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Abstract

Background: In many traits, not only individual trait levels are under genetic control, but also the variation around
that level. In other words, genotypes do not only differ in mean, but also in (residual) variation around the
genotypic mean. New statistical methods facilitate gaining knowledge on the genetic architecture of complex traits
such as phenotypic variability. Here we study litter size (total number born) and its variation in a Large White pig
population using a Double Hierarchical Generalized Linear model, and perform a genome-wide association study
using a Bayesian method.

Results: In total, 10 significant single nucleotide polymorphisms (SNPs) were detected for total number born (TNB)
and 9 SNPs for variability of TNB (varTNB). Those SNPs explained 0.83 % of genetic variance in TNB and 1.44 % in
varTNB. The most significant SNP for TNB was detected on Sus scrofa chromosome (SSC) 11. A possible candidate
gene for TNB is ENOX1, which is involved in cell growth and survival. On SSC7, two possible candidate genes for
varTNB are located. The first gene is coding a swine heat shock protein 90 (HSPCB = Hsp90), which is a well-studied
gene stabilizing morphological traits in Drosophila and Arabidopsis. The second gene is VEGFA, which is activated in
angiogenesis and vasculogenesis in the fetus. Furthermore, the genetic correlation between additive genetic effects
on TNB and on its variation was 0.49. This indicates that the current selection to increase TNB will also increase the
varTNB.

Conclusions: To the best of our knowledge, this is the first study reporting SNPs associated with variation of a trait
in pigs. Detected genomic regions associated with varTNB can be used in genomic selection to decrease varTNB,
which is highly desirable to avoid very small or very large litters in pigs. However, the percentage of variance
explained by those regions was small. The SNPs detected in this study can be used as indication for regions in the

Sus scrofa genome involved in maintaining low variability of litter size, but further studies are needed to identify

the causative loci.
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Background

Conventional methods for studying the genetic architec-
ture of complex traits focus on the level of those traits.
In other words, the focus is on variation in trait level
among genotypes. This implies that quantitative trait loci
(QTL) can be defined as mean-controlling genes, as they
affect the observed average phenotype of specific geno-
type. However, in many traits not only the mean is
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under genetic control, but also variation around the
mean. Hence, genotypes not only differ in their average
phenotypic level, but also in the variation around this
average. In the following, we label this phenomenon as
“phenotypic variability”, not to be confused with ordin-
ary variability in average trait levels among genotypes.
Therefore, development and application of statistical
methods that allow studying phenotypic variability are
required for a better understanding of the genetic archi-
tecture of complex traits [1-4].

The variation around the expected mean of a trait given
its genotype, can be studied by analyzing the heterogeneity
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of residual variance across the observations [1]. It has
been found that genotypes differ in residual variance [5].
Empirical evidence was found that the residual variance
has a genetic component for litter size in rabbits [6], birth
weight in pigs [7, 8], body weight in Atlantic salmon [9]
and milk production traits in dairy cattle [10-12]. In
addition, some studies have reported QTL that are associ-
ated with phenotypic variability, so-called vQTL [3]. The
presence of vQTL in a population can indicate the exist-
ence of unmodeled interaction associated with the locus
[3, 13, 14]. Three types of interactions can be distin-
guished, in which vQTL could be involved: interaction be-
tween the genes (epistasis) [3], interaction between the
gene and known/unknown environmental factors [15, 16]
or parallel presence of both of those interactions [3]. The
fourth type of vQTL is one that controls the variance of a
trait [17]. Several studies have reported vQTL in plant
(maize [18], Arabidopsis thaliana [13]) and animal species
(Drosophila melanogaster [5], rat [19], dairy cows [20] and
in humans [15, 21]). One of the most well-studied genes
involved in buffering effects of genetic and environmental
factors is heat-shock protein 90 (Hsp90). This gene was
described in Drosophila and Arabidopsis as a gene stabiliz-
ing developmental and morphological traits [22—-24].

In this study, we focus on litter size and its variability
in a Large White pig population. Many studies have
reported single nucleotide polymorphisms (SNP) and
QTL for the mean litter size of a genotype, and such
QTL have been found on all Sus scrofa chromosomes
(SSC) except SSC11, SSCX and SSCY (PigQTLdDb, [25]).
However, on top of the genetic variance in litter size,
there is considerable residual variation between sows for
litter size (total number born). Most issues are caused by
extremely large litters (e.g. litter sizes greater than 25
piglets), which exceeds the physiological capacity of the
sow to provide for the litter during gestation and post-
farrowing. Sows with the large litters can experience
welfare issues such as high energy demands during ges-
tation [26] and shoulder sores during lactation [27, 28].
Moreover, these extreme litter sizes reduce also welfare
and survival of the piglets pre-farrowing and until wean-
ing. In current pig breeding, the goal is towards more
sustainable production that will increase piglet survival
regardless of increasing litter size [29-33]. Decreasing
the variation in litter size between sows could lead to
more sustainable breeding in terms of lower mortality of
piglets and easier to manage sows. Therefore, it is desir-
able to reduce the variation in litter size from both an
economic and an animal welfare perspective. Moreover,
the detection of genes that buffer environmental factors,
and thus decrease the variability of TNB is highly desir-
able. Thus far, Sorensen and Waagepetersen [34],
Ronnegard et al. [2] and Felleki et al. [35] showed on the
same dataset that variability in total number born in pigs
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is heritable. However, no study reported genomic regions
associated with litter size variability or other traits in
pigs [36]. A genome-wide association study (GWAS) for
variability of litter size would give more insight in the
genetic and biological control of variability in litter size.

