with the observed difference in editing. This suggests
that the editing frequency is regulated by expression of
a particular editing enzyme. In fact, the editing sites in
both Flnb and Copa have been previously studied in the
context of human hepatocellular carcinoma [43]. Using
both tumor and cell line over-expression and knock down
experimental data the authors present a compelling case
for Adarb1 levels regulating editing in both genes. While
they did not investigate the p150 isoform of Adar, they
found that the p110 isoform enhanced editing in Flnb, but
not in Copa.
While the gene Tmem63b is expressed in multiple tis-

sues, editing is only observed within brain. This simpler,
binary editing status is consistent with the brain hav-
ing the highest expression of both Adarb1 and nearly
exclusive expression of the Adar p110 isoform. However,
Adars can dimerize to form homo- and heterodimers
[44–49]. This combinatorial effect can add yet another
layer of complexity to the regulation of editing, mak-
ing even the simpler cases of differential editing, such as
Tmem63b, less straightforward to explain. After account-
ing for substrate expression, we believe that the editing
enzyme expression and isoform usage plays an impor-
tant role in regulating the observed differences in the
amount and location of editing across tissues and cell
types.

Conclusions
This study within mouse tissues is largely consistent with
genome wide patterns of editing described in human
datasets [38], and further explains how RNA-editing dif-
ferences can be differentially regulated. The recurrence
in editing patterns within tissues, across individuals,
and even species, reinforces RNA-editing as function-
ally important for organismal development, survival, and
evolution. Future studies testing the specificity of Adar
isoforms, homo- and hetero-dimer combinations, and
enzyme or substrate saturation are needed to further
elucidate the regulatory mechanisms of this important
cellular process.

Methods
Isolation of DNA and RNA frommouse tissues
An 8 week old C57BL/6J male mouse was obtained
from The Jackson Laboratory and housed according to
the animal use guidelines of Genentech, conforming to
California State legal and ethical practices. This ani-
mal was euthanized by exsanguination with phosphate

buffered saline (PBS) and tissues were collected, flash
frozen and stored at –80 °C until further processing.
DNA and RNA were extracted with either the All Prep
DNA/RNA mini kit (kidney, liver, lung, spleen, testis and
thymus), the RNeasy Fibrous tissue mini kit (heart and
skin) or the RNeasy Lipid tissue mini kit (brain) according
to manufacturers protocol (Qiagen).

Sequencing data
We generated 100 bp, paired-end standard RNA-seq
libraries from the 9 tissues (brain, skin, heart, liver,
thymus, testis, spleen, lung and kidney) of the single
adult male mouse described above. Each RNA-seq library
resulted in 28 million to 77 million uniquely mapped
reads.
Additionally, from this same mouse, we extracted

genomic DNA and generated 75 bp paired end whole
genome sequence libraries from the brain and spleen tis-
sue. These produced 586 million and 445 million uniquely
mapped reads, respectively.
For biological replicates of our dataset from a sin-

gle mouse, we analyzed previously published RNA-seq
data from 3 relevant datasets (GSE30352, GSE39866, and
ERP000614), totalling 20 additional samples from 15 ani-
mals. The first dataset included 76 bp single-end RNA-seq
data from 6 tissues (brain, cerebellum, heart, kidney, liver,
and testis) of adult C57BL/6 mice [50]. This experiment
used 2 separate mice for each tissue (one female, one
male), with the exception of the testis tissue which only
had the single male sample. In this dataset, only the female
samples were sequenced to moderate depth (11 million to
20 million uniquely aligned reads), while the male samples
had low coverage (1 million to 5 million uniquely aligned
reads).
The second dataset included 80 bp single-end RNA-

seq data from the cerebral cortex of embryonic (E17) and
adult (3 - 4 months old) C57BL/6J female mice [27]. This
experiment included 4 embryonic samples (resulting in 25
million to 29 million uniquely aligned reads) and 3 adult
samples (with 26 million to 29 million uniquely mapped
reads).
Finally, the third dataset included whole brain derived

76 bp paired-end RNA-seq data from two adult (ages 2 – 3
months) C57BL/6NJ femalemice [26]. These data resulted
in 15 million and 18 million uniquely mapped reads.

Read processing andmapping
Our nine RNA-seq samples derived from a single indi-
vidual mouse, and two whole genome DNA samples
were sequenced on an Illumina HiSeq machine. The
fastq sequence files for all RNA-seq samples, including
the 20 previously published samples, were then filtered
for read quality (keeping reads where at least 70 % of
the cycles had Phred scores ≥ 23), and ribosomal RNA
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contamination. The remaining reads were then aligned to
the mouse reference genome (mm9) using the GSNAP
alignment tool [51]. Alignments were produced using the
following GSNAP parameters: “-M 2 -n 10 -B 2 -i 1 -N
1 -w 200000 -E 1 –pairmax-rna=200000 –clip-overlap”.
These steps, and the downstream processing of the result-
ing alignments to obtain read counts and RPKMs per
gene (over coding exons of RefSeq gene models) are
implemented in the Bioconductor package, HTSeqGenie
(v 3.12.0) [52]. Only uniquely mapped reads were used for
further analysis.
Our two DNA samples were processed similarly for

quality, and aligned with the following GSNAP param-
eters specific for whole genome sequence: “-M 2 -n 10
-B 2 -i 1 –pairmax-dna=1000 –terminal-threshold=1000
–gmap-mode=none –clip-overlap”.

Calling RNA variants
Single nucleotide variants (SNVs) were first called using
the Bioconductor package VariantTools [53]. To increase
our confidence in identifying true positive RNA-editing
events, we required a mimimum of 10X coverage, at least
two unique reads supporting the edited variant and base
quality scores of 23 or higher.We discarded variants found
solely within the 10 bp at either end of reads, due to
the higher proportion of mismatches which tend to occur
within these regions.
To infer the strand of a transcript, we considered

only RNA-editing events that occurred within annotated
genes, and discarded SNVs that were located in more than
one gene on opposite strands.
To exclude spurious variants arising from regions of the

genome that are problematic for short read alignment, we
also discarded SNVs within homopolymer tracts, UCSC
repeat masker track elements (low complexity, simple
repeat, and satellites), UCSC multi-mappability regions,
and self-chain regions (Additional file 8: Figure S1).
For added stringency, we also removed any intronic

SNV that was within 5 bp of an exon-intron boundary.
Although this was a very small fraction of the total num-
ber of SNVs, many were spurious alignments of reads into
the intron with only a few basepairs originating from the
downstream exon.

Identification of RNA-DNA differences
A collection of high confidence RNA-DNA differences
(RDDs) was then produced by stringent filtering of the
SNVs from RNA using the whole genome sequence data.
After all the filtering above, an SNV in the RNA was con-
sidered an RDD if the genomic data showed zero reads
supporting the edited base, and had > 20X total cover-
age at the site in question. Although highly stringent, this
gave us confidence in calling the remaining RDD sites
RNA-editing events (Additional file 9: Figure S9).

We then further selected RDDs that represented the
ADAR mediated A-to-I editing events (A-to-G or T-to-
C changes for genes on the positive or negative strand,
respectively).

Availability
RNA-seq data generated for this study are available from
NCBI’s Gene Expression Omnibus (GSE74747). Whole
genome sequence data generated for this study are avail-
able from the EuropeanNucleotide Archive (ERP010840).
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