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Abstract

Background: Asian buffaloes (Bubalus bubalis) have an important socio-economic role. The majority of the
population is situated in developing countries. Due to the scarce resources in these countries, very few species-
specific biotechnology tools exist and a lot of cattle-derived technologies are applied to buffaloes. However, the
application of cattle genomic tools to buffaloes is not straightforward and, as results suggested, despite genome
sequences similarity the genetic polymorphisms are different.

Results: The first SNP chip genotyping platform designed specifically for buffaloes has recently become available.
Herein, a genome-wide association study (GWAS) and gene network analysis carried out in buffaloes is presented.
Target phenotypes were six milk production and four reproductive traits. GWAS identified SNP with significant
associations and suggested candidate genes that were specific to each trait and also genes with pleiotropic effect,
associated to multiple traits.

Conclusions: Network predictions of interactions between these candidate genes may guide further molecular
analyses in search of disruptive mutations, help select genes for functional experiments and evidence metabolism
differences in comparison to cattle. The cattle SNP chip does not offer an optimal coverage of buffalo genome,
thereafter the development of new buffalo-specific genetic technologies is warranted. An annotated reference
genome would greatly facilitate genetic research, with potential impact to buffalo-based dairy production.
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Background
Asian buffaloes are a livestock species with a high socio-
economic importance and promising characteristics for
production. The species is mostly found in developing
countries integrating production system by providing
meat and milk to local communities. Asian buffaloes are
also used as draught animals. In developed countries,
such as Italy, the buffalo population is selected for dairy
production, specially the production of mozzarella
cheese, the most famous trademark product. Buffalo
milk has high fat content and solids concentration and
these intrinsic characteristics are favourable for cheese
manufacturing.
There are two species of domesticated buffaloes: river

or water buffalo (Bubalus bubalis, 2n = 50) and swamp

buffalo (Bubalus carabanesis, 2n = 48) [1] . The genetic
difference is marked by a fusion of chromosomes 4 and
9 in swamp buffalo. The first cross between the two spe-
cies produces fertile offspring, but fertility is reduced in
subsequent crosses [2]. In comparison to cattle, buffalo
metacentric chromosomes (five) are a fusion of two cat-
tle acrocentric chromosomes and the other chromo-
somes conserve a high homology between species [3].
There are two water buffalo genomes sequenced [4, 5].

Both of them have the sequences available at NCBI plat-
form in scaffolds. However, the sequences are not dis-
played in chromosomes and genes are not annotated
(UMD_CASPUR_WB_2.0; http://www.ncbi.nlm.nih.gov/
assembly/GCF_000471725.1/). In an effort to generate a
reference set to aid polymorphism discovery and gene
annotation of the buffalo genome, RNA from 30 differ-
ent tissues was extracted and sequenced [6]. The lack of
buffalo genomic data means that researchers need to
refer to a “next of kin” species: cattle.
Cattle and buffalo species are in a close evolutionary

relationship and the cattle genome is far better
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characterised than buffalo. An initial genome maps for
buffaloes using cattle-derived markers and possible rear-
rangements were identified between species [7]. Pos-
itional candidate genes and physical mapping were
generated giving a better understanding of buffalo gen-
ome structure.
More recently, a cattle SNP chip was applied to

characterize buffalo genome. Genotyping 10 buffaloes with
a 54 k cattle SNP chip (Illumina) and found that ~80 % of
the SNPs were successfully genotyped, but only ~2 %
(1,159) were segregating in the population [8]. This result
indicates that genome sequences are conserved between
the species but not necessarily the polymorphisms. The au-
thors also identified that the SNPs genotyped are not
equally distributed in the buffalo genome. There are some
SNP-rich and some regions with poor SNP coverage, and
therefore the cattle SNP chip does not offer an optimal
coverage of buffalo genome. Genotyping 384 buffaloes
using 777 k cattle SNP chip (Illumina) and showed that
~88 % of the SNPs were genotyped in buffaloes, but also
only ~2 % (16,580) of the SNPs were segregating [9]. In a
linkage disequilibrium study, these authors reported a mean
value of r2 equal to 0.28 indicating that these SNP could be
used for genomic selection and SNP association analyses.
Studies that used cattle SNP chips did identify SNP associ-
ated with production and reproductive traits in buffaloes;
using the 54 k cattle SNP chip [10] and a 777 k cattle SNP
chip [11]. However, given that only ~2 % of the SNP in
these cattle chips was segregating in buffaloes, a species
specific SNP chip would be more informative. Importantly,
SNPs present in the cattle chips that segregate in buffaloes
are probably “old” polymorphisms, existent before the spe-
ciation event that separated cattle from buffaloes. Old poly-
morphisms might not be appropriate to study the result of
artificial selection in dairy buffaloes. Based on this market
necessity, a commercial buffalo SNP chip array was recently
released (Axiom ® Buffalo Genotyping Array 90 K Affyme-
trix). The selection of SNP included in the chip array is
based on buffalo sequencing data (Affymetrix), but SNP
position and annotation to genes used the cattle genome as
a reference (UMD3.1 assembly). Due to the fact that this is
the most appropriate tool available, it was used in the
present study.
The aim of the study was to identify SNPs, genomic

regions and genes that affect production and reproduct-
ive traits. To this aim genome-wide association analyses
and gene network predictions were carried. Gene net-
work analyses aid the identification of genes that have
pleiotropic effects and/or regulatory roles [12]. The
genes identified might be candidates for future fine-
mapping studies in search of causative mutations. The
interpretation of results herein might also trigger gen-
ome structure, metabolism and physiology comparisons
between species, supporting evolutionary studies.