The main objective of this study was to identify SNPs as-
sociated with litter size (TNB) and its variation (varTNB),
through a multi-SNP GWAS applying a Bayesian method.
In total, 10 SNPs were detected for TNB and 9 SNPs for
varTNB. The most significant SNP for TNB was detected
on SSC11 and for varTNB on SSC7. A possible candidate
gene for TNB on SSC11 is ENOX1, which is involved in cell
growth and survival. On SSC7, two possible candidate
genes for varTNB are located. The first is a gene coding a
swine heat shock protein 90 (HSPCB = Hsp90), which is a
well-studied gene stabilizing morphological traits in Dros-
ophila and Arabidopsis. The second is VEGFA, which is
activated in angiogenesis and vasculogenesis in the fetus.
We also found a positive genetic correlation between TNB
and its variance, indicating that single-trait selection for
TNB will increase the varTNB. To our knowledge, this is
the first study reporting SNPs for TNB on SSC11 and SNPs
associated with varTNB in pigs.

Results and discussion

The main objective of this study was to detect regions
associated with litter size (total number born, TNB) and
its variation (varTNB) in a Large White pig population
using a genome-wide association study (GWAS). Prior
to the GWAS, the phenotypes for the association study
had to be obtained. Therefore, as the first step, a Double
Hierarchical GLM (DHGLM) was used to estimate vari-
ance components and estimated breeding values (EBV)
of TNB and varTNB. Second, the EBV obtained with
DHGLM were deregressed. Finally, the deregressed EBV
were used as phenotypes in the GWAS. In this section,
we present and discuss all the results that lead to detect-
ing regions associated with TNB and varTNB.

DHGLM analysis of litter size and its variation

Table 1 shows estimates of variance components and
heritability obtained from the univariate analysis of
TNB, which are within the range known from the litera-
ture, where heritability estimates for TNB range from
0.10 to 0.16 [32, 33, 37-39]. The variance components
estimated with univariate analysis of TNB were used as
starting values for DHGLM.

The variance components and heritability for TNB from
the DHGLM presented in Table 2 are also in the expected
range [32, 33, 37-39]. For varTNB the estimate of additive
genetic variance and heritability (Table 3) are lower than
previously reported for this trait [2, 35]. It is worth
noticing, that this heritability is a measure of the reliability
of EBV for varTNB based on single observations; it does
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Table 1 Genetic parameters (with SE) from a conventional
univariate analysis of litter size (TNB)

Estimate TNB
Additive genetic variance 131 (0.04)
Permanent sow variance 0.87 (0.03)
Residual variance 7.14 (0.02)
Heritability 0.14 (0.004)

not reflect the magnitude of the genetic variance in
varTNB [40].

To show the potential response to selection we
propose to use the Genetic Coefficient of Variation on
the standard deviation level (GCVgp,, i.e. the genetic
standard deviation in residual standard deviation divided
by the mean residual standard deviation of the trait (see
Methods section for more details). The GCVgp. for
varTNB in this study is 0.09, which is slightly lower than
in previous studies focusing on litter size variation in
pigs (0.10-0.15; [34, 41]), as reviewed by Hill and
Mulder [1]. Nonetheless, the GCVgp,. reported here
indicates sufficient potential for selection to reduce vari-
ation in TNB. By assuming that in an efficient breeding
program a response of ~1 genetic standard deviation per
generation can be achieved, the GCVsp, of 0.09 indi-
cates that the genetic standard deviation (SD) of TNB
can be reduced by 9 % in one generation.

