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Abstract

flowering time (e.g. CONSTANS and Phytochrome Q).

Accuracy

Background: Genomic selection (GS) has become a commonly used technology in animal breeding. In crops, it is
expected to significantly improve the genetic gains per unit of time. So far, its implementation in plant breeding
has been mainly investigated in species farmed as homogeneous varieties. Concerning crops farmed in family
pools, only a few theoretical studies are currently available. Here, we test the opportunity to implement GS in
breeding of perennial ryegrass, using real data from a forage breeding program. Heading date was chosen as a
model trait, due to its high heritability and ease of assessment. Genome Wide Association analysis was performed
to uncover the genetic architecture of the trait. Then, Genomic Prediction (GP) models were tested and prediction
accuracy was compared to the one obtained in traditional Marker Assisted Selection (MAS) methods.

Results: Several markers were significantly associated with heading date, some locating within or proximal to
genes with a well-established role in floral regulation. GP models gave very high accuracies, which were
significantly better than those obtained through traditional MAS. Accuracies were higher when predictions were
made from related families and from larger training populations, whereas predicting from unrelated families caused
the variance of the estimated breeding values to be biased downwards.

Conclusions: We have demonstrated that there are good perspectives for GS implementation in perennial ryegrass
breeding, and that problems resulting from low linkage disequilibrium (LD) can be reduced by the presence of
structure and related families in the breeding population. While comprehensive Genome Wide Association analysis
is difficult in species with extremely low LD, we did identify variants proximal to genes with a known role in
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Background

Perennial ryegrass (Lolium perenne L.) is one of the most
cultivated forage species in temperate grasslands, mainly
farmed for its re-growth capacity after defoliation, and
for the high value as feed for ruminants, due to palat-
ability, digestibility, and nutritive contents [1-3]. Peren-
nial ryegrass is an obligate allogamous species with
genetic gametophytic self-incompatibility [4], and is bred
in genetically heterogeneous families.
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Heading date (HD) is an important trait for forage
species, often used as a model trait [5, 6] due to its high
heritability and the ease of assess. It follows the shift
from vegetative to reproductive growth, and it is signifi-
cantly correlated with several other traits involved in
plant growth and development, such as plant height,
spike length, tiller number and size, leaf length [7, 8], as
well as with a number of yield and quality traits. Early
heading genotypes show a higher growth rate in spring
and higher forage yield in the first cut, [9-12]. Corres-
pondingly, the opposite was found for later cuts in sum-
mer, where dry matter forage yield was higher for late
genotypes. Results in the literature are inconsistent re-
garding performances in fall and winter. Humphreys [9]
found higher autumn and winter growth rate in late
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genotypes, while in Sampoux et al. [11], the correlation
between HD and forage yield in autumn was not signifi-
cantly different from zero. Differences between early and
late genotypes were also observed in the intensity of
aftermath heading, which was higher in the early mater-
ial [9, 11, 12], as well as in the content of fiber and sol-
uble sugars. Humphreys [9] and Sampoux et al. [11]
measured less water soluble carbohydrates and more lig-
nin and neutral detergent fiber in early- than in late HD
varieties. Late heading was also associated with higher
digestibility and therefore to a higher lactation energy
content for milk production [10]. Although heading also
marks the production of seeds, the correlation with seed
yield is unclear. Later genotypes were generally found to
give lower seed production [13, 14], but this correlation
was not always significant [8, 14].

Due to its significant effects on other traits, breeding
has always aimed to exploit the natural variation in HD,
in order to create mixtures of varieties that could give
high performances throughout the whole year. Since
International listing of new varieties requires fulfilment
of the three criteria; distinctiveness, uniformity, and sta-
bility (DUS) there is also a strong breeding focus on HD
in order to create uniform varieties. While the uniform-
ity of inbred varieties is rather easy to control it can be
more challenging in outbreeding grass varieties that are
breed as families.

In order to ensure more stability in forage quality
over the season, cultivars have been divided into dif-
ferent earliness groups. The number- and extend of
each HD group differs between countries, with some
countries defining up to nine HD groups. However,
HD appears to behave as a continuous character, and
the distinction between early and late material is not
always clear, with new candidates that may be classi-
fied in different neighboring HD groups, depending
on the definitions used in the different countries.
The trait always showed medium to high heritability
[9, 12, 14-16]. Kearsey et al. [15] showed the pres-
ence of both additive and dominance effects, with
the first being the larger and dominance being for
early heading, but did not find any evidence for
epistasis. Genotype by environment (G x E) interac-
tions were found to be small by Ravel and Charmet
[16], in a multi-site analysis in France. However, a
different result was obtained by Kearsey et al. [15],
who showed interactions between the environment and
both additive and dominance effects, in an experiment
across Italy and the UK.

In the latter decade, the genetic control of HD was
better understood thanks to the use of molecular
markers and comparative genome analyzes. In model
species, such as Arabidopsis thaliana L., as well as in ce-
reals like wheat and rice heading or the control of
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flowering has been the subject for numerous studies and
publications (reviewed in [17-19]). Especially the use of
induced Arabidopsis mutants and the combinations of
such lead to the detailed modelling of the genetic con-
trol of flowering in plants. The investigations demon-
strated the involvement of genes belonging to three
major pathways: (i) vernalization response genes (Vrn),
which regulates heading after low temperature periods;
(ii) photoperiod response genes (Ppd), which is active/in-
active with a certain day length; (iii) ‘earliness per se’ fac-
tors, which seems to be independent of light and cold
requirements [20].