Methods
Animal ethics committee approval was not required for
the present study. The data and samples used here were
obtained from an existent databank of the Animal Science
Department from São Paulo State University (Unesp),
Jaboticabal-SP, Brazil. The department is responsible for
the Milk-Recording Buffalo Program. The farmers gently
contribute with phenotypes, pedigree information and
samples of the animals.

Data structure
Six production traits and four reproductive traits were tar-
geted. The production traits were: milk production (MP),
fat production (FP), protein production (PP), fat percentage
(%F), protein percentage (%P) and somatic cell score (SCS).
The reproductive traits were: age at first calving (AFC),
calving interval (CI), open days (OD) and number of ser-
vices per conception (NSC). The data analyzed was based
on 11,530 lactations of 3,431 buffaloes, monthly recorded
from 1995 to 2013. Murrah buffaloes were from 12 farms
with 186 sires with registered daughters. The final pedigree
archive had 14,346 animals. The structure of the data is
presented in Table 1. The SCS doesn’t have normal distri-
bution and it was transformed to the log scale, using the
function: SCS = (log2(CCS/100.000)) + 3 [13].
Records were obtained apart from the fifth production

day in milk. First five day of colostrum production were
not considered. Only lactations longer than 90 days were
used in the analyses. The cumulative milk production
over 305 days (MP), fat production (FP) and protein pro-
duction (PP) were calculated apart from the production
in the milk-recording day. The %F, %P and SCS were the
monthly record means per lactation. The age at first
calving (AFC) was defined as the difference, in months,

Table 1 Structure of the data and descriptive statistics for milk
(MP), fat (FP) and protein production (PP), fat (%F) and protein
percentage (%P), somatic cell score (SCS), age at first calving
(AFC), calving interval (CI), number of services per conception
(NSC) and open days (OD).

Trait Numbers Mean SD CG

MP (kg) 11530 1864.14 448.67 298

FP (kg) 2890 110.34 35.41 96

PP (kg) 2890 84.73 22.89 96

%F 2890 7.02 1.09 96

%P 2890 4.24 0.72 96

SCS 2890 5.82 0.92 96

AFC(days) 3431 897.13 128.16 134

CI (days) 4729 407.54 32.33 106

NSC 4978 2a - 186

OD (days) 6894 138.84 21.78 184

SD standard deviation, CG contemporary group
aMode
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between the first calving and the birth of the buffalo.
The calving interval (CI) was defined as the difference,
in months, between consecutive calving events. The
number of services per conception (NSC) is the number
of artificial inseminations per conception for each buf-
falo. The open day (OD) is the difference, in days, be-
tween the calving and the subsequent conception. The
contemporary group (CG) was formed by herd, year and
calving season (October-March and April-September)
for all the traits, except CI and by herd, year and birth
season for CI. Each CG had at least four animals and
trait records between ±3.5 standard-deviations of the
group mean.

Breeding value prediction
A repeatability animal model was used for the genetic
analyses of all traits except AFC. For AFC, an animal
model without repetition was used, because this trait
can only be measured once. Variance components were
estimated by Restricted Maximum Likelihood method
(REML) using the Wombat software [14]. The model in-
cluded the fixed effect of CG, age fitted as a co-variable
(age of buffalo at calving, linear and quadratic) (except
for AFC) and the random effects of additive genetic
value, permanent environment (except for AFC) and re-
sidual. Fitted model scan be represented in matrix
notation:

y ¼ Xβþ ZaþWpþ e

or

y ¼ Xβþ Zaþ e for AFCð Þ

Where β, a, p and e are the vectors of fixed effects, addi-
tive genetic value, permanent environment and residual,
respectively; X , Z and W are the incidence matrix of fixed
effects, additive genetic value and permanent environ-
ment. A brief report of the parameter estimates (heritabil-
ity, genetic and phenotypic correlations) was included
(Tables 2 and 3). The genetic values and their accuracies
were obtained (Table 4), de-regressed as was proposed by
[15] and used as pseudo-phenotypes for GWAS.

Genotyping and quality control
A total of 452 buffaloes (57 sires and 395 dams) were ge-
notyped using the 90 K Axiom ® Buffalo Genotyping
(Affymetrix). The animals genotyped were the ones with
the best accuracies. The sires have at least 40 progenies
and the dams at least three calvings and many of the
dams are mothers of sires used in the herds. Initially, the
SNP chip contained 92,826 markers. Sample quality con-
trol observed the call rate of 0.95 and above, and a het-
erozygozity of ± 3 standard-deviation of the mean. For
SNPs quality control, thresholds were set for call rate

(superior to 0.98), Hardy-Weinberg equilibrium (P-value
test less than 10−6), and correlation between markers (if
higher than 0.998 one SNP of the correlated pair was ex-
cluded). Also, coincident SNPs were eliminated. Minor
allelic frequency was not used to discard markers. Some
SNPs were genotyped twice when there was a probe in
each strand for the same SNP. In the case of coincident
SNP, the probe with the most animals genotyped was
used. Markers present in Y chromosome and mitochon-
drial DNA were discarded. Markers in X chromosome
were considered. The males have only one X chromo-
some, so they are always homozygous for the markers (0
or 2), females have two, so they were codified like the
autosomes (0, 1 or 2). After the quality control, the
number of SNPs retained for association analysis was
61,145.