Table 3 shows the genetic correlations between ran-
dom effects in the level and variance part of the model.
The additive genetic correlation between TNB and
varTNB is positive and moderate (0.49). This correlation
is unfavorable, and indicates that sows with genetically
large litters tend to have more variation in litter size.
The correlation between the permanent sow effects on
TNB and varTNB has the opposite sign: —0.83. This in-
dicates that non-genetic (environmental) disturbances
decrease the mean of TNB, with simultaneous increase
in the variance of this trait.
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To investigate further the large difference between the
permanent and genetic correlations obtained with the
DHGLM, we also performed a conventional bivariate
analysis. To compare methods, models need to be on
the same scale. A DHGLM takes a logarithm of residual
variance in exponential model. Thus, in the conventional
analysis we used mean TNB and the log-transformed
variance of mean TNB (log(var(TNB))) per sow. The es-
timated additive genetic variances for mean TNB and
for log(var(TNB)) were similar to values obtained from
the DHGLM (Table 2). The conventional bivariate ana-
lysis yields also correlations between additive genetic
effects and residuals of mean TNB and log(var(TNB))
(Table 3). (Note that the conventional analysis has no
permanent sow effect, since there is only a single
observation per sow.) The estimated additive genetic
correlation was 0.68, whereas the residual correlation
was—0.12. The genetic correlation has the same sign as
the one from the DHGLM, but is slightly different in
magnitude. The residual correlation in the conventional
analysis has the same sign as the permanent environ-
ment correlation in the DHGLM, but is much closer to
zero. When considering the covariances rather than the
correlations, the residual covariance from the conven-
tional analysis (-0.82) exceeds the permanent covariance
from the DHGLM (-0.27). In the DHGLM, we assumed
that the residuals are independent from each other.
Hence, in the DHGLM, the permanent covariance has
to account fully for non-genetic covariance between
TNB and varTNB, which probably causes the extremely
negative correlation between permanent effects.

Felleki et al. [35] reported an additive genetic correl-
ation of-0.6 between TNB and varTNB, which has the
opposite sign to the value reported here. The model
used by Felleki et al. [35], however, did not include a co-
variance for permanent sow effect. When this covariance
is not included, the model does not separate the effects
properly. When the permanent covariance was omitted

Table 2 Variance components (with SE) estimated in Large White sows for litter size (TNB) and residual variance of litter size
(varTNB) using a Double Hierarchical GLM (DHGLM) and for mean litter size per sow (meanTNB) and log-transformed variance of the

TNB per sow (log (var (TNB)) using conventional bivariate analysis

DHGLM Conventional
Estimates TNB varTNB meanTNB log(var(TNB))
Additive genetic variance 1.18 (0.04) 0.03 (0.003) 1.23 (0.04) 0.04 (0.004)
Permanent sow variance 0.69 (0.02) 0.15 (0.004) -2 -2
Residual variance 65 (0.02)° 1.88 (0.01)° 11.8 (0.15) 378 (003)
Heritability 0.14 (0.003)° 0.006° (0.0008)° 0.09 (0.001) 0.01 (0.006)
GCVspe? 0.087 (0.004)°

*The conventional analysis has no permanent sow effect, since there is only a single observation per sow

PStandard errors obtained based on calculations from Mulder et al. [82]

“Heritability estimated at the level of squared phenotype: h2 = 02,/(20% + 3(02, + O2ey)) [70]
4Genetic coefficient of variation at residual standard deviation level, i.e. the genetic standard deviation in residual standard deviation divided by the mean

residual standard deviation of the trait: GCVspe = Oay(0e )0e 104y [1]
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Table 3 Correlation estimates (with SE) between the random
effects on the level and the variance of litter size, estimated in
Large White sows using a Double Hierarchical GLM (DHGLM) or
conventional bivariate analysis

Effect DHGLM Conventional
Additive genetic 049 (0.04) 0.68 (0.04)
Permanent sow effect/Residual® —-0.83 (0.02) —0.12 (0.007)

“The conventional analysis has no permanent sow effect, since there is only a
single observation per sow. The correlation was estimated between residuals
in two parts of the model

in our study, the additive genetic correlation had a nega-
tive value of-0.57. To account fully for all existing
effects it is necessary to include the covariance structure
between both permanent and additive genetic effects in
the two parts of the model.

Significant associations for TNB and varTNB

In total, 10 significant SNPs were detected for TNB
(Fig. 1) and 9 SNPs for varTNB (Fig. 2). Associations
found for TNB where located mostly on the same Sus
scrofa chromosomes (SSC) as reported in previous
GWAS for this trait [25]. Since this is the first GWAS to
report SNPs for variance of litter size in pigs, there are
no studies available for comparison.

Overall, the significant SNPs explained 0.83 % of the
total genetic variance in TNB, and 1.44 % of the genetic
variance in varTNB (Tables 4 and 5). The SNPs reported
on SCC11 for TNB and all the SNPs for varTNB are the
first SNPs reported for those traits in pigs. The chromo-
somes with the most variance explained were SSC11 for
TNB and SSC7 for varTNB (Figs 3 and 4). On SSC11,
ASGA0050328 associated with TNB explained 0.36 % of
the total genetic variance. The estimated allele substitu-
tion effect at this locus was 0.105 piglets (Table 4). Previ-
ous studies that detected QTL for TNB, reported
percentage of phenotypic variance explained by markers,
rather than genetic variance, on the level between 0.3 %
to 15 % [42-45], so higher than in this study. On SSC7,
INRA0025193 explained 0.5 % of the genetic variance
for varTNB. The allele substitution effect at this locus
was 2.3 % of the mean value of varTNB (Table 5; note
that values are given on log-variance scale). The small
proportion of genetic variance explained by the signifi-
cant associations indicates that both litter size and its
variation are highly polygenic traits.