In perennial ryegrass a number of flowering genes
were previously identified by sequence homology with
flowering genes found in Arabidopsis, rice, and maize
[17, 21-23]. Others were identified through classical
Quantitative Trait Loci (QTL) mapping, performed using
different plant material and different genetic maps. Gen-
etic maps were organized in seven linkage groups (LGs),
numbered according to the conserved synteny with the
Triticeae’s maps [24]. QTLs were identified on all seven
LGs [7, 8, 25-29]. Comparison between studies is com-
plicated due to lack of common markers and it is always
difficult to determine if two significant markers found
on the same LG, actually correspond to the same QTL.
Furthermore, among different studies there is often poor
agreement regarding the number and the distribution of
the QTLs, likely due to environmental factors, use of dif-
ferent mapping populations [30], and low statistical
power in several studies. A great effort was put in under-
standing the genetic mechanisms behind the QTLs in
LG4 and LG7, which were significant in almost all stud-
ies. The first was found to be in a syntenic association
with the wheat Vrnl gene [26], and its function seems to
be conserved between diploid wheat and perennial rye-
grass [19]. A relation was also hypothesized with a puta-
tive casein kinase gene, previously mapped in rice and
involved in photoperiod sensitivity [29]. The QTL on
LG7 was suggested to be associated with the gene LpCO,
homologous to the CONSTANS of Arabidopsis and the
Hd1 of rice, involved in the photoperiodic regulation of
flowering time [17, 31, 32]. Synteny was also detected
with the Hd3 region of rice [25], which codes for a
FLOWERING-LOCUS-T (FT) orthologue of Arabidopsis.
FT gene is involved in induction to reproductive growth
at the meristem [33, 34] and has been shown to actively
regulate the flowering response in L. perenne [35]. Other
hypothesis have been proposed to relate the other sig-
nificant markers to QTL previously found in related spe-
cies, such as Lolium multiforum Lam. and Festuca
pratensis L. [29].

While these studies identified some of the key genes in
floral control in ryegrass, the biology of the trait is still
far from being understood. Furthermore, the use of QTL
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analyses was shown to be not effective in capturing small
effect genes [36] and to overestimate the variance
explained by QTLs, due to the so called Beavis effect
[37, 38]. However, such limitations may be overcome by
the use of Genomic Selection (GS). In contrast to trad-
itional Marker Assisted selection (MAS), GS does not focus
on finding specific QTLs, but selects families/individuals
based on Genomic Estimated Breeding Values (GEBV),
which are calculated using all markers simultaneously.
Linkage Disequilibrium (LD) between causative loci and
markers is ensured by high marker coverage. Such LD can
come from three sources: (i) close physical linkage between
marker and QTL; (i) family structure in the population,
creating both short range (within chromosome) and
long range (across chromosomes) LD; (iii) population
structure due to mixing breeding material of different
origin. Therefore, the LD can be also tracked across
families, enabling to estimate marker effects at a
population level [36].

GS is practically implemented trough different steps:
(i) model development on a set of individuals/families
that are both genotyped and phenotyped (training set);
(ii) estimation of GEBVs for a set of individuals/families
that are only genotyped (validation set), based on their
relationship with the training set; (iii) selection of the
best breeding material. In this paper we will refer to the
first two steps as Genomic Prediction (GP). GS is now
widely used in animal breeding [39], but it is still a new
technology in crop breeding. To date only a limited
number of studies has been published on real data,
mainly on species that are primarily grown as homoge-
neous varieties, such as maize, barley, and wheat
(reviewed in [40]). The first results are promising and
GS is expected to significantly increase genetic gains, es-
pecially due to the shortening of the breeding cycles
[41]. So far, aside from a few theoretical discussions, very
little has been reported about GS potentials in allogam-
ous species that are breed and farmed as heterogeneous
populations. Specifically for perennial ryegrasses, Hayes
et al. [42] showed good perspectives for introducing GS
in practical breeding programs. However, a full imple-
mentation would require radical changes in the present
breeding systems, and may face problems due to low LD
and high effective population size, due to the outcrossing
nature of the species [42].

This paper represents our first attempt to introduce
GP in a breeding program of forage perennial ryegrass,
using HD as model trait. 1757 F, families (F5s), pheno-
typed for HD and genotyped with high marker coverage,
were used to dissect the genetic and genomic structure
of the trait. First, a Genome Wide Association Analysis
(GWAS), to check for the presence of major QTL was
conducted. Second, significant markers were used to cal-
culate the GEBVs in a set of synthetic (SYN) families, a
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part of which was related with the training set. Third,
GP models were tested within the F, set, using different
cross-validation (CV) schemes and different population
sizes, and then used to predict breeding values of SYN
families. Predictive ability of GP was compared with pre-
dictions based on GWAS results.

Results

Population structure, LD, and genetic parameters

Results from the Principal Component Analysis (PCA)
showed the presence of some degree of population
structure (Fig. 1). The ‘elbow’ point of the PCA scree
plot was determined at the fourth PC (Additional file 1:
Figure S1). The first four PCs explained 28, 10, 7, and
6% of the variance among SNPs respectively. The opti-
mal numbers of cluster, determined by k-means cluster-
ing, turned out to be two. The separation in the two
clusters could be explained by the first PC and it was
strongly related to the origin of the Parent Populations
(PPs). In Fig. 1a, all the families represented by blue
points were identified as pair-crosses having a varieties
originated in UK as one PP. For this reason, in the fol-
lowing part of the paper, we will refer to this group as
(UK). The population structure was also shown to be re-
lated to HD, which was mostly explained by the third
PC (Fig. 1b).

Results from the LD analysis are displayed in Fig. 2.
The LD was shown to have a rather short extent, decay-
ing below 0.5 after a few hundred base pairs (bp). With-
out using any correction for relatedness and population
structure (Fig. 2a), the markers with LD > 0.10 and LD >
0.25 were the 6.3 % and the 3.37 % of the total number
of SNPs respectively. The average distance between
markers having LD >0.10 was about 8900 bp, and for
markers having LD >0.25 the distance was close to
3600 bp. The correction further reduced the proportion
of SNPs in LD (Fig. 2b), which dropped down to 3.4 %
for LD > 0.10 and to 1.43 % for LD > 0.25, corresponding
to a reduction of 46 and 40 % respectively. The average
distance between markers having LD > 0.10 was reduced
to 6300, while the one for markers having LD > 0.25,
drop down to 1200 bp, corresponding to a reduction of
29 and 66 % respectively, showing that the correction
for structure and relatedness reduced the short range
LD in the population. The proportions of SNPs sepa-
rated by more than 1200 and 6300 bp were about 86
and 71 % respectively.