Genome-wide association study
In order to associate SNPs with the de-regressed breed-
ing values (DEBV) of the studied traits, a mixed linear
model was implemented using R software and GenABEL
package [16]. The DEBV have information of the record
of the animal genotyped as well as from their relatives.
The reliability (source of information) varies among the
animals, so the DEBV have heterogeneous variances
corrected by the residual weights as proposed by [15].
The model implemented was:

y ¼ Xβþ μþ ε

Where y is the vector of the DEBVs, X is the vector of
the genotypes in the locus being tested, β is the fixed
additive genetic value attributed to the locus, μ is the
vector of the polygenic with normal distribution

Table 2 Additive genetic variance (σa2), permanent environment
(σpe2 ), residual (σe2), and heritability (h2) for the traits.

Traita σa
2 σpe

2 σe
2 h2 ± SD

MP (kg) 46672.49 36946.85 103861.99 0.25 ± 0.03

FP (kg) 276.58 286.06 693.03 0.22 ± 0.03

PP (kg) 96.18 80.69 196.06 0.26 ± 0.03

F (%) 0.24 0.26 0.16 0.37 ± 0.04

P (%) 0.03 0.02 0.02 0.42 ± 0.04

SCS 0.58 0.64 2.17 0.17 ± 0.03

AFC (days) 348.15 - 1668.89 0.17 ± 0.02

CI (days) 275.132 399.013 4061.479 0.06 ± 0.01

NSC 0.03 0.13 0.22 0.08 ± 0.02

OD (days) 128.87 285.83 483.89 0.14 ± 0.03
aMPmilk production, FP fat production PP protein production (PP), %F fat
percentage, %P protein percentage, SCS somatic cell score. AFC age at first
calving, CI calving interval, NSC number of services per conception,
OD open days
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μ ~ N(0,Gσu
2) and ε is the vector of the residual error

with normal distribution ε ~N(0, Iσe
2).

The pedigree relationship matrix based on pedigree,
G, describes the relation of the whole genome among
the individuals, since it is estimated based on alleles
identical by state (IBS) of the markers. The parameters
σu
2 and σe

2 were estimated using Restricted Maximum
Likelihood (REML) method for each SNP. The general-
ized least square (GLS) was used to estimate the β ef-
fects using the F test for the null hypothesis H0 : β = 0.

y ¼ xβþ zμþ e

Where y is the vector of the DEBVs, x is the design
matrix, β is the vector of coefficients of the regression

on recoded SNP genotypes; z is the incidence matrix for
animal effects; μ ~N(0, Aσa

2) is a vector of the polygenic
animal effects and e ~ (0, Iσe

2) is the vector of residuals,
in which A is an additive genetic relationship matrix of
animals and I is an identity matrix, and σa

2 and σe
2 are the

animal’s additive polygenic variance and residual error
variance, respectively. SNP allele substitution fixed ef-
fects (β) and random background polygenic effects were
evaluated in this model. Values in the design matrix, x,
were coded as 0, 1, 2 for the SNP genotypes, represent-
ing the number of copies of the minor allele carried by
the individual. The parameters and were estimated using
Restricted Maximum Likelihood (REML) method for all
SNP. The generalized least square (GLS) was used to es-
timate the β effects using the F test for the null hypoth-
esis H0 : β = 0.
Subsequently, a Wald chi-square statistics was used to

determine if the SNP was associated with the traits stud-
ied [17].
The percentage of the phenotypic variance (Vp) ex-

plained by each SNP was estimated according to the
equation:

%Vp ¼ 100
2p 1−pð Þa;′ 2

σ2p

 !

Where:

α = allelic substitution effect
p = allelic frequency for ith observed SNP in the
population
σp
2 = Phenotypic variance estimate of the trait

Multi-trait analysis, pleiotropic effects and gene network
prediction
The association weight matrix (AWM) methodology
[12] was adapted and used to build a gene network from

Table 3 Genetic correlation (above the diagonal) and phenotypic correlation (below the diagonal) among traits.