The estimated genetic correlation between TNB and
its variation (0.49) could suggest presence of pleiotropic
effects or SNPs in linkage disequilibrium (LD). However,
we did not identify overlap in regions significant for
TNB and varTNB (Figs 1 and 2). Only on SSC13, SNPs
for both traits are located close to each other (Tables 4
and 5), but they are not in LD.
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Candidate genes and QTL associated with TNB

The two regions detected on SSCI11 are the first SNPs
associated with TNB on this chromosome. Thus far, no
other study available in PigQTLdb (based on February
2015 search) reported significant associations for TNB on
SSC11. Only one study reported QTL for a reproduction
trait within the region of the most significant SNP
(ASGA0050328) for TNB, which was a QTL for number
of teats [46].

No candidate genes could be identified within the re-
gion of +50kbp around ASGA0050328 (Ensembl Sscrofa
10.2; February 2015). The nearest candidate gene named
ENOX1I was found at 24.16-24.48 Mb. One of the SNPs
associated with TNB (with BF = 10.2) was located in this
region. The ENOXI is a protein coding gene from the
ecto-CNOX family being part of electron transport path-
ways associated with mitochondrial membranes [47].
Functions of ENOX1 are cellular defense and growth as
well as cell survival [47]. The functions of ENOX1 indi-
cate that this gene might be a new region relevant for
TNB in pigs.

In addition, the region detected on SSC18 (58.86-
58.88 Mb) shows relevance for TNB in pigs. Three
QTL related to reproduction traits were previously de-
scribed within this region ([25]; February 2015). Those
QTL were for: TNB [43], corpus luteum number [48],
and gestation length [43]. Moreover, we have identified
a possible candidate gene from the galectin family
named LGALS8 within the detected region. The
LGALSS8 is widely expressed in tumoral tissues and
seems to be involved in integrin-like cell interactions,
cell-cell adhesion, cell-matrix interaction and growth
regulation [49].

Candidate genes and QTL for variability of TNB
Quantitative trait loci associated with phenotypic vari-
ability are defined in the literature as vQTL [50]. In this
study, the SNPs associated with varTNB are the first
vQTL reported in pigs. Detected SNPs for varTNB were
located at the positions of several known QTL related to
reproduction traits in pigs. Those QTL are summarized
in Table 5.

Within the region of the most significant SNP
(INRA0025193) for varTNB at 43.76 Mb on SSC7, one
candidate gene was located named CUL9 (SSC7:43,72-
43,76 Mb) CUL9 is a cytoplasmic anchor protein in
complex associated with p53 [51, 52]. The p53 is a pro-
tein, which regulates the cycle of the cell and acts as a
tumor suppressor [53]. The CUL9 is controlling the
localization and the function of p53 in the cell [51, 52].
Even though CUL9 was not yet described in swine,
its functions can be important in affecting litter size
variability in pigs, especially since CUL9 is expressed
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Fig. 1 Genome-wide association for litter size (TNB) in 2,351 purebred boars and sows from a Large White pig population. Red circles indicate
SNPs with BF 230, red triangles indicate SNP with BF 2100 and black dots indicate SNPs with BF <30

in embryonic, placental, and uterus tissues in the
human [54].

Two more SNPs on SSC7 associated with varTNB
(with BF 10.2 and 17.5) were located within the regions
of two other possible candidate genes already described
in swine: HSPCB (SSC7: 45.11-45.12 Mb) and VEGFA
(SSC7: 44.46-44.47 Mb). The first gene belongs to the
Sus scrofa heat shock protein family. This protein fam-
ily is referred to as molecular chaperones since they are
activated under various stress condition, such as heat
[55], hyperthermia [56], and inflammation [57]. Their
function is to maintain proper folding of the proteins

within a cell as well as re-folding denatured proteins
post-stress [58, 59]. Known in Drosophila and Arabi-
dopsis as Hsp90, it is well described as a gene stabilizing
developmental and morphological traits. The Hsp90
was describe to buffer environmental (e.g. heat shock,
inflammation) and genetic (e.g. unfavorable mutations)
factors, resulting in low variation of developmental and
morphological traits [22—-24]. Even though Hsp90 was
shown to be one of many genes with buffering effects
[60, 61], it is a very promising candidate gene detected
for varTNB in this study. The second gene, named
VEGFA, is a vascular endothelial growth factor. A
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Fig. 2 Genome-wide association for variation in litter size (varTNB) in 2,067 purebred boars and sows from a Large White pig population. Red
circles indicate SNPs with BF 230, red triangles indicate SNP with BF 2100 and black dots indicate SNPs with BF <30
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Table 4 Significant SNPs per Sus scrofa chromosome (SSC) associated with litter size and detected in boars and sows from a Large
White pig population. Description of significant regions includes: minor allele frequency (MAF), allele substitution effect and the
Bayes Factor (BF) as an indication for significance (only SNP with BF 230 are reported)