The total amount of phenotypic variance, together
with different definition of heritability, is shown in Fig. 3.
The additive genetic variance accounted for half of the
total phenotypic variance, and it was equally divided be-
tween the ‘within PPs’ and the ‘among PPs’ components.
The interaction between the additive effect and the en-
vironment was relatively small (accounting for the 13 %
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of the total phenotypic variance) and occurred only
within PPs.

Genome wide association

Using the Bayesian Information Criterion, the optimal
number of PCs for population structure correction was
determined to be four, confirming the visual identifica-
tion of the ‘elbow’ point. The effect of the correction on
the significance levels expressed as —log;o(P) is clear
from the QQ-plots reported in Fig. 4. After selection for
high LD within scaffold, the number of significant SNPs
(P <0.05) was 10 using the t-test with Bonferroni correc-
tion, and 19 using False Discovery Rate (FDR) (Table 1).
SNPs are anchored to genomic scaffolds, which are not
orientated or ordered with respect to a genetic map.
However, the draft assembly has been annotated with
the aid of extensive transcriptome data and a number

of genes have been predicted in the scaffolds harboring
the significant SNPs (Additional file 2 and Additional
file 3: Table S1 in the supplementary material). A
total of ten markers were found to be within the gene
space, 9 of which were mapped in exon regions
(Table 1). The allele substitution effects ranged from
0.40 to 1.39 days. The percentage of additive variance
across locations/years explained by each marker was
between 0.59 and 1.82 % within the F, families, and
between 0.28 and 1.06 % in the SYN families. The
sum of the variances explained by all significant
markers corresponded to about 20.3 % in the F,s and
11.2 % in the SYNs. The correlation between the
marker effect in the two sets was positive (r*=0.22).
The SNP 5059|6359 is situated in a scaffold where the
Hd1 homolog of the LpCO gene was also mapped. The
marker 2801|42855 locates in a gene encoding for

Fig. 2 LD decay: a without corrections; b corrected for relatedness and population structure
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Phytocrome C (PHYC). The scaffold 1379 harbored two
significant SNPs: 1379|60655, situated in a gene encod-
ing for a Pectate Lyase 4, and 1379|64623, located out-
side the gene space, but only 3500 bp away from the
Pectate Lyase 4 coding region.

Prediction of SYNs based on SNP markers is shown in
Fig. 5. Using only the most significant SNP, it was
possible to get an accuracy of predictive ability of 0.53.
Adding more markers, initially improved the predictions.
Accuracy was 0.70 using all the markers that were
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declared significant with the Bonferroni corrected t-test.
The highest correlation between real and estimated
breeding values was reached by using all markers that
passed the significance threshold in the FDR test. The
estimate was equal to 0.78, meaning that all significant
SNPs were able to predict the 60.8 % of the genetic vari-
ance in the SYN families. Keeping adding markers after
that threshold did not lead to any improvement in the
predictions, giving accuracies that kept fluctuating be-
tween 0.69 and 0.78. Concerning the bias of the esti-
mates, using only a few markers clearly led to a
downward bias in the variance of the predicted breeding
values. The underestimation was on the order of 2 when
the first 10 SNPs were used. Adding more markers led
to a significant reduction in bias. At the point of max-
imum predictive ability, it was 1.33, and it kept decreas-
ing even if insignificant markers were added.

Genomic prediction

For each Cross-validation (CV) scheme, predictive
abilities, accuracies, and bias are displayed in Table 2.
Within Fs, predictive abilities were extremely high,
reaching the value of 0.84 in the absence of related
families in the two sets (pp-fold scheme), and 0.90
when training and validation set contained related
families, in the so called k-fold scheme (Fig. 6a). The
Hotelling-Williams test showed the two values to be
significantly different (P<0.001). For the k-fold scheme, the
accuracy computed using the approximation in (14) gave
an estimate that was higher than one (1.04). However, the
standard error (SE) of this estimate was 0.07, indicating
that the actual accuracy could range between 0.91
and 1.00. Analyses on reduced training sets (Fig. 7)
showed that accuracies above 0.95 were reachable, for
both schemes, with training populations as larger
than 500 families. Bias was shown to be always very
low in the k-fold scheme. The situation was different
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Table 1 Summary statistics for all the significant SNPs
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Scaffold|Position Location MAF a % ozg(Fz) % ozg(SYN) P-value Bonferroni P-value FDR
3546|38401 outside gene 0.08 1.19 1.62 0.65 6E-09 6E-09
18961]1999 exon 0.12 1.00 1.70 0.74 3E-08 1E-08
18961|3412 exon 027 057 1.01 0.71 0.004 4E-04
6570|54193 outside gene 0.1 1.03 1.68 1.02 6E-07 9E-08
229743466 outside gene 0.06 1.39 1.82 1.06 1E-06 2E-07
229742499 outside gene 0.22 0.74 147 0.86 2E-05 3E-06
1379]64623 outside gene 0.09 0.84 0.92 0.33 0.002 2E-04
1379]60655 exon 0.23 0.56 0.87 0.53 0.147 0.009
18588|6786 intron 0.06 1.14 1.19 037 0.002 2E-04
18588|6657 exon 0.28 0.50 0.79 0.52 0417 0.020
18588|6882 exon 0.06 1.01 0.98 045 0.696 0.027
929122927 outside gene 0.18 0.59 0.80 046 0.007 6E-04
9679|461 outside gene 020 0.59 0.88 041 0.010 7E-04
2801[42855 exon 0.33 0.51 091 0.56 0.355 0.018
5059|6359 exon 025 051 0.77 053 0457 0.021
3169|35325 exon 0.06 1.05 0.90 0.75 0.503 0.022
21110[2619 outside gene 0.17 0.52 0.59 0.28 0.597 0.025
3586|39964 exon 043 040 061 043 0.730 0.027
3395[30371 outside gene 0.39 047 0.82 0.54 0.837 0.030