Traitsa MP FP PP F P SCS AFC CI NSC OD

MP(kg) - 0.74 0.93 −0.08 −0.11 −0.09 0.19 0.09 0.04 0.23

FP(kg) 0.86 - 0.76 0.64 0.28 −0.05 0.21 0.08 0.03 0.19

PP(kg) 0.97 0.84 - 0.16 0.29 −0.11 0.17 0.06 0.03 0.19

F(%) −0.13 0.44 −0.17 - 0.49 −0.08 0.08 0.06 0.02 0.21

P(%) −0.15 0.39 0.21 0.36 - −0.10 0.04 0.03 0.02 0.18

SCS −0.18 −0.23 −0.26 −0.08 −0.12 - 0.09 0.16 0.09 0.19

AFC(days) 0.26 0.29 0.31 0.15 0.19 0.26 - 0.39 0.26 0.22

CI(days) 0.14 0.31 0.29 0.19 0.22 0.22 0.56 - 0.41 0.27

NSC 0.11 0.12 0.13 0.09 0.09 0.16 0.31 0.29 - 0.33

OD(days) 0.29 0.36 0.28 0.21 0.18 0.29 0.36 0.37 0.41 -
aMPmilk production, FP fat production PP protein production (PP), %F fat percentage, %P protein percentage, SCS somatic cell score. AFC age at first calving, CI
calving interval, NSC number of services per conception, OD open days

Table 4 Estimated genetic values means (GVM) and their
accuracies for the traits studied for all the animals in the
pedigree and only for the genotyped animals.

Traitsa Total Accuracy Genotyped animals Accuracy

GVM SD Min Max GVM SD Min Max

MP (kg) 169.63 89.32 0.64 0.99 232.78 71.28 0.86 0.99

FP (kg) 6.59 4.89 0.61 0.99 12.02 4.42 0.86 0.99

PP (kg) 5.28 4.32 0.61 0.99 7.89 2.86 0.86 0.99

F (%) 0.49 0.12 0.62 0.99 0.72 0.04 0.86 0.99

P (%) 0.14 0.07 0.61 0.99 0.52 0.03 0.86 0.99

SCS 0.35 0.11 0.62 0.99 0.65 0.03 0.86 0.99

AFC (dias) 3.78 4.89 0.61 0.99 −28.64 2.84 0.86 0.99

CI (dias) 1.28 2.18 0.59 0.99 −13.67 2.06 0.86 0.99

NSC 0.01 0.04 0.58 0.99 −0.08 0.01 0.85 0.99

OD (days) 3.89 2.93 0.62 0.99 −2.33 1.21 0.86 0.99

SD Standard deviation, MinMinimum, MaxMaximum.
aMPmilk production, FP fat production PP protein production (PP), %F fat
percentage, %P protein percentage, SCS somatic cell score. AFC age at first
calving, CI calving interval, NSC number of services per conception,
OD open days
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GWAS output data. In the original description of AWM
a key trait is selected to weight network predictions. In
this study, the main idea was to identify genes that
equally contribute to the variation observed in all ten
traits studied, as these pleiotropic SNPs might be more
useful for genetic evaluation in buffaloes. In this context,
it was used the methodology described by [18]: instead
of using SNPs P-values, t-values calculated served to
ground gene network predictions, (t ≥ 2.80 ≈ p ≤ 0.05).
These statistics determine the importance of the SNPs
across the traits and are interpreted as a measure of
pleiotropic effect. All the SNPs were used in the analysis
regardless of their location. Normally in AWM, SNP-to-
gene distances are considered prior to construction of
gene networks. However, in this study, inclusion of all
SNPs was preferred since genotyped SNPs were buffalo
variants with locations annotated in the cattle genome
(precise SNP-to-gene distances are actually unknown).
To identify significant SNP-SNP interactions we used

the partial correlation and information theory (PCIT) al-
gorithm [19]. Pairwise correlations across matrixrows
were used to predict SNP-SNP interactions and hence
build a genenetwork [12]. The SNP pairs significantly
co-associated and with correlation higher than 0.85 had
an edge (connection) established in the gene network,
which was visualized using the Cytoscape software [20]
and MCode App [21]. In the network, every SNP was a
node and every significant interaction was an edge con-
necting two nodes. When a SNP was next to a gene
(Variant Effect Predictor default), the gene ID was in-
cluded in the network.

Identification of SNP location and gene enrichment
Variant Effect Predictor (VEP) from Ensembl website
was used to verify if the significant SNP was near a gene
and determine the distance. Analyses were done using
the cattle genome.
Gene ontology (GO) enrichment analyses were carried

using Gorilla tool (http://cbl-gorilla.cs.technion.ac.il/) to
aid interpretation of GWAS results. The top genes asso-
ciated with the traits were compared to a genome-wide
background gene list. Top genes were defined as genes
with a SNP whose P < 0.001 (distance of the SNP to gene

determined by VEP default). These GO enrichment ana-
lysis were carried for each trait separately.

Results and Discussion
Single-trait-single-SNP GWAS was carried for six milk
production and four reproductive traits in a population
of dairy buffaloes. These GWAS in buffaloes used a spe-
cific SNP-chip designed for the species. Although the se-
lection of SNP included in the chip array is based on
buffalo sequencing data, SNP position and annotation to
genes used the cattle genome as a reference (UMD3.1
assembly) because there is no public complete genome
reference available for buffalos. The numbers of signifi-
cant SNP were similar between traits, within significance
thresholds (Table 5). They were also similar in number
to those obtained by studies that used low density SNP
chips in cattle [12, 22].
We described the data structure (Table 1) and have es-