SSC Significant SNP Position (Mb) MAF Allele subs. effect® BF Gen. var. expl. by SNP (%)
1 ALGAO0001244 17.28 0.30 0.052 854 0.10
1 ASGA0005117 182.38 048 0.039 36.6 0.07
1 ALGA0006771 18242 048 0.034 30.1 0.05
5 ASGA0023713 138 035 0.034 36.6 0.04
8 ASGA0097249 42.52 042 0.021 599 0.02
11 ASGA0050328 23.81 0.26 0.105 2955 036
1 MARC0020561 23.87 045 0.030 30.1 0.04
13 ASGA0059543 192.72 0.25 0.042 388 0.06
18 ALGA0098906 58.86 029 0.038 355 0.05
18 INRA0056201 58.88 029 0.036 42.1 0.04

?Allele substitution effects were estimated as a = \/ag(qu)’], where 02 is the genetic variance explained by the SNP, and p and q are the frequencies of the two

alleles [83].

VEGFA is a protein mediator growth factor activated in
angiogenesis and vasculogenesis in the fetus (and adult)
[62] as well as in endothelial cell growth [63]. These
two candidate genes detected on SSC7 are highly rele-
vant, since those genes affect the response of the pig to
environmental and stress factors (HSPCB) and provide
the vascular network to the placenta (VEGFA).

Implications for pig breeding

An important aim in pig production is to obtain a high
number of slaughter pigs per sow per year [26, 64, 65].
Therefore, in pig breeding, genetic selection continues
to increase litter size. The annual genetic trend for
litter size in different pig breeding programs was shown
to be +0.16 [29, 66], +0.25 [67], and even up to +0.5
[68] piglets per year on average. Next to genetic

variation in litter size, there is considerable residual
variation in this trait, both between sows and between
parities within a sow.

We showed that residual variance in litter size has a
genetic component, and can thus be changed by selec-
tion. The results of our study also show presence of an
unfavorable positive genetic correlation between litter
size and its variation. So far, main inefficiency in fecund-
ity was the presence of too small litters. More and more,
however, too large litters are becoming the prevailing
problem. Therefore, simultaneous selection of litter size
and it variation is necessary to achieve a higher mean lit-
ter size and at the same time a lower variance in litter
size. This is important for pig production, since both
small and oversized litters can be detrimental for farm
economy. Although the genetic correlation was 0.49, we

Table 5 Significant SNPs per Sus scrofa chromosome (SSC) associated with variation in litter size and detected in boars and sows
from a Large White pig population. Description of significant regions includes: minor allele frequency (MAF), allele substitution
effect, the Bayes Factor (BF) as an indication for significance (only SNP with BF < 30 are reported) and overview of previously
reported QTL for reproduction traits in pigs (based on PigQTLdb; February, 2015)

SSC Most sign. Position MAF  Allele subs. BF Gen. var. expl. by SNP Overview of QTL reported within region
SNP (Mb) effect® (%)
2 ALGA0106652 2717 044 0.011 36.6 011
3 MARC0056802 2840 0.27 0016 464 0.20 corpus luteum number [44] plasma concentration of
FSH [44]
7 INRA0025193 43.76 048 0.023 167.2 0.50 corpus luteum number [84] birth weight [46, 85-87]
7 ASGA0031511 1747 0.20 0.010 36.6 0.06 corpus luteum number [84] female age at puberty [44]
10 H3GA0055101 0.05 047 0.011 442 0.12 number of stillborn [43]
10 MARCO0015344 0.06 047 0.012 410 0.15
13 DRGA0013310 194.39 0.32 0.011 388 0.10 corpus luteum number [84]
15 MARCO0077161 3559 0.39 0.010 50.9 0.10 corpus luteum number [84]
16 DRGA0016314 73.39 0.31 0.009 37.7 0.07 birth weight [46]

?Allele substitution effects were estimated as a =
alleles [83]. The estimated allele substitution effects refer to the log-variance

\/0§(2pq)’], where 02 is the genetic variance explained by the SNP, and p and q are the frequencies of the two
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did not identify overlap in regions significant for TNB
and varTNB (Tables 4 and 5).

Current breeding programs can use the knowledge of
this study in the genomic evaluation of selection candi-
dates. Genomic selection can greatly increase accuracy
of selection also for non-phenotyped individuals. This is
beneficial for traits such as litter size variability, which
has low heritability and is recorded only long after the
moment of selection of the candidate.