in the pp-fold CV, where the GEBVs variance was
generally underestimated, and where an increase in
the population size resulted in a bias reduction: the
regression coefficient (b) was 1.39 using 175 families,
and 1.10 using the full dataset. Bias for population
sizes below 175 families is not shown, because af-
fected by very large SE and not indicative of any
trend. Accuracies within the set (UK) were lower
than the ones found on an equal number of ran-
domly chosen Fjs, especially in the pp-fold scheme.
Bias was also slightly higher. The CV within the

other cluster gave more or less the same results as
the CV within all Fss.

Predictions across sets also worked well. Accuracy of
predicting UK set from the other F, families was slightly
lower (accuracy equal to 0.78). Predictions for GEBVs
were better when the set (UK) was used as training set.
In this case, accuracies were comparable to the ones ob-
tained within all F,s, with a pp-fold scheme, and using a
similar population size. The bias level indicates that the
GEBVs variance was underestimated when the set
(UK) was used as training population, and slightly
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Table 2 Population size and results (with SE) for all CV schemes

CV scheme Popsize  pyry' Ogis bias (b)
k-fold 1757 090 601° 104407 1.02 g0
pp-fold 1757 084 00;° 098006 110000
k-fold (UK) 466 078 005" 086009  1.06 g4
pp-fold (UK) 466 052 00 057007 130010
k-fold (others) 1291 090 601° 104407  1.02 01
pp-fold (others) 1291 086 00:° 099007 117 oo
UK - > others 466 078 002" 09000, 146 g3
Others - > UK 1291 071 003" 078008 092 o0s
F2s - > SYNs (GS) 1757 088005 0924  1.02 006
F25 - > SYNs (GWAS)* 1757 074 00° 078021 133013

*different letters indicate a significant difference between the two CV schemes
(P < 0.001) based on Hotelling-Williams test. N indicates that the comparison
does not apply, as models were based on different sets of data

*using all SNPs that were declared significant after FDR test

overestimated when the prediction was performed in
the opposite direction. Predictive ability for SYNs
(Fig. 6b) was similar to the ones within all F,s, and
significantly different from the one obtained from
GWAS results (P<0.001). The accuracy was 0.93,
14 % higher than the in prediction based on the sig-
nificant markers. In this case, the linear regression of
mean corrected phenotypes on GEBVs indicated no
bias in the GEBVs variance.

Discussion

Population structure, LD, and genetic parameters

The population structure was mainly defined by the ori-
gin of the PPs, which was correlated with the first prin-
cipal component. The majority of the F, families were
grouped in one big cluster. This may lead to the hypoth-
esis of a common European genetic pool. This pool is
likely to originate from the continuous and (more or
less) free exchange of breeding material among the dif-
ferent breeders. The parents of the set (UK) may be an
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exception to that pool, and their genetic origin need to
be further investigated. The relation between PC3 and
HD indicates the need to correct for population struc-
ture while performing GWAS, in order to avoid false
positives. Further variance analyses were performed by
adding fixed regressions for the first 1, 2, 3, and 4 PCs
to the equation shown in formula (2). Result indicates a
correlation of HD with the PC3, but not with the other
three main PCs. When accounting for the first two PCs,
the additive genomic variance across location was equal
to the 98 % of the ones of the model without any PC.
When accounting for the first three PCs, the additive
genetic variance left was the 89 %. Adding a regression
for PC4 had a negligible effect.

The LD within scaffolds showed to decay rapidly, con-
firming the concerns expressed by Hayes et al. [42], who
reported useful LD (r*>0.25) to extend at best 1 kb.
However, in the present breeding material, the presence
of relatedness and population structure generally in-
creased the LD, bringing to an increase by the order of
three in the average distance between those markers.
This fact suggests that population structure, which is
known to be mostly responsible for the long range LD,
also plays an important role in increasing the level of LD
within scaffolds. The correction also led to a decrease in
the average distance between markers in LD, which was
more pronounced for higher LD levels.

Estimation of variance components confirm results
obtained by Fe et al. [12] on a subset of the same data.
In this paper was also possible to calculate the heritabil-
ity across environments, and to estimate the extent of
G x E for additive and non-additive effects. Compared
with other traits previously analyzed [12], the proportion
of genetic variance between PPs was much higher. The
small level of G xE seems to confirm the results ob-
tained by Ravel and Charmet [16]. However, plants were
cultivated only in Denmark and England. To have a bet-
ter understanding of G x E effects, it would be a good
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Fig. 6 GEBV vs. corrected mean phenotypes: a within F»s (k-fold); b predicting SYNs from Fs. Legend: blue line = plot diagonal; red
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idea to perform experiments covering more diverse cli-
matic conditions. The significant amount of 6%,p1, may
indicate the presence of dominance acting between fam-
ilies and within single environments. In the literature,
the presence of non-additive effect is reported also
across location [15]. However results are not directly
comparable, as this paper ignores additive effects that
may be present within F, families.