timated heritabilities for the studied traits, which range
from 0.06 to 0.42 (Table 2). The genetic correlations
range from −0.11 to 0.93 (Table 3). These parameters
are reported as they underpin GWAS results and gene
network predictions. Data structure awareness is import-
ant context for GWAS common concerns: multiple test-
ing and sample size limitations.
The SNPs that explained most of the phenotypic vari-

ance indicated regions of the genome that have an influ-
ence in the traits studied and indicate new candidate
genes. Phenotypic variance percentage, positions and
nearby genes were provided for these significant SNPs
(Table 6). Significance of all the SNPs tested and per-
centages of phenotypic variance explained were reported
as well (Additional file 1: Table S1).
Association analyses for the reproductive traits re-

sulted in candidate genes for buffaloes that have known
roles in reproductive physiology. For age at first calving
(AFC), the gene coding for interferon-Tau, IFN-TAU,
and other interferon genes were identified. Embryonic
production of IFN-TAU is the primary signal for mater-
nal recognition of pregnancy in buffaloes [23]. Another
gene associated with AFC was LOC100299005 (SELP), a
gene with up-regulated expression during inflammatory
processes related to follicular atresia in cattle [24]. It is
clear that modifications in the protein structure and/or

Table 5 Number of significant SNP at different p-values for each trait.

SNP p-value Traitsa

MP %F %P FP PP SCS AFC CI NSC OD

0.05 2991 2853 2938 2960 2896 2916 2894 3016 2976 2927

0.01 585 621 593 613 567 620 605 587 576 601

0.001 54 72 53 55 52 65 68 55 57 54
aTraits: MPMilk production, %F fat percentage, %P protein percentage, FP fat production, PP protein production, SCS somatic cell score, AFC age at first calving,
NSC number of services per conception, OD open days
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Table 6 Genes near to the most significant SNPs (p < 0.0001) for ten production traits.

Traita SNP name Chr Position(bp) %Vp Within Gene 100 kb <500 kb

MP AX-85176853 1 80123930 0.46 LOC100847171

BCL6

RTP2

SST

AX-85092281 16 69184336 0.38 PTGS2

LOC100295047

AX-85110813 1 50360638 0.30 ALCAM

AX-85154407 14 73498202 0.27 LOC101908004

AX-85048498 3 14771362 0.22 UBQLN4

%F AX-85075989 6 64757051 0.14 KCTD8

AX-85070208 6 81132415 0.10 LOC782855

LOC101904777

AX-85172444 X 52208657 0.09 LOC100294934

LOC100294888

AX-85099016 16 21197965 0.07 ESRRG

TRNAY-AUA

GPATCH2

AX-85061238 10 93617773 0.06 GTF2A1

AX-85056378 23 15403744 0.06 LOC101902323

FOXP4

%P AX-85104983 17 66753221 1.08 LOC101903483

SART3

ISCU

CMKLR1

WSCD2

AX-85050041 17 26092651 1.02 - - -

AX-85081756 5 76365673 1.01 MFNG

CARD10

USP18

FP AX-85083515 16 57250501 0.77 GPR52

LOC101908155

AX-85044438 5 76008737 0.69 TMPRSS6
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Table 6 Genes near to the most significant SNPs (p < 0.0001) for ten production traits. (Continued)

LOC510185

C1QTNF6

SSTR3

LOC101906944

RAC2

MIR1835

CYTH4

AX-85139912 23 50686128 0.61 SERPINB6

SERPINB9

SERPINB1

WRNIP1

LOC101904132

MYLK4

AX-85061966 9 15900553 0.59 IMPG1

AX-85105219 27 39157445 0.47 LRRC3B

PP AX-85174902 22 60177121 0.72 LOC101905145

AX-85051961 23 15787091 0.57 CCND3

AX-85110855 10 98773695 0.55 FLRT2

TRNAC-ACA

LOC101906220

LOC785091

SCS AX-85164456 16 71885776 0.004 PROX1

LOC100139281

TRNAG-CCC

RPS6KC1

AX-85093628 26 18748400 0.003 HOGA1

MORN4

PI4K2A

AVPI1

MARVELD1

ZFYVE27

SFRP5
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Table 6 Genes near to the most significant SNPs (p < 0.0001) for ten production traits. (Continued)

GOLGA7B

AX-85136262 5 116846374 0.003 ATXN10

AX-85092482 7 103828217 0.002 SLCO6A1

AX-85149935 14 74769387 0.002 RUNX1T1

AFC AX-85049453 X 95335754 0.54 LOC100299005

AX-85061054 8 22838009 0.40 LOC538589

IFNAD

IFNW1

LOC618947

IFN-TAU

LOC781948

LOC100335490

LOC101904956

LOC100847941

KLHL9

IFNAG

CI AX-85069024 17 63515708 0.22 TPCN1

AX-85175568 10 30077602 0.21 SCG5

AX-85067656 26 49118646 0.20 LOC101903522

MGMT

NSC AX-85051327 12 71075601 0.04 LOC100336232

AX-85169432 1 69359581 0.02 LOC100847188

AX-85117598 23 48414155 0.02 LY86

OD AX-85113259 9 40931034 0.04 FIG 4
aTraits: MPMilk production, %F fat percentage, %P protein percentage, FP fat production, PP protein production, SCS somatic cell score, AFC age at first calving, NSC number of services per conception, OD open days
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in the expression levels of these genes could affect con-
ception outcome and therefore impact on AFC [25, 26].
SELP gene, mapped to chromosome X, had the most sig-
nificant SNP associated to AFC. The sexual chromo-
somes influence reproductive and andrological traits in
cattle [27–29], among others traits, such as SCS and
milk content in dairy cattle [30–33]. The results pre-
sented here add to this list and encourage the inclusion
of sexual chromosomes in GWAS to avoid missing im-
portant information.
For calving interval (CI), a gene involved in spermato-