Conclusions
To our knowledge, this is the first study reporting SNPs
for TNB on SSC11 and first SNPs associated with

varTNB in pigs. In total, 10 SNPs were detected for
TNB and 9 SNPs for varTNB. The most significant SNP
for TNB was detected on SSC11. A possible candidate
gene for TNB on SSC11, named ENOX1, is involved in
cell growth and survival. Also on SSC18, another pos-
sible candidate gene for TNB is located, named LGALSS.
Two genes located on SSC7 (HSPCB and VEGFA) are
the most promising candidate genes identified for
varTNB. The HSPCB is coding the heat-shock protein
involved in buffering environmental and genetic factors,
whereas VEGFA is activated in angiogenesis and vascu-
logenesis in the fetus. We also found a positive genetic
correlation between TNB and its variation. This

14 -
glz-
e}
[}
£
& 10 -
o
3
g 8 |
o -
&
S 6 -
2
=}
e
s 4 -
o
2_

below 10 (SNP BF < 10)

123456 7 8 9101112131415161718

Chromosome

Fig. 4 Percentage of genetic variance of litter size variability (varTNB) explained per chromosome by significant SNPs with Bayes Factor (BF)
above or equal to 30 (SNP BF = 30), SNPs with BF equal or larger than 10 but lower than 30 (SNP 10 < BF > 30), and non-significant SNPs with BF

= SNP BF>30
B SNP 10<BF>30
B SNP BF<10




Sell-Kubiak et al. BMC Genomics (2015) 16:1049

indicates that in breeding practice simultaneous selec-
tion of those traits is necessary to achieve a higher mean
litter size and lower variance of this trait. The SNPs de-
tected in this study can be used as an indication for re-
gions in the Sus scrofa genome involved in maintaining
low variability of litter size, but further studies are
needed to confirm causative mutations.

Methods

Phenotypes

Data for this study were collected between February
1998 and July 2014. In total 264,419 litter size (total
number born, TNB) observations were available from
69,549 Large White sows. Litters were kept in the data if
they contained at least 4 piglets in TNB (1,331 litters re-
moved), whereas litters of 27 piglets or larger were all
considered “27” (43 litters). Most sows had repeated ob-
servations; only 15,379 sows had a single observation.
Number of parities recorded per sow varied between 1
and 16, with an average of 3.8 per sow, and with 974
sows with 10 or more parities recorded. The parities 10
and higher were put on the same level of explanatory
variable in the model (2,512 litters). After data editing
263,088 litters from 69,238 Large White sows remained
for the analysis. The average TNB in edited data was
13.5 (£3.5). The pedigree was traced back 5 generations
if available and consisted of 83,571 animals.

Conventional univariate and bivariate analysis of litter
size and its variance

The conventional univariate analysis of TNB was per-
formed in ASReml 2.0 [69] using the following model:

y = Xb + Za + Upe + e,

where vy is a vector of observation on TNB in the litter;
b is a vector of fixed effects (parity of the sow and
farm_year_season of the farrowing) on y; a is a vector of
random additive genetic effects on y, with a ~ N(0, Add);
pe is a vector of random non-genetic permanent sow
effects on y, with pe ~ N(0, Ao‘lzje); and e is a vector of
residual, with e ~ N(0, L.c2).

The variance component estimates obtained with the
conventional univariate analysis were used as starting
values in the Double Hierarchical Generalized Linear
model (DHGLM).

The conventional bivariate analysis of litter size and its
variation was performed on average TNB per sow
(meanTNB) and log-transformed variance of TNB per
sow (log(var(TNB))). The log-transformation was neces-
sary to obtain results on the same scale in the conven-
tional analysis and in the DHGLM. In the conventional
bivariate analysis, only sows with 3 or more parities were
used to allow proper estimation of the variance. In total,
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observations on 43,490 sows were used. The bivariate
analysis was performed in ASReml 2.0 [69] with model:

Ymean . x 0 bmean + Zmean 0
Yy | [0 X/ ][ by 0 Z
X |:amean:| + |:

a,

where yean is a vector of observations on average
TNB per sow and vy, is a vector of the log-transformed
variance of meanTNB; b,,.., and b, are vectors of fixed
effects of farm_year_season of the farrowing on yean
and Yy; @mean and a, are vectors of random additive gen-

etic effects on ymean and vy, with |:aT;ean:|~N
v

2
o o

<0, [ Amean a‘““;“’av}(X)A); and e and e, vectors of
Oamean-av

O.aV

* D
residuals, with {e’:’n ] N (g , {W ge““’““ W’? o2, } ) ,

where W' is the weighting factor based on the number
of litters the sow had. The conventional bivariate ana-
lysis has no permanent sow effect, since there is only a
single observation per sow.