Significant markers and genetic architecture
The GWAS analysis revealed a rather complex genetic
architecture of HD in ryegrass. Several markers with sig-
nificant effect were identified. In the most significant
SNPs, a shift from one homozygous form to the other
can cause changes of up to 2.78 days in the date of head-
ing. That is a remarkable difference, if compared with
the level of variation in the phenotypes: average pheno-
types corrected for fixed effect had a SD of 4.92. How-
ever, due to low Minor Allele Frequency (MAF), these
markers were only able to explain a small proportion of
the additive variance, which may indicate the presence
of a large number of genes also affecting the trait, but
with effects lower than the detection limit. There were a
high number of significant SNPs found outside the gene
space. This is not too surprising considering a recent
study in maize found that the majority of trait associated
variants were located outside annotated genes, but
within 5 Kb of transcriptional start and stop sites [43].
Some of the significant SNPs were clearly linked to
genes that may have a direct or indirect influence on
HD. It is well established that CONSTANS (CO) plays a
crucial role in promoting flowering in response to long
days [44]. We identified a significant SNP within less
than 5 Kb of a CO homolog. It has already been estab-
lished that a ryegrass homolog to CO exhibits expression
patterns consistent with its function in Arabidopsis, and
can complement co mutants [17]. Furthermore, the CO

homolog co-located on linkage group seven with a large
effect QTL for HD [19, 31]. Allelic variation in an inter-
genic region upstream of CO was found to be signifi-
cantly associated with HD in a collection of 96 perennial
ryegrass genotypes (originating from nine populations)
[32]. The ~29 Kb region sequenced as part of that study
shares near perfect identity with scaffold 5059 (Additional
file 4: Figure S2), which has the significant SNP identified
in our study, and therefore represent the same genomic
regions. Overall, our results provide further evidence
that allelic variation at CO contributes to variation in
HD in perennial ryegrass, specifically within a large
collection of breeding families.

We also identified a significant SNP within the coding
region of a homolog to PHYC. Phytochromes are red/
far-red photoreceptors that play a role in how a plant re-
sponds to light, and adapts its growth and development.
It was recently demonstrated in wheat that PHYC plays
a major role in accelerating flowering under long-days
[45], in contrast to the model plants such as Arabidopsis
and rice where PHYC represses flowering under non-
inductive conditions. The fact that loss-of-function mu-
tations in PHYC resulted on average in a 108 day delay
in flowering of wheat under long days emphasizes the
potential for allelic variation at this gene to greatly alter
flowering times. A similar role for PHYC has also been
recently reported in Brachypodium distachyon [46]. Per-
ennial ryegrass is a close relative of wheat and Brachypo-
dium, and a similar role for PHYC in floral induction of
perennial ryegrass is possible. A homolog to PHYC has
been mapped to linkage group four of perennial ryegrass
[47], although it mapped some distance from the HD
QTL identified in that experimental population. No cor-
relation was found between significant markers and
other genes that are known to be important in flowering
time regulation, such as FT. That may be due to differ-
ent reasons: (i) absence of causative polymorphisms in
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the breeding material; (i) no or low LD between
markers and the causative polymorphisms (likely to hap-
pen, due to the fast decaying LD); (iii) low MAF at the
causative polymorphisms (about 45 % of the markers
had MAF lower than 0.05); (iv) polymorphisms not de-
tected because they are correlated with the family struc-
ture and shrunken by the correction with G-matrix and
PCs (the third PC was clearly correlated with HD).

Prediction of breeding values

Despite explaining only a small part of the genetic vari-
ance in the SYNs, the significant markers were able to
predict the breeding values with high accuracy, even
when only a few markers were used. This is due to few
genes with relatively large effects identified in the F,
population. However, the presence of a certain level of
population structure (displayed in Fig. 1) will also con-
tribute to the predictive ability in the SYNs. In the
GWAS, we accounted for the presence of population
structure by correcting the marker effect (using the G-
matrix and the first four PCs). However, that correction
does not apply to the estimation of prediction accuracy.
When we correlate the phenotypes with one marker, we
are actually estimating the correlation of the phenotype
with that particular marker, plus all the population
structure that is correlated to the SNP. The trend in ac-
curacy for an increasing number of markers met our ex-
pectations: any significant SNP is supposed to add
information that will increase the correlation with the
true breeding value. Non-significant SNPs will mainly
add random noise to the correlation, but were able to
add genetic information that increased the variance of
estimated breeding values. The fact that the accuracy
reaches the highest value in correspondence of the nine-
teenth SNP is also a strong argument for using FDR, in-
stead of Bonferroni corrected t-test, as significance test.
The decreases in prediction accuracy that happened
after adding the fourth and the sixth markers may be re-
lated to different levels of expression or to different in-
teractions in the two populations.

Results from SYNs prediction (Table 2) show a clear
advantage for using GP, compared with GWAS, both in
terms of accuracies, and in terms of bias, as well as its
good potential in predicting across different generations.
The relatively high SE for accuracies may be related to
the experimental design that, due to incomplete
randomization between trials and PPs, which could lead
to less accurate estimate of PP variance components.
Within all F, families, predictions were extremely good,
allowing the explanation of nearly the whole genetic
variance. This result is higher than what usually found
for the same trait in other species (reviewed in [40]),
even though accuracies above 0.8 have already been re-
ported in other outcrossing species such as maize. That
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may be related with the high level of structure in the
population, and to the fact that heading date primarily is
affected by additive genetic effects, so the additive values
of the PPs are very well estimated.

A very high accuracy may also seem in contrast with
what reported in the literature for traits affected by
major effect SNPs [48]. Theoretically, for traits that in-
clude some genes with large effect, it would be recom-
mended to use other prediction methods such as
Bayesian models, which allow marker effects to belong
to distributions with different variance. However, Gen-
omic Best Linear Unbiased Prediction (GBLUP), when
compared with Bayesian methods, was shown to be bet-
ter in accounting for population structure, but less cap-
able to explain the short range LD between markers
[36]. This makes it particularly effective for GP in breed-
ing programs of species like perennial ryegrass, charac-
terized quick decay of short range LD, and usually bred
on a sib-mating scheme. The lower accuracies found
within the set (UK) may be related to a low level of
population structure within the cluster, as appear also
from Fig. 1.