zoa acrosome reaction in humans was identified: TPCN1
[34]. Spermatozoa acrosome reaction is necessary for
fertilization and tends to be studied in the context of
male fertility. The association of TPCNI with CI suggests
an interesting thought: a gene related to male fertility
might be more relevant to herd performance (in terms
of CI) than genes related to female fertility. Increased
conception rates after calving, and, as consequence, de-
creased CI may also reflect fertilization ability of bulls in
the studied population. As a complex trait, CI may be
influenced by several component traits linked to both
male and female fertility, including spermatozoa quality
andrological parameters [34].
For number of services per conception (NSC), the top

gene found was LOC100336232 (ABCC4). This gene has
its expression increased in the endometrium of pregnant
cows [36] and pigs [37] and seems to be important to
support pregnancy since it acts on prostaglandin efflux
from cells [36]. Prostaglandin has a variety of roles in
reproduction being responsible for maternal recognition
of the pregnancy and conceptus implantation, processes
that closely related to NSC. Moreover, in a whole gen-
ome re-sequencing of Hanwoo cattle, ABCC4 was iden-
tified as the gene with the biggest number of non-
synonymous SNPs, splice-site variants, and coding indels
[37]. ABCC4 may be a useful source of variation to be
studied in buffaloes and cattle. In Angus cattle, the
ABCC4 expression was significantly correlated with re-
sidual feed intake (RFI) [39], being up-regulated in high
RFI animals. In Nelore cattle, a CNV within intron 22 of
ABCC4 was correlated with marbling score [40]. The
emerging hypothesis is that ABCC4 acts in basic meta-
bolic pathways and is highly polymorphic with potential
effect in a variety of phenotypes (i.e. reproduction, meat
quality, etc.).
Gene ontology enrichment analyses were also per-

formed using GOrilla to compare the top genes associ-
ated with the traits (P < 0.001) with a genome-wide
background gene list. For AFC and CI, many processes
involving neural development and activity were listed
(GO terms: GO:0048814 and GO:0021836 for AFC and
GO:0050807, GO:0045666, GO:00501962, GO:0050769,
GO:0051960, GO:0031290, GO:0051960, GO:0031290,

GO:0021819 for CI). There were other genes expressed
in the central nervous system that were associated to
puberty in female cattle [12, 22, 41]. The role of these
genes in reproduction may be due to the neuronal activ-
ity in the hypothalamus-pituitary axis, responsible for
initiating the hormone cascade that is a trigger for pu-
berty followed by the initiation of the estrous cycle in fe-
males [42]. It is reasonable to assume that genes
involved with pubertal development and maintenance of
estrous cycle could be associated with AFC and CI.
Regarding %F and FP, four genes related to the carbohy-

drate metabolism (KCTD8, FOXO4, SSTR3, LOC782855)
and one gene related to lipid metabolism (ESRRG) were
identified. The KCTD8 gene interacts with genes that act
in the insulin secretion and glucagon liberation pathways,
participating in the glucose absorption [43]. FOXO4 gene
down-regulates gluconeogenesis and up-regulates glycoly-
sis [44]. SSTR3 inhibits the activity of Glucose-dependent
insulinotropic polypeptide’s function in intestine, promot-
ing the accumulation of glucose and fat [45]. LOC782855
(RPS26) was related to diabetes in humans [46]. The asso-
ciation of ESRRG to fat production in the present GWAS
could be expected, since this gene regulates other adipo-
genic genes [47]. In cattle, ESRRG was also considered a
key regulator of puberty in a multi-trait analyses that in-
cluded fat deposition traits [12]. Most of the top genes as-
sociated with fat percentage and fat production integrate
the carbohydrate metabolism and not the lipid metabol-
ism as in cattle [48, 49]. This fact could suggest some dif-
ferences between buffalo and cattle fat production in milk.
On average, buffaloes have higher contents of milk fat
than cattle. In buffaloes the percentage of milk fat ranges
from 6.7 % to 12.0 % [11, 50–52], while in cattle it ranges
from 3.1 % to 4.5 % [53, 54]. The difference in milk fat
might be explained by a more efficient acetate metabolism
to produce lipids in buffaloes, as the results suggest. In
comparison to cattle and under same high fibber diet,
buffaloes have a higher average daily gain [55]. It means
that buffaloes have a better capacity to digest fibber
content in rumen. Fibber fermentation generates acetate,
a fat precursor [56]. This characteristic might generate a
bigger contribution of genes related to acetic acid
metabolism in the fat production traits in buffaloes,
differentiating considerably cattle and buffalo metabolism
for fat milk content [56].
SNP associations with milk protein production sug-

