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Abstract

Background: Elaeis guineensis is the world’s leading source of vegetable oil, and the demand is still increasing. Oil
palm breeding would benefit from marker-assisted selection but genetic studies are scarce and inconclusive. This
study aims to identify genetic bases of oil palm production using a pedigree-based approach that is innovative in
plant genetics.

Results: A quantitative trait locus (QTL) mapping approach involving two-step variance component analysis was
employed using phenotypic data on 30852 palms from crosses between more than 300 genotyped parents of two
heterotic groups. Genome scans were performed at parental level by modeling QTL effects as random terms in
linear mixed models with identity-by-descent (IBD) kinship matrices. Eighteen QTL regions controlling production
traits were identified among a large genetically diversified sample from breeding program. QTL patterns depended
on the genetic origin, with only one region shared between heterotic groups. Contrasting effects of QTLs on bunch
number and weights reflected the close negative correlation between the two traits.

Conclusions: The pedigree-based approach using data from ongoing breeding programs is a powerful, relevant
and economic approach to map QTLs. Genetic determinisms contributing to heterotic effects have been identified
and provide valuable information for orienting oil palm breeding strategies.
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Background
Oil palm (Elaeis guineensis Jacq.) is a perennial allogam-
ous species originating from Africa. It is the world’s
leading crop for vegetable oil production (34.7 %, USDA
statistics). A dynamic breeding sector has contributed to
enhancing oil yields by 60 % in the last 50 years [1].
However, due to the increasing demand for edible oil
and the diverse range of uses of palm oil, it is necessary
to further increase oil yields to boost production in re-
stricted cultivated areas. One main oil palm breeding
scheme that is used was developed in the 1950s and is
derived from a reciprocal recurrent selection (RRS)
scheme, as described by Gascon & De Berchoux [2].
This breeding scheme was designed to take advantage of
the heterotic effects on bunch production observed

between Asian and African (heterotic group A and B,
respectively) genetic backgrounds. The heterosis effect is
the result of a better combination of yield underlying
components, bunch number and weight, with group A
palms producing a low number of big bunches and con-
versely for B palms, the two traits being negatively corre-
lated [3]. Parents from both heterotic groups were
assessed in large-scale field trials where candidate palms
from full-sib families were progeny tested in A × B
crosses. Through a better understanding of this heterosis
effect, the selection of parents from heterotic groups
could be enhanced so as to optimize the complementa-
tion of bunch production components.
QTL mapping could play a major role in making the se-

lection process more efficient through the identification of
the genetic basis of quantitative traits and the inclusion of
this knowledge in breeding programs [4]. In oil palm,
marker-assisted selection was proposed quite early to
optimize the long breeding cycles, i.e. up to 20 years, but
so far relatively few genetic studies have been published.
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QTL mapping has been used to investigate yield compo-
nents [5–7], fatty acid composition [8, 9], sex ratio [10] or
embryogenesis [11]. These studies involved different types
of mapping population derived from one to four parents
in intra- or inter-specific crosses, within Elaeis guineensis
species or with its related species Elaeis oleifera respect-
ively. However, because of large areas needed for palm
tree evaluation, a limited number of individuals per cross
are planted. Hence, most of these studies are limited by
the insufficient population sizes, i.e. in the best cases
around a hundred individuals but often much less, which
can reduce the effectiveness of analysis and lead to inflated
estimations of QTL effects [12]. QTL mapping contribu-
tions to breeding programs with other species are thus
often fewer than expected [4, 13]. In addition to under-
powered experimental design, genetic material in QTL
mapping studies is often not very representative of the
genetic diversity used in breeding programs, especially in
populations derived from biparental crosses, which jeopar-
dizes the effective transferability of the results. The recent
development of new types of genetic material, such as
Arabidopsis MAGIC [14] or AMPRIL [15] populations, or
the maize NAM populatio[45nun [16], increases the num-
ber of alleles in segregation, while also striving to over-
come this limitation. In oil palm, a study used this kind of
multi-parental design by analyzing four connected full sib
families between four parents [6], with simultaneous ad-
vantages of analyzing larger numbers of individuals and
segregating alleles.
In agronomic species, an interesting way to improve the