Accuracies reached by predicting from related families
(k-fold scheme) were significantly higher than the ones
obtained in the absence of related families (pp-fold
scheme), for any population size. Regarding the relation-
ship between predictions and the size of training popula-
tion, increasing the training size led to pronounced gains
in predictive abilities for population sizes lower than 500
families, and to smaller gains in the case of larger popu-
lations. Despite that, due to the higher predictive abil-
ities, accurate predictions could be obtained even using
a relatively small training set. Problems of underestima-
tions of the GEBVs variance may arise in absence of
closely related families. Regarding predictions across
sets, the relative difficulty in predicting the set (UK) may
be due to families in this set having fewer relatives in
the chosen training population. The level of bias may
arise due to the differences in genetic variance or to gen-
etic correlations that are less than unity between the two
sets. This problem could compromise a correct compari-
sons between GEBVs from the training set (which have
known bias) and the validation set (which have unknown
bias). This should be taken into consideration during the
design of the training population, allowing the presence
a wide variety of genotypes in as many environments as
possible.

Conclusions

Our research clearly showed considerable potential for
implementation of GS in breeding of L. perenne. Results
obtained by GP significantly outperformed the accuracy
based on traditional MAS, being able to predict a very
large proportion of the genetic variance. GBLUP was
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shown to be capable of reaching very high accuracies,
even in a trait characterized by major effect genes, at
least in a population with fast decaying LD and popula-
tion structure arising from admixture and relatedness.
Predictions were also very good across datasets, with ac-
curacies of up to 0.93. Bias in the GEBV variance could
be caused by lack of common parent populations be-
tween training and validation set.

The study has also revealed important details about
the genetic architecture of HD in L. perenne. The trait
appears to be controlled by both major and minor effect
genes, regulated both by sequence changes within cod-
ing regions, and by the action of intergenic regulatory el-
ements. SNPs were identified within or proximal to
genes with well-established roles in floral induction in
plants (CONSTANS and PHYC). Despite this, the tech-
nique used for GWAS has limitations, mainly due to the
marker density given the rapid decay of LD, and due to
the strong structure in the population.

Methods
Plant material, genomic and phenotypic data
Both Phenotypic and genomic data were available for a
total of 1846 families of forage diploid perennial rye-
grass. All breeding material was part of a standard forage
breeding program run by DLF A/S (Store Heddinge,
Denmark). Unlike cereal breeding, population based for-
age breeding usually does not advance further than the
second generation. Each year, the best breeding material
is selected and added to the company’s gene bank, which
also includes European varieties, commercialized both
by DLF and other companies.

The plant material consisted of two different sets:

Set 1. Fys: 1757 F, families produced across 13 years
(between 2000 and 2012) from a seed bank of 198 PPs.
Development of F, families was detailed in Fe et al.
[12]. In brief: (i) pair-crosses between single plants
from two different PPs (self-pollination avoided due to
self-incompatibility). Each single plant was used only in
one pair-cross; (ii) seed harvesting from both parent
plants; (iii) pooling of the F; seeds; (iv) isolated
multiplication of F; populations in isolated plots for
random mating; (v) harvesting of F, seeds; (vi) field
trials of F2 families (assumed to be in Handy-Weinberg
equilibrium).

Set 2. SYNs: 89 families obtained by random mating
between 5-11 single plants. Single plants were selected
from the highest biomass yielding F, families, by visual
merits and according to the synchronous heading time.
After crossing, SYNs production followed the same
protocol described for F, families, involving pooling,
multiplication of the seed in isolated plots, and testing
in field trials.
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Sequence data was produced by Genotyping-By-
Sequencing (GBS) [49]. GBS uses methylation sensitive
restriction enzymes (such as ApeKI) to target the low
copy fraction of the genome, and can be used to esti-
mate genome-wide allele frequency profiles in breeding
populations [50]. Sampling and library preparation
followed the protocol described by Byrne et al. [50], and
Elshire et al. [49]. A total of 32 libraries were prepared,
each of them containing up to 64 F, families, and se-
quenced on multiple lanes of on an Illumina HiSeq2000
(single-end). After basic data filtering, the average num-
ber of reads per family was about 20 million. Data for
each family was then aligned against a draft sequence as-
sembly. 1,879,139 SNPs were identified, distributed
across 30,285 scaffolds. Sequencing depth at a SNP
ranged from 1 to 250 (upper limit) reads per family.
SNP positions having more than 60 reads were dis-
carded, as suspected to be originated from plastid ge-
nomes or from highly repetitive regions not captured in
the draft assembly. No threshold was set in relation to
the minimum number of reads. That could lead to a
poor estimation of the allele frequencies and, conse-
quently, to underestimation of allele substitution effect.
However, it is possible to take account of this problems
by using specific corrections, as showed by Ashraf et al.
[51]. Markers were also filtered based on allele frequen-
cies, removing SNPs with an estimated MAF lower than
0.02. After that, a total 1,447,122 markers were available
for analyses. A further filtering was performed for
GWAS and LD analyses (MAF > 0.05), leaving a total of
1,005,590 SNPs.

Phenotypic data were collected, within the standard
breeding procedures of DLF. Families were sown during
spring and scored during the following season. HD was
assessed on family means by visual scoring, and defined
as the day in which, two-thirds of the spike is visible on
at least one plant in the plot or one third of the spike is
visible in three plants in the plot. The character was
expressed as ‘days after May 1°". Data were available for
a period of 11 years (between 2003 and 2013), and for
two locations: Store Heddinge (South-Eastern Denmark)
and Didbrook (Southern England). Fields were divided
in trials, each consisting of randomized 24 sward plots,
arranged in 2 sub-trials. Plot size was 1.5*10 m in
Denmark and 0.5*4 m in England. Randomization was
ensured within trials, but not always across trials. In
some cases, especially in the oldest experiments, families
were sorted according to the flowering time, or to the
year of origin. That resulted in a certain degree of
unbalance, within locations, between trials and PPs. A
summary of the phenotypic data is displayed in
Table 3, which shows the number of phenotyped families,
along with the number of environments (location x year)
where data were recorded, and some descriptive
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Table 3 Summary statistics for F, and SYN families

Fys SYNs
N. phenotyped families 1757 89
N. locations 2 2
N. environments (location*year) 10 4
N. replicates 39 23
N. location per family 1.56 1.18
N. environments per family 1.98 1.18
Mean 259 315
SD 86 8.6
Min 3 13
Max 51 50

statistics (mean, standard deviation [SD], minimum,
and maximum).