gested CCND3 as a candidate gene in buffaloes. This
gene has a role in alveolar development in the mammary
gland, in cooperation with prolactin [57]. Variances in
the biological activity of protein coded by CCND3 may
affect the structure and/or physiology of the alveolus.
Milk production is a function of blood circulation in the
mammary alveolus. Other genes, whose physiological ac-
tivity is within the alveolus, were already correlated with
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milk content in buffaloes [58]. Now, CCND3 has been
added to the list with specific implications for milk pro-
tein content.
Gene ontology enrichment analyses were also carried

for production traits. For the somatic cells score (SCS),
the biological process of regulation of lymphocyte migra-
tion was significant (GO:2000401). This immunological
metabolic process is correlated with SCS because this
trait is used as an indirect measure of mastitis which se-
verely diminishes milk production. Buffaloes with a
more efficient immune system (better variants for genes
that regulate lymphocyte migration) might do better in
avoiding the disease.
Buffalo and cattle chromosomes have an extensive

similarity and 84 % of cattle markers were successfully
used in buffaloes [7]. However, despite good examples of
putative candidate genes reported herein (mainly ob-
tained due to the similarities), many genes that were as-
sociated to milk production traits have no known role in
milk production. Some of these genes are described as
having a role in basic metabolism and many are not
characterized at all. The associations presented here
open the door to study these genes in the context of
milk production. It also reinforces that basic research to
characterize and identify the function of the genes is still
necessary, especially in buffaloes. According to [59],
there are only 493 annotated genes in buffalo. The regu-
lar number of genes in mammalian genomes is around
20,000, so the discrepancy is evident. Moreover, rear-
rangements and inversions in the cattle homologue
chromosomes complicate the annotation of buffalo
genes [60]. A species specific genome reference for buf-
falo is needed.
The identification of genes with pleiotropic effects

could contribute to the genetic evaluation of many traits.
An example of a gene with important pleiotropic effects
is PLAG1 in cattle [61]. To identify genes with a pleio-
tropic effect and regulatory role in buffaloes, we pre-
dicted a gene network from the ten studied traits. The
gene network was visualized using Cytoscape software.
Data from 1,723 SNPs were used in network predictions,
selected SNP were associated with the majority of traits.
Of these, a total of 608 SNPs were identified to be close
or within a gene or a known transcript. The SNPs, that
didn’t have a gene close to them, remained on the net-
work as nodes named after their chromosome position.
The final gene network had 1068 nodes and 3307 edges.
The nodes interactions varied from 23 to 1 with an aver-
age of 3.9 interactions per node (Fig. 1a).
A SNP located in C14H8orf34 gene was a central node

of the network, having 23 predicted interactions. Infor-
mation about this gene is scarce; however some indica-
tions of its function and pleiotropic effect might be
discussed. SNPs in this gene were associated, in humans,

with “fasting serum aspartate aminotransferase” and
“urinary free epinephrine excretion per day” [62]. Some
considerations might be done concerning these pheno-
types. Aspartate aminotransferase is a test carried to
check for liver damage [63]. The liver has more than 400
functions and participates in the general metabolism. A
gene with a liver function would be a logical candidate
for pleiotropic or regulatory roles. The association of
C14H8orf34 with epinephrine production may also sup-
port a pleiotropy claim. Epinephrine is a hormone and a
neurotransmitter synthesized in the adrenal glands that
acts via many pathways to accelerate metabolism under
stress situations [64].
With the aim to find high interconnected regions,

termed clusters, further analyses were carried using
MCode App (Cystoscape). The first cluster had CA10 as
its seed (Fig. 1b). The function of CA10 is the inter-
conversion between carbon dioxide and bicarbonate,
with essential physiological function in many tissues
[65]. In humans, SNPs in CA10 were related to menar-
che, weight and body mass index [66, 67]. The associ-
ation of this gene with growth and reproductive traits
reinforces the wide effect and supports the findings
herein. In this context, CA10 might be a regulator of fat
metabolism and reproductive development in buffaloes.
Transcription factor (TF) genes, a total of 28 in the

network, also had their clusters mined for regulatory in-
formation. Genes that work as TF are important in
terms of pleiotropy effect since they can guide transcrip-
tion and interact with many other genes. The TF with
highest number of predicted interactions was RARB, a
retinoic acid receptor important for cell growth and dif-
ferentiation [68]. RARB is expressed in many tissues
from liver and intestine [69] to sperm [70] in cattle. The
gene seems also to be a very important for bovine mam-
mary gland cell viability [68]. Studies of cell cycle and
apoptotic events in mammary glands [68] suggests that
the role RARB in its development is expressive. Consid-
ering the traits herein analysed, six out of ten traits ana-
lysed are related to the udder and its physiology, so the
finding of a TF that has a crucial role in its development
as a central regulator in the network is plausible (Fig. 1c).
The TF gene with the second largest number of con-

nections in the network was ATF1. This gene regulates
other genes involved in growth and survival and was as-
sociated with angiogenesis in the mammary gland [71].
Milk is derived from blood due to difference of pressure
in the alveolus. A suitable explanation is that the better
vascularised the alveolus are, the bigger is the milk and
contents production, resulting in a suitable explanation.
This gene was also indicated as a key TF for meat quality
[72] (Fig. 1c).
The RARB gene has eight interactions, three of them