Estimation of residual variance of litter size

Estimation of residual variance was performed on the
full data set. A Double Hierarchical Generalized Lin-
ear model (DHGLM) as presented by Ronnegard et
al. [2] allows estimation of variance components of
residual variance in ASReml 2.0 [69]. Felleki et al.
[35] extended the model so that a bivariate linear
mixed model can be used for the level (TNB) and the
variance (TNB variation, varTNB) component of the
model. In Ronnegéard et al. [2], the response variable

in the variance model was calculated as log(¢;) = log

2
(li—‘h), where ¢ is the squared residual from the level

part of the model for observation i and /; is the leverage,
being the diagonal element of the hat matrix of y corre-
sponding to observation i. A log link function was used,

2
because li—h is y*-distributed with one degree of freedom.

Felleki et al. [35] showed that instead of using a log link
function, log (%) can be linearized using the Taylor

expansion of the first order by calculating the response vari-
2
Y

able v, = log ((fi) + 5% This enables using a bivariate

linear mixed model, where ¢ is the predicted residual vari-
ance for observation i and y is a vector with the response
variable in the variance part of the model. Note that y; is a
linearized working variable for log(¢;). The DHGLM is then
as follows:
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[0 alse]+ 1)

where y is a vector of observations on TNB in the
litter and y is a vector of response variables for the vari-
ance part of DHGLM; the residuals e and e, are
assumed to be independent and normally distributed,
but with heterogeneous variances across the observa-
tions; b and b, are vectors of fixed effects (parity of the
sow and farm_year_season of the farrowing) on y and y;
a and a, are vectors of random additive genetic effects
on y and , with [ a ]~N<07 { 7 aaﬁ“]@A) ; pe

ay Ua,av Uav

and pe, are vectors of random non-genetic permanent

pey
o, o©

(0’ {0 pe ggpev}@ﬂ) ; and e and e, vectors of
pe.pey

pev

152
residuals, with Le }~N< 8, {W 0 %e W'(l)cz }), where

v

sow effects on vy and y, with

W = diag( exp(ti/)_l) and W, = diag(%;2) are expected
reciprocals of the residual variance from the previous it-
eration, and o~ and o2, are scaling variances, which are
expected to be equal to 1 [12]. The predicted residual
variances per observation exp({) are based on the esti-
mated fixed and random effects for ¥ in the previous it-
eration of the algorithm. The method iterates the
bivariate model a number of times until convergence,
since the residual variance part (varTNB) depends on
the level part (TNB) of the model and vice versa. In this
study, 22 iterations were needed.

A DHGLM uses the log-transformed variance of the
trait. To help with practical interpretation of the
results, two measures will be used: Genetic Coefficient
of Variation at standard deviation level and the herit-
ability for residual variance. The Genetic Coefficient
of Variation on standard deviation level (GCVgp,, a
measure of ability to respond to selection) was applied
to transform the estimates from the variance to the
SD level. The GCVgp, is calculated as the genetic
standard deviation in residual standard deviation
divided by the mean residual standard deviation of the
trait: GCVspe = Oay(0e)0e~10ay, Where o, is the genetic
SD in residual variance. The GCVsp,. shows the pro-
portional change in residual SD, when the residual
variance would be changed by one unit o,. This
allows seeing the magnitude of potential response to
selection in the SD of TNB. Note that in Hill and
Mulder [1] the GCV was expressed at the level of the
residual variance; the GCV at the level of residual
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variance is twice the GCVsp.. The literature on gen-
etic analyses of residual variance defines also the herit-
ability for residual variance at the level of the squared
phenotype (42), which is equal to the genetic variance
in residual variance as a proportion of the phenotypic
variance of P? and equals: h2=o2,/(205 + 3(02, + af,ev))
[70]. The 42 is a measure of reliability of EBV obtained
on a single observation per animal; in contrast to clas-
sical heritability, it does not reflect the potential of the
trait to respond to selection.

Using deregressed EBV for litter size and litter size
variability

In this study, a large number of phenotypic observations
for TNB were available, but much lower number of sows
and boars was genotyped (see Genotypes below). In
addition, the boars had only observations through their
daughters; sisters’ and mothers’ performance. The use of
deregressed EBV of animals instead of their phenotype is
expected to give more reliable results in genome-wide
association study; since accounting for offspring and par-
ents information increases the power of the GWAS [71].
Therefore, for the optimal use of the entire data in the
GWAS, the estimated breeding values (EBV) obtained
with DHGLM were deregressed. The deregressed EBV
were used as y-variables in the GWAS (see below).

The EBV were deregressed following the methodology
of Garrick et al. [72]. First, the parent average was sub-
tracted from an individual’s EBV to avoid double count-
ing because of various information sources and complex
family structure. Thus, the sow’s (or boar’s) deregressed
EBV contained only the information on own and pro-
geny performance. Second, for calculation of deregressed
EBV the reliability of EBV was required. Reliability was
calculated following the equation [69]:

s?

2 i
Tl P S—
(1+f)o

where s; is the standard error reported for the EBV of
the i™ individual; f; is the inbreeding coefficient of the i™
individual; 1+ f; is the diagonal element of the additive
genetic relationship matrix and o7 is the additive genetic
variance. Finally, Garrick et al. [72] showed that dereg-
ressed EBV have heterogeneous variances, which can be
accounted for using weights (w). The weight was esti-
mated based on the reliability of calculated deregressed
EBV.