Population Structure and LD

A Genomic relationship matrix (G-matrix) for all fam-
ilies was calculated from all SNP markers, after filtering
for SNP depth and allele frequency (MAF > 0.02). Firstly,
allele frequencies were arranged in a matrix X;;), with i
indexing marker, and j indexing family. The matrix was
then centered by mean SNP frequencies (Mij = X,y—f(i),
where missing data were imputed with the average allele
frequency, and used to compute G:

G =M'M/K (1)

where K is a scaling parameter, corresponding to the
sum of expected SNP variances as computed by Ashraf

N
et al. [51], being 0.25 Zii(l—ii), with N equal to num-

i—1
ber of markers. Then, a PCA was performed on the G-
matrix. The best number of clusters was determined by k-
means clustering, using the R package NbClust’ [52]. The
probability, for each family, to belong to each cluster was
computed with the R package ‘€1071’ [53]. LD within scaf-
folds was measured across all the F, families on a set of 100
scaffolds larger than 20 kbp, randomly sampled across the
whole genome. The LD was expressed as squared correl-
ation between markers (r?). Corrections for both related-
ness and for population structure were performed
according to the method described by Mangin et al. [54].

Statistical models and genetic parameters

Data were analyzed by linear mixed models, using the
software DMU [55, 56]. The genomic information was
implemented by using the G-matrix as variance covari-
ance structure of the breeding values. Due to the not
perfectly randomized design, the trial effect was included
in the fixed part of the model [57]. Different models
were tested on the F, set and compared by F-test (for
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the fixed part) and Akaike test (for the random part).
The models that showed the best fit to the data is re-
ported below:

vy = Xt + Zyi + Zyily + Z3p + Z,pply + € (2)

where y is the vector of phenotypes; X is the design
matrix for the fixed factor; t is the vector of trial effects
nested within location and year; Z; are design matrices
for random factors; i is a vector of breeding values ~
N(0, Go?; ), where G is the G-matrix; ily is a vector of
genotype x environment interactions ~ N(0, I()'Zﬂy); pis a
vector of the originating PPs ~ N(0, P6”,), with P being
a genomic relationship matrix among PPs (P-matrix)
built as described in the following paragraph; pply is
the vector of interaction between PPs (which would
mainly arise from dominance effects) nested within
environments ~ N(O, Iozpply); e is a vector of random
residuals ~ N(0, Ie?.). Additional factors for breeding
values and PPs, with identity matrices as variance-
covariance structure were tested to check for presence
of genetic effects not explained by G- and P- matrix.
However, such effects turned out to be not significantly
different from zero and were left out from the model. The
same was for the interactions among PPs and between
PPs and environments, and for the spatial effect
within trials. Breeding values were calculated by summing
the corresponding solutions for i and p:

g =1+b,+b, (3)

where ;j indicates family and j; and j, indicates the par-
ents population for family .

Matrix Zz was built to account for the presence of
multiple PPs, as shown in Additional file 5: Figure S3 in
the supplementary material. In each row, numbers indi-
cate the expected probability, for each allele, to come
from each PP. As each locus has two alleles, the num-
bers on each row sum up to two. P was computed based
on the estimated frequencies of the PPs, following the
same procedure that used to compute G-matrix. PPs fre-
quencies were estimated for each SNP marker, using the
following model:

fi=w,+Zp;,+e (4)

where f; is the vector of frequencies for marker i; y; is
the mean frequency for marker i; Z is a matrix of ran-
dom effect, accounting for the presence of multiple PPs,
built as explained in Additional file 5: Figure S3; p; is a
vector of originating PPs ~ N(0, IGZP). The estimated PPs
frequency for a marker i was equal to:

fp; = u; + 2p; (5)

The model was based on the additive biallelic infini-
tesimal model described by Ashraf et al. [51], which was
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built on the following assumptions: (i) large number of
individuals in PPs, F; and F, families; (ii) PPs in Hardy-
Weinberg equilibrium; (iii) large number of families
originated by each parent combination; (iv) parent plants
chosen at random from the PPs; (v) absence of self-
pollination; (vi) no intercross among F; families; (vii)
absence of selection between F;s and Fss; (viii) uniform var-
iances across different factors. Here, the only difference in
respect to the original model is represented by the relation-
ship among PPs. That would cause inbreeding between the
Fy’s, [51] and lead to changes in frequencies and variances
among PPs and F,s (described by P-matrix and by G-
matrix respectively), and within F,s. The latter component
can be ignored, as analyses are based on family means. The
G-matrix also accounts for the increase in inbreeding
within the F, families. Variance components were estimated
by restricted maximum likelihood method (REML), and
can be interpreted as follows: ¢%; is the additive genetic
variance among families, across environments; ¢’y is the
additive G x E variance; 0°, is the variance among PPs
across environments; o‘zpply is the variance of the G x E for
dominance; 6% is the variance of residuals, which includes
environmental effects within plots and measurement errors.