are with known genes (RILPL1, bta-mir-10a, PRKCA)
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and ATF1 gene has six interactions, four of them are
with known genes (ABCA13, TBC1D19, MAGI2, CUL5).
It is curious to verify that some of these genes also have
a variety of roles in the metabolism and are also candi-
dates to have pleiotropic effects.
A genome wide association study with milk produc-

tion was done with the buffalo SNP chip in Mediterra-
nean buffaloes [73] with 78,137 SNPs considered in the
analyses. However, the SNPs reported to be highly asso-
ciated with the trait [73] are not the same to the ones
found in the present study. Some of the SNPs weren’t
included in the present analyses and some didn’t have
significance. The divergent results could be explained in
many ways: different genetic composition of the breeds

(Mediterranean x Murrah), selection pressure in the
population (expected to be higher in the Italian popula-
tion), inbreeding (higher in Brazilian population), SNPs
segregating and analyzed in both studies (78,137 SNPs
in Mediterranean x 61,144 SNPs in Murrah), methodolo-
gies for estimation of the SNP effects and etc.
GWAS studies were done for reproductive and pro-

duction traits in China [10], and using partially the same
animals of the present study [11] and a low and a high
density bovine SNP, respectively. The genes found were
not the same as the above discussed neither. There are
many differences in the markers used in these studies.
They worked with 935 SNPs [10] and 15,745 SNPs [11]
that are cattle variants and are also segregating in

Fig. 1 a - Association weight matrix gene network. a) Entire gene network formed by 1,068 nodes connected by 3,307 predicted interactions
(edges). b – Highest interconnection region in the network whose seed (square) is CA10 gene (MCODE App). c - Subset of the co-association
network showing the best duo of transcription factors: RARB and ATF1
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buffaloes. These markers should exist before the differ-
entiation of the species. In the present work, the density
of the SNPs is much higher (61,144 markers) and the se-
lection of them based on buffaloes data. Differences in
SNPs used may explain the contrasting results. The bo-
vine SNP chip does not cover the buffalo genome with
the same efficiency, even if the species are close in evo-
lution terms. The use of cross-species SNP chips might
not be as informative as initially proposed [59]. Even if
the DNA sequences are similar, the functional variants
may not be, as suggested before [8] and [10]. The inter-
esting candidate genes discussed herein resulted from
significant SNP and are largely supported by the litera-
ture in terms of its biological function. These promising
GWAS results emphasize the importance of selecting
SNP that are species specific.
Dairy cattle GWAS of varying breeds and traits were

further evidence for species differences when compared
to results herein [30, 32, 33, 49, 74–79]. Only one SNP
(rs41610147) was associated with three fertility traits in
Danish Holstein cattle (female fertility index, interval
from calving to first insemination, days from first to last
insemination in heifers) [76] and was located in an asso-
ciation region in buffaloes. The SNP (rs41610147) in cat-
tle is 398 bp far from the second most significant SNP
associated with NSC in buffaloes. These SNPs may be
indicating the same causative mutation or major gene
associated to reproductive physiology in both species. It
is possible to conclude that despite high genome hom-
ology between buffalo and cattle, the contribution and
influence of genes and variants to studied traits is mostly
different. Candidate genes that might be buffalo-specific
could be explained by the presence of underpinning
causative mutations that are not found in cattle. Some
examples of divergent time of genes between the species
were discussed before [59].
Comparing different breeds of the same species

already results in differences regarding associated genes
and the proportion of phenotypic variance that they ex-
plain [80, 81]. These differences might be explained by
epistatic effects, selection pressure, different environ-
ment, recombination rate, effective population size, al-
lelic frequencies differences, genome coverage by the
SNP chip etc. Logically, if differences are found between
breeds of the same species, comparing different species
can only result in stronger contrast.
Species-specific technologies are important and needs

to be further developed. Particularly, for the buffalo spe-
cies, the lack of a publicly available complete and anno-
tated genome complicates the advance and development
of new methodologies for genetic evaluation for the
specie.
The genes identified in this study are candidates for

fine-mapping with the aim to find putative causative

mutations. The incorporation of this information in a
low density SNP chip is informative and auxiliary to gen-
etic evaluation, with cost-benefit for producers. The
identification of causative mutations reduces the need
for tag SNP (in linkage disequilibrium with causative
mutations), promotes higher accuracy for genomic
breeding values, which can persist over generations and
permits a higher transferability across breeds [82]. The
results presented expand our knowledge and indicate re-
gions for possible genes not yet annotated in buffaloes,
but potentially important. It also serves as basis for fur-
ther functional genes studies.

Conclusion
The present article is a genome wide association and
gene network analyses in buffaloes using a SNP chip
specifically developed for the species. Putative genes for
production and reproductive traits were found and these
are candidates for searching causative mutations. Com-
parative analyses between cattle and buffaloes support
that although the genome sequence is similar, the vari-
ants between them are different. Evidence that species-
specific technology should be developed for buffaloes
was presented discussed herein.
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