transferability of genetic knowledge and avoid additional
costs of developing and phenotyping specific genetic ma-
terial is to conduct in silico QTL mapping, i.e. based on
available phenotypic and genetic data from commercial
breeding programs [17]. This emerging opportunity gives
rise to new issues in terms of experimental design and
statistical approaches [18] and examples in different set-
tings are still needed to assess its potential. In oil palm,
progeny-based phenotypic evaluations of parents, with
mostly known pedigree, have provided up to 10 years of
data which is of interest for testing an in silico QTL map-
ping approach. Statistical methods for QTL mapping in
pedigrees were first developed in human and animal gen-
etics under high experimental design constraints. George
et al. [19] proposed a two-step variance component
approach based on mixed linear models that include IBD
information at tested genetic positions. In plants, few
studies report the implementation of this approach to
map QTL, e.g. in wheat [20]. Statistical approaches based
on linear mixed modeling generally allow flexibility for
QTL testing, as shown in Van Eeuwijk et al. [21] where
QTLs were mapped for hybrid performance in maize by
testing QTL effects in both heterotic groups. Bayesian
frameworks have also been developed to map QTLs in

multiple related crosses [22, 23] and used successfully in
apple [24] and cherry [25].
The aim of this study was to investigate the genetic

architecture of production traits in two heterotic groups
of oil palm. A QTL mapping approach was used to
analyze bunch yield variation in the A × B population
and to assess the complementation of yield underlying
components, bunch weight and number, and their rela-
tionship with fruit bunch yield. To overcome conven-
tional QTL mapping limitations that have been
identified in oil palm and other perennial species, a
promising pedigree-based approach was used to analyze
traits involved in heterosis directly from current breed-
ing program data.

Methods
Plant material
All palms analyzed belonged to families of the commercial
oil palm (Elaeis guineensis Jacq.) breeding program of
PalmElit, a CIRAD subsidiary and leading oil palm breed-
ing company (www.palmelit.com). This breeding program
is shared and conducted with partners, i.e. PT Socfin
Indonesia (Indonesia) and INRAB (Benin). The 30852
palms with phenotypic evaluations belong to 478 crosses
between 146 and 156 parents from heterotic groups A
(GA) and B (GB), respectively. Most of the parents were
planted in Pobè (INRAB, Benin), where the crosses were
carried out. AxB crosses were planted in Aek Loba estate
(PT Socfin Indonesia). Heterotic groups were based on
the complementarity of yield components, bunch number
and average weight, with GA palms having a low number
of big bunches and GB palms having a high number of
small bunches [26]. GA consisted of 132 palms from the
“Deli” population derived from four oil palms planted in
1848 in Indonesia [27], while the remaining 11 palms orig-
inated from Angola. GB consisted of palms from La Mé
(106, Côte d’Ivoire), Yangambi (23, Democratic Republic
of the Congo), La Mé x Yangambi (5), La Mé x Sibiti (6,
Democratic Republic of the Congo) and Nigeria (5).
Pedigree information was available for individuals in

both heterotic groups (Additional file 1: Figure S1).
However, for Deli individuals, the pedigree was known
for a maximum of four generations. In this study, the
Deli pedigree was reconstructed with MOLCOANC 3.0
software, as described in Cros et al. [28], to obtain kin-
ship coefficients between all Deli palms.

Phenotypic data
Phenotypic evaluations were conducted in 26 trials on
30782 A × B oil palms that had been planted on 350 ha
at Aek Loba (Indonesia, SOCFINDO estate) between
1995 and 2000 in a study lasting 11 years. The experi-
mental designs of the trials involved randomized
complete block designs (RCBD) with five or six blocks
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and balanced lattices of ranks four or five. The data used
in this study was from oil palms which had reached a
mature stage 6 to 10 years after planting. Mature bunch
harvests were performed every 10 days, and the bunch
numbers and weights were recorded. Based on these
data, three production traits were analyzed, i.e. fresh
fruit bunch yield (FFB, kg/year), bunch number (BN,
bunch/year) and average bunch weight (ABW, kg),
which is the ratio between FFB and BN estimated
annually.
A linear mixed model was designed to account for

non-genetic (trial, block) and genetic (general combining
ability (GCA) and specific combining ability (SCA)) ef-
fects and adjusted to the data:

Y ¼ Xβþ Z1uþ Z2sþ ZAgA þ ZBgB þ e ð1Þ
where Y is a n × 1 observation vector of production
traits (n = 30852) averaged over 4 years in the A × B
population, X is a n × m design matrix relating observa-
tions to trial fixed effects β with β being a m × 1 vector
(m = 26), Z1 is a n × b design matrix relating observa-
tions to block random effects u ~N(0, Iσu

2) with u being
a b × 1 vector (b = 677), Z2 is a n × c design matrix re-
lating observations to SCA random effects s ~N(0, Iσs

2)
with s being a c × 1 vector (c = 478), ZA and ZB are n ×
qA and n × qB design matrices relating observations to
GCA random effects for heterotic groups A and B, gA ~
N(0, AAσ

2aA ) and gB ~N(0, ABσ
2aB ) respectively, with

gA and gB being qA × 1 and qB × 1 vectors, respectively
(qA = 146 and qB = 156), and eis the n × 1 vector of re-
sidual effects ~N(0, Iσe

2). I is an identity matrix and AA

and AB are the pedigree-based kinship matrices of heter-
otic groups A and B, respectively.
Calculation of heritabilities and genetic correlations

were based on variances estimated by the linear mixed
model (1). Narrow-sense heritabilities (h2) of each trait
were obtained as the ratio of the variance of general
combining abilities, for both groups A and B, to the total
phenotypic variance of crosses according to the formula:

h2A=B ¼ σ2aA=B
σ2b þ σ2s þ σ2aA þ σ2aB þ σ2e

Genetic correlations (rg) between traits T1 and T2 in
each heterotic group were calculated using covariances
and variances estimated in a multivariate linear mixed
model, based on model (1). The model had the form:

T1
T2

h i
¼ X

0 X
0

� � βT1
βT2

h i
þ Z1

0 Z1
0

� �
uT1
uT2

h i
þ Z2

0 Z2
0

� �
� ST1

ST2

h i
þ ZA
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0
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h i
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0
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h i
þ eT1
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ð2Þ

GCA were structured as:

gAT 1

gAT 2

� �eN 0;
σ2aAT1

CovA T 1; ;T 2ð Þ
CovA T 1; ;T 2ð Þ σ2aAT2

� �
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� �
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� �eN 0;
σ2aBT1
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� �
⊗AB

� �

where CovA(T1,T2) and CovB(T1,T2) are additive genetic
covariances.
Residual effects were structured as:

eT1

eT2

� �eN 0;
σ2eT1

Cove T 1; ;T 2ð Þ
Cove T 1; ;T 2ð Þ σ2

eT 2

� �
⊗I

� �

where Cove(T1,T2) is residual covariance.
Genetic correlations (rg) were calculated according to

the formula:

rgA=gB ¼ CovA=B T 1;T2ð Þ
σA=B T 1 � σA=B T2

Phenotypic correlations (rp) were estimated in the A × B
population via the Pearson correlation coefficient.

Molecular data and genetic map construction
The genotyped population consisted of palms from both
heterotic groups which were parents of the crosses eval-
uated in the genetic trials. Palms were genotyped with
388 SSR markers developed in different studies [29–31].
Total genomic DNA was extracted from freeze-dried

leaf samples of each progeny and parent using the com-
mercial kit NucleoSpin 96 plants II (Macherey-Nagel,
Germany) in accordance with the manufacturer’s proto-
col. Genomic DNA concentrations were estimated with
a spectrometer (Infinite® 200 PRO NanoQuant®,
Switzerland). Microsatellite fragment amplification was
performed in a 384-well plate with 25 ng of DNA in a
10 μl final volume containing 1 U of Taq DNA polymer-
ase, 1 μl of 10x buffer (10 mM Tris (pH 8.3), 50 mM
KCl, 1.5 mM MgCl2, 0.001 % (w/v) glycerol), 2 mM
dNTP, 0.6 mM MgCl2, 0.08 μM of M13-tailed primer, 1
μM of the reverse primer, 1 μM of M13 primer-
fluorescent dye VIC, PET, NED or FAM (Applied Biosys-
tems, USA). The PCR conditions were as follows: initial
denaturation at 94 °C for 5 min, followed by 35 cycles al-
ternating 30 s of denaturation, 1 min 15 s of hybridation
at annealing temperature, 1 min 30 s of extension, and
ending with 30 min of final elongation at 72 °C. PCR
products were pooled. We used 2 μl of the pooled PCR
product with 10 μl of size standard GeneScan ™-600 LIZ
® at 0.0012 % in Hi-Di™ formamide for migration on a
3500xL Genetic Analyzer (Applied Biosystems, USA).
GeneMapper© V4.1 (Applied Biosystems, USA) soft-