Across PPs, it was possible to compute three kinds
of heritabilities for a single observation: (6) narrow
sense heritability across environments; (7) narrow
sense environment-specific heritability; (8) broad sense
environment-specific heritability:

h?, = (Go?; + 2P¢?,) /0%p (6)
b, = (Go?; + 2P6?, + 0%y ) /6%p (7)
h’,e = (Go?; + 2P6”p + 6%y + 67 ppry) /07p (8)

where the component 0‘21, was added twice, as each F,
family was originated from two PPs, and where ¢°p is the
phenotypic variance, calculated as:

6’p = G&?; + 6%ty + 2P0”, + 6% ppty + 0. (9)

Genome Wide Association and Genomic Prediction
GWAS analysis was performed by using the software
GAPIT [58]. Correction for relatedness was ensured by the
use of G-matrix as kinship matrix. A further correction for
population structures was carried out by adding the main
four PCs to the model. The optimal number of PCs was de-
termined by GAPIT through Bayesian Information Criter-
ion. The model used for GWAS was the following:

g = Xjap; + Xopc+ Zi+e (10)

where g is a vector of breeding values, calculated from
the model shown in equation (3), but assuming all vari-
ance covariance matrices to be identity matrices; X; and
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Z are design matrices for fixed and random effects re-
spectively; ay; is the allele substitution effect for locus i;
pc is the vector for PCs effects; i is the vector of breed-
ing values with G-matrix as variance-covariance struc-
ture distributed as N(0, Go*); e is a vector of random
residuals, distributed as N(0, Io%). Missing genotypes,
for each marker, were imputed with the average allele
frequencies across families, as was done for computing
G-matrix. The significance of each marker effect was
evaluated using t-test after Bonferroni correction and
EDR [59], using a cut off level of 0.05. In case there were
two or more significant markers in the same scaffold, an
LD analyses was performed within the scaffold. When
SNPs were in LD (r*>0.10), only the marker with the
lowest P-values was regarded as significant. Allele substi-
tution effects were corrected for low sequencing depth
[51], using the following formula:

a; = ag; * (14 3/D;) (11)

where o is the allele substitution effect as estimated
from GWAS, a is the corrected allele substitution effect,
D is the average sequencing depth across families, and i
refers to a given locus.

As the allele frequencies are expressed on family
means, the genetic variance would be half of the vari-
ance between individuals [51], and the variance ex-
plained by each marker should be computed with the
following formula:

°'2gi = p;(1-p;)a;’ (12)

where p is the MAF, a is equal to the allele substitution
effect, and i refers to a given allele. For all the SNPs that
were declared significant in at least one of the tests, o'zgi
was calculated both within the F, families, and using the
MATF of the SYN families. Then, a single marker regres-
sion was performed in the SYN families, in order to check
the association between marker effects in the two sets.
Later, all SNPs were ordered based on their P-values, and
then used to estimate the GEBVs of the SYN families:
M

g~ 2o p, (13)
in this equation, § is the vector of GEBVs, M is equal to
the number of significant markers, «; is the allele substi-
tution effect for marker i, and p; is the MAF at marker
i. The calculation was performed multiple times, assum-
ing different values for M (from 1 to 50 markers).

GP studies were carried out by GBLUP [60, 61], using
CV within different F, sets: (i) all F, families; (ii) differ-
ent clusters of F, families, previously identified during
the PCA; (iii) reduced sets of randomly chosen F,s, dif-
fering for size of the training populations. Within each
set, CV was performed according to two different
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schemes testing different hypothesis: (a) k-fold (k = 100)
tests predictions in case of presence of related individ-
uals in the training and in the validation set, leaving out
families in random order and estimates their breeding
values; (b) pp-fold tests predictions in case of absence of
related individuals in the training and in the validation
set, estimating all the families originated by a certain
PPs combination, after having left out everything that
had at least a PP in common. As pp-fold implied a
greater reduction in terms of training population com-
pared to k-fold, a pp-like strategy was also tested, in
order to ensure the same training population size is used
in both schemes. This strategy exactly replicated the
cross-validation scheme used in pp-fold, but leaving out
random families instead. Analyses on set (iii) were re-
peated ten times, each time using a different set of ran-
domly chosen Fjs, and the average predictive abilities
and bias were calculated. Then, CVs were performed
across clusters and, finally, all the F,s were used to pre-
dict the breeding values of the SYN families.

Accuracy is defined as the correlation between true
breeding values and GEBVs (pg ). In this case, its value
is not known, but can easily be computed by using the
following equation [62]:

Pgs = ny.g/ Pyt g (14)
where the nominator is the true correlation between
GEBVs with the average phenotypes corrected for the
fixed effect (y¢), defined as predictive ability, and the de-
nominator represents the expected correlation between
GEBVs and y;. Such a formula gives an estimation of the
correlation between g and g, which is not guaranteed to
fall within the theoretically defined range of the pa-
rameters. The expected correlation between GEBVs
and y; can be calculated with the following equation
[63]:

) (15)

Pyrg = Og * (6°g + 0% /n
where ng is the genomic variance, and n number of
replicates. That is equivalent to the square root of the
heritability based on family means (based on several
observations), and represents the upper limit for the
prediction accuracy. However, this formula refers to a
very simplified model with only genomic and residual
variances. In the present paper, the equation needs to
account for the other random components:

Pyeg = \/ Go%i + 2Pc?p * (Ge?; + 2Pc?,

+°'2ily/ njly + 0'zpplv/ Npply + o’e/n

(16)
-0/

As different families were replicated a different num-
ber of times, n is the average number of replicates across
all fields (npiots/Namilies); Mity is the average number of
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environments per each family (njy/Ngmiies) and nypy is the
average number of environments per each PP (nppiy/npp).
When predictions were performed on the same dataset,
comparison between predictive abilities from different
models was performed with Hotelling-Williams test [64],
using the R script developed by Christensen et al.
[65]. The bias of the predictions was investigated by
regressing y, on the breeding value estimates:

(17)

Ye=bg+c; b=o0yy/0°§

where y; is the vector of corrected and average pheno-
types not included in computing GEBVs, and § is the
vector of GEBVs from the CV procedure. Absence of
bias will result in a regression coefficient (b) of 1. A sig-
nificant deviation from 1 indicates bias in the estimation
of the GEBVs’ variance.
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