Deregressed EBV were obtained based on EBV from
two univariate analyses of the traits TNB and varTNB
using the results from the final iteration of the DHGLM
(see Estimation of residual variance). The EBV from uni-
variate analysis were used to avoid EBV for one trait to
be affected by the other trait in the bivariate analysis.
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The deregressed EBV obtained with the DHGLM for
TNB, were also compared with those from the conven-
tional bivariate analysis. The correlation between dereg-
ressed EBV for TNB from both methods was 0.988.

Genotypes

Genotypes were available for 2,679 Large White sows and
426 boars. All animals were genotyped with the Illumina
PorcineSNP60 Beadchip. Samples of blood, hair and ear
punches used to extract DNA were collected in the
process of routine procedure within the breeding program
and as such did not require an approval from Animal Care
and Use Committee. Quality control removed SNPs with
GenCall score <0.15, minor allele frequency <0.01, as well
as SNPs from the sex chromosome (low number of ani-
mals had sex chromosome genotyped) or with unknown
position on build 10.2. After quality control, 40,969 out of
64,232 genotyped SNPs remained in the data set. In
addition, animals were removed from the data set if their
call rate was <95 % and if pedigree or genotype led to
many Mendelian inconsistencies [73].

The deregressed EBV for litter size variability have
overall low reliabilities, due to the low heritability of that
trait. To maintain a sufficient number of genotyped ani-
mals for the genome-wide association study (GWAS), a
threshold of 0.05 was used as an acceptable reliability of
the deregressed EBV of the animal. Nonetheless, this
caused a difference in number of animals used in GWAS
for TNB and varTNB. Subsequently, 2,351 animals
remained in the set with litter size observations and
2,067 in the set for residual variance of litter size.

Statistical analyses used for GWAS-Bayesian Variable
Selection method

Multi-SNP  genome-wide association was performed
using a Bayesian Variable Selection method [74], which
estimates the effect of all markers simultaneously. The
analysis was performed in Bayz [75]. The fitted model
was:

y=u+ Xp +e

where y is an n-vector of deregressed EBV for the litter
size or its variation on n animals; p is an n-vector equal
to the mean; X}, is a matrix with dimensions n by p,
where p SNPs are coded as 0, 1, 2 copies of specific al-
lele vector; and [ is a p-vector with the markers effects
fitted as random effects; e is an n-vector of weighted
random residual effects assumed to be normally distrib-
uted N(0, 02W,), where W, is a diagonal matrix with
Wilse. Wi €lements. On the marker effect, the Bernoulli
distribution was applied:
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N (O7 aéo)with probability : 7o
N (0, cr;l)with probability :

where the first distribution refers to the null distribution
and it is assumed that the SNPs have small effect (aéo); the

second distribution refers to the SNPs that are assumed
to have a large effect, which explain a large part of vari-
ance (azl) of the analyzed traits. In this study a rela-

tively strict prior was selected of m; =0.001, meaning
that on average only 1 in 1,000 SNPs will be in the sec-
ond distribution in each cycle. This allowed only ~41
SNPs per cycle to have a large effect on the traits. To
secure that all the SNPs were used, 500,000 MCMC
cycles were performed. Selecting a stringent prior
provides a more precise distinction between SNPs with
large and small effects on the trait [76, 77].

A Metropolis-Hastings sampler was applied to get
good convergence which was assessed by visual inspec-
tion of the trace and with Gelman and Rubin’s conver-
gence diagnostic based on deviance [78] using the R
package CODA [79].

The GWAS was also repeated with a less strict prior
of 0.005 and a larger step in the Metropolis-Hastings
sampler (0.004 instead of 0.003), which yielded the same
results as the analysis with prior of 0.001.

Identification of significant SNPs
The Bayes Factor (BF) was calculated for each SNP to
determine the significant associations:

_p/(1-p)
BF = ——

where m; and 1 are the prior probabilities and p; is the
posterior probability of the fraction of times the SNP was
in the distribution with large effect. Following the defini-
tions of Kass and Raftery [80], the SNPs with BF > 30 are
described as “very strong” association and with BF > 150
as “decisive”. The variance explained by significant SNP
was estimated as a fraction of the total genetic variance
explained by all SNPs. The candidate gene search was per-
formed with software BIOMART available in Ensembl
Sscrofa 10.2 [81] by entering position of a SNP.

Availability of supporting data

The dataset used in this study is available upon request.
Contact Egbert Knol by e-mail: Egbert.Knol@topigs-
norsvin.com. Furthermore, the SNPs detected within
this study are submitted to an open access animal QTL
database — Pig QTL database (http://www.animalgen-
ome.org/QTLdb/pig.html).
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