ware was used to determine allele sizes.
A consensus linkage map (Additional file 1: Figure S2)

based on the pedigree of both groups A and B was con-
structed with CRIMAP version 2.4 [32], as described in
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[33]. The genetic map was drawn using MapChart soft-
ware [34].

QTL mapping
QTL mapping was performed following the two-step
variance component approach described in George et al.
[19]. Van Eeuwijk et al. [21] presented an adapted ap-
proach to identify QTLs in a maize hybrid program that
tested parents from heterotic groups like in oil palm.
The approach presented here was extended to an out-
breeding population for which genotyping data were
available only on the parents of both heterotic groups A
and B and phenotypic data only on A × B individuals.
The first step involved computation of IBD kinship
matrices over a grid of genetic positions. The second
step consisted of QTL presence tests over the grid of
genetic positions by comparison of various linear mixed
models.

IBD matrix computation
QTL mapping using a variance component approach re-
quires identity-by-descent (IBD) relationship matrices as
variance-covariance matrices for testing QTL effects at
each genetic position. An IBD analysis using SimWalk2
software [35] was conducted to estimate the IBD matri-
ces formed by empirical kinship coefficients for each
pair of palm trees present in group A and B pedigrees.
Simwalk2 implements a Bayesian framework using a
Markov chain Monte Carlo (MCMC) algorithm to select
the most likely genetic descent graph depicting inherit-
ance patterns within pedigrees [36]. Empirical kinship
coefficients were calculated at every marker position and
over a 3 cM interval grid, leading to 922 evaluation
points for QTL presence testing using IBD analysis in
Simwalk2.

Statistical modeling
The model (1) (Phenotypic data section) was used as a
null model for QTL mapping. Two other models were
designed to test for the QTL presence in each heterotic
group by adding a random QTL effect to model (1). A
genome scan was performed by fitting models for groups
A and B at k genetic positions used to compute IBD kin-
ship matrices testing for the QTL presence. The models
had the form:

Y ¼ Xβþ Z1uþ Z2sþ ZAgA þ ZBgB þ ZAvA;k þ e

ð3Þ

Y ¼ Xβþ Z1uþ Z2sþ ZAgA þ ZBgB þ ZBvB;k þ e

ð4Þ
where vA,k and vB,k are qA × 1 and qB × 1 vectors of QTL
random effects at the kth genetic position in heterotic

group A and B respectively (qA = 146 and qB = 156), with
vA,k ~N(0, AA,kσ

2aA,k) and vB,k ~N(0, AB,kσ
2aB,k). AA,k

and AB,k are the IBD kinship matrices at the kth genetic
position, calculated in groups A and B, respectively.
The log-likelihood ratio test (LRT) was performed to

compare models (3)/(4) and (1) at each k position. As the
distribution of LRT is unknown under the null hypothesis
[19], permutations were performed to estimate significance
thresholds (see next paragraph). A QTL was declared sig-
nificant if the LRT exceeded the threshold, and sets of puta-
tive QTLs in both heterotic groups were constituted.
According to a multiple QTL mapping strategy [37] to

better account for the QTL variance of QTL elsewhere
in the genome when testing a genetic position, a second
genome scan was then performed with updated null (5)
and test (6)/(7) models that incorporated putative QTL
random effects for both heterotic groups:

Y ¼ Xβþ Z1uþ Z2sþ ZAgA þ ZBgB

þ
X

c in CA

ZAvA;c þ
X

c in CB

ZBvB;c þ e

ð5Þ

Y ¼ Xβþ Z1uþ Z2sþ ZAgA þ ZBgB

þ
X

c in CA

ZAvA;c þ
X

c in CB

ZBvB;c þ ZAvA;k þ e

ð6Þ

Y ¼ Xβþ Z1uþ Z2sþ ZAgA þ ZBgB

þ
X

c in CA

ZAvA;c þ
X

c in CB

ZBvB;c þ ZBvB;k þ e

ð7Þ

Where CA and CB are subsets of genetic positions
where putative QTLs were identified in the first genome
scan for groups A and B, respectively. To test the QTL
presence at genetic positions within a 20 cM window
centered on CA and CB positions, the random putative
QTL effect at the considered positions was removed in
the null and test models (5) and (6)/(7), respectively.
As for the first genome scan model, (6)/(7) and (5)

were compared using LRT and QTLs were declared sig-
nificant if the LRT exceeded the threshold determined
by permutation. Approximate confidence intervals of
QTL location were estimated by 1-LRT support interval
calculation, i.e. the interval in which LRT is within 1
units of its maximum [38]. Final multi-QTL models
were fitted for each production trait incorporating ran-
dom effects for all QTLs identified in the second gen-
ome scan. Best linear unbiased predictors (BLUP) were
obtained as predictors of additive value of each individ-
ual at a given QTL. BLUPs were plotted on the pedigree
graph grouping all tested parents using Pedimap soft-
ware [39].
All linear mixed effect models were estimated by

REML using the R-ASReml package (Butler et al., 2009)
for R [40].
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LRT threshold calculation
LRT thresholds used to determine the presence or ab-
sence of QTLs at the tested genetic positions were set
independently for each heterotic group, each production
trait and for the first and second genome scans. The
threshold calculation was based on the distribution of
the LRT under the hypothesis of the absence of QTLs in
the genome. Null distributions were obtained by permu-
tations [41], conducting genome scans with de-
correlated QTL effects from phenotypes without affect-
ing other effects correlations. To do that, vectors of IBD
coefficients constituting the IBD kinship matrices associ-
ated to QTL effects, AA,k and AB,k in the scan model
(see statistical modeling section), were randomly shuffled
before each replicate of genome scan, whereas all other
components were unchanged comparing to the null
model. 1000 and 500 replicates were obtained to deter-
mine each threshold for the first and second genome
scans of QTL mapping process respectively, for each
trait and heterotic group (Additional file 1: Figure S3).
For each replicate, the maximum LRT value obtained
was recorded to construct the distribution of maximum
LRT value under the null hypothesis. The 95 % percent-
ile was calculated based on this distribution to deter-
mine a 5 % LRT threshold. To save computing time, a
reduced density of evaluation points was tested for each
replicate genome scan, with 1 out of 25 and 50 positions
for the first and second genome scan of QTL mapping
process respectively, which led to 40,000 and 10,500
tests of null hypothesis, respectively, to obtain the null
distribution. The testing frame was shifted for each per-
mutation sample to ensure that all genetic positions
were assessed.

Assessment of QTL pleiotropic effects
18 QTL regions were identified based on LRT thresholds
and the approximate confidence intervals of QTL loca-
tion. Linear mixed models of the form (5) including ef-
fects for the 18 QTL regions were adjusted for each
production variable. Additive QTL effects were pre-
dicted for parents of corresponding heterotic groups and
Pearson correlation coefficients between them were cal-
culated for each pair of production variables.

Results
Variation for production traits in AxB population
Fresh fruit bunch yield (FFB) and underlying compo-
nents bunch number (BN) and average bunch weight
(ABW) were normally distributed within the hybrid
population (30852 palms) derived from crosses between
palms of heterotic groups A and B, and ranged from 6
to 411 kg/palm/year, 2 to 34 bunches/year and 1.2 to
31.4 kg, respectively (Fig. 1). Coefficients of variation
were around 16 % for FFB and ABW and 22 % for BN.

In the A × B population, BN and ABW were highly and
negatively correlated and FFB was highly and positively
correlated with BN, while it was negatively correlated
with ABW (Fig. 1c). Genetic correlations showed the
same pattern, with closer correlations found in the het-
erotic group A than B (Fig. 1c). Consequently, the iso-
production curves on Fig 1b show that the higher FFB
values were mainly reached with high BN rather than
high ABW.
Heritability based on estimation of variance compo-

nents with only pedigree information ranged from 0.15
for FFB in heterotic group A to 0.36 for ABW in heter-
otic group B (Fig. 1d). Heritability was lower in heterotic
group A than in heterotic group B for the three produc-
tion traits, with a lower additive genetic variance found
in group A (Fig. 1d).

QTL mapping for production traits
Figure 2 shows a heat map of the log-likelihood ratio
test (LRT) for the second genome scan of QTL mapping
process (see Material and Methods) in each heterotic
group for the three production traits. Eighteen signifi-
cant QTL regions were identified, i.e. seven in group A
and eleven in group B. The QTL regions were distrib-
uted in 14 linkage groups, with linkage group 1 and 8
harboring two and four QTL regions, respectively
(Fig. 2). QTL confidence intervals spanned 14.5 cM on
average, ranging from 2 to 42 cM (Fig. 2).
The final QTL models consisted of eight QTLs for

FFB, ten for BN and nine for ABW, jointly accounting
for 50, 70 and 75 % of the phenotypic variance of the hy-
brid population, respectively (Table 1). The residual vari-
ance was 18 to 29 % lower with the final QTL models
than with the pedigree-based model (1) (Table 1). Pedi-
gree variance components in the final QTL models were
all below 1 % of the phenotypic variance, except for the
group B pedigree variance component for FFB (Table 1).
A major QTL was found for group B on the bottom of

linkage group 4, accounting for 21 and 44 % of the
phenotypic variance of BN and ABW, respectively
(Fig. 2). However, this region was not significant for FFB
due to the opposite effects on BN and ABW. The stron-
gest QTL found in group A was located on the top of
linkage group 12 and it accounted for 7, 12 and 11 % of
the phenotypic variance of FFB, BN and ABW, respect-
ively (Fig. 2).

Pleiotropic effects of QTLs
Correlations obtained between production traits at the
hybrid population level indicated that common genetic
regions should control several traits. To assess the
prevalence of these pleiotropic QTLs, correlations be-
tween additive values of each parent at a given QTL
were calculated for the 18 QTL regions identified for the
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three production traits (see Material and methods).
Figure 3a shows the correlation patterns among pairs of
traits, heterotic groups and QTLs. In heterotic group A,
all correlations were high and positive between FFB and
BN, and negative between ABW and the other two traits
(Fig. 3a). The same pattern was observed in eight of the

eleven QTLs identified in heterotic group B (Fig. 3a).
Two of the three remaining QTLs, i.e. B_8@24 and
B_16@57, had opposite effects on BN and ABW, but the
effects on ABW were positively correlated with the ef-
fects on FFB (Fig. 3a). B_5@69 was the only QTL that
had positive effects on the three production traits

ABW

BN

FFB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LRT
12

GA

GB 6

0

GA

GB

GA

GB

Fig. 2 Genetic determinisms of production trait variation in an oil palm A × B population. Heat map of a log-likelihood ratio test (LRT) testing the
presence of a QTL in group A (GA) and B (GB) for the three production traits (FFB, BN and ABW). LRT are plotted along the 16 oil palm linkage
group, and dashes on X-axis represent markers present on the genetic map. Bars on significant QTL positions represent approximate confidence
intervals of QTL location

Fig. 1 Production trait variations in oil palm A × B population. a Distribution of fresh fruit bunch weight (FFB). b Relationship between average
bunch weight (ABW) and bunch number (BN) in an A × B population. The grey scale indicates the density of points with similar BN and ABW
values. Isoproduction curves are drawn with corresponding FFB values given on the right of the curves. cPhenotypic correlations (rp) and
genotypic correlations in heterotic groups A (rgA) and B (rgB) between FFB, BN and ABW. d Narrow sense heritability (h2) for the three production
traits, i.e. FFB, BN and ABW, estimated from A × B individuals
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(Fig. 3a), but no significant effect was found on BN and
ABW (Table 1).
Figure 3b illustrates the different types of QTL found

in heterotic group B. QTL B_1@159 had opposite and
significant effects on BN and ABW, like the majority of
QTLs found (Fig. 3b), which could explain the correla-
tions obtained in the hybrid population. However, QTLs
that had trait-specific effects were found, on BN exclu-
sively (B_15@117, Fig. 3b) or with superior effects on
ABW, while the effect on BN was non-significant
(B_16@57, Fig. 3b).

Overlapping of QTLs between heterotic groups
To assess the complementarity of QTL patterns as a pos-
sible cause of the heterosis observed in the hybrid popula-
tion, the findings of a log-likelihood ratio test (LRT) for
the presence of additive QTLs in each heterotic group at
all genomic evaluation points were plotted for group A
versus group B (Fig. 4). For FFB, point locations mainly
along the X and Y axes indicated that the QTL patterns
differed between the two heterotic groups (Fig. 4a). On
the contrary, for BN and ABW, points near the diagonal
indicated overlapping of QTLs for these traits between the
two heterotic groups (Fig. 4b and c). Among the 18 QTLs
in the final model, these overlapping QTLs were found
only on the bottom on linkage group 1 (1@165 for group
A and 1@159 for group B, Fig. 2), but some others
reached the significance threshold in only one of the two
groups (linkage group 12, Fig. 2).

Discussion
Variance component approach for QTL mapping
QTL mapping is interesting when assessing perennial
species [4], but biological and economic issues can ham-
per its use even for major crop species such as oil palm
for which genetic studies are scarce. As proposed by
Parisseaux and Bernardo [17], in silico mapping, i.e.
based on data from current breeding programs, has
many combined advantages. No extra costs are required
to develop and phenotype specific mapping populations
and this approach enables screening a high number of

Table 1 Variances of genetic model components for three
production traits in oil palm

Variance

Traits Components PED PED + QTL

FFB

A_GCA 14.72 0.15

A_2@12 - 5.29

A_8@59 - 4.08

A_12@33 - 6.71

A_13@7 - 3.69

B_GCA 23.19 1.89

B_1@152 - 2.12

B_5@69 - 3.68

B_8@168 - 16.51

B_15@117 - 8.89

SCA 2.65 1.74

Non genetic 3.86 2.94

Residuals 55.58 42.31

BN

A_GCA 22.67 0.59

A_1@163 - 5.55

A_2@18 - 2.03

A_10@151 - 2.08

A_12@30 - 12.55

B_GCA 31.60 0.00

B_1@159 - 4.18

B_4@253 - 23.79

B_8@137 - 4.40

B_9@69 - 4.88

B_11@172 - 6.23

B_15@117 - 4.27

SCA 2.72 1.60

Non genetic 2.40 1.56

Residuals 40.60 26.29

ABW

A_GCA 17.04 0.11

A_1@123 - 1.90

A_1@167 - 1.99

A_2@19 - 1.34

A_12@30 - 10.73

B_GCA 35.85 0.00

B_1@167 - 6.80

B_4@252 - 44.60

B_8@24 - 1.07

B_14@9 - 0.90

B_16@57 - 5.88

Table 1 Variances of genetic model components for three
production traits in oil palm (Continued)

SCA 3.33 1.46

Non genetic 2.63 1.39

Residuals 41.15 21.84

Variances are presented in percentage of total variance for the model without
QTL effects (PED) and for the final selected QTL model (PED + QTL). QTL
names are formed by heterotic group ID (A or B), the number of linkage group
and the position in cM
FFB Fresh fruit bunch yield
BN Bunch number
ABW Average bunch weight
GCA General combining ability
SCA Specific combining ability
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individuals and alleles, increasing relevance for the
breeding process. Linear mixed model approaches used
to map QTLs in such genetic material are flexible and
powerful [42]. In the present study, this allowed us to
test for the presence of QTLs in two heterotic groups, as
proposed in maize by van Eeuwijk et al. [21], and to ac-
count for confounding nongenetic effects and polygenic
effects, which can be important in such large trials with
different genetic backgrounds. Moreover, one of the in-
teresting benefits specific to this study was the possibil-
ity of linking phenotypes that were recorded exclusively
in A × B individuals to genotypes available only for par-
ents and grand-parents in some cases. Thus it enabled
testing the presence of QTLs in both heterotic groups in
a single model without first estimating breeding values
of genotyped individuals. By genotyping only parents
and grandparents, recombination events at the AxB

individuals were not taken into account. This could limit
the accuracy of the position of QTL and their confi-
dence intervals which are mainly determined by the
number of recombination events analyzed. However, the
number of individuals genotyped, more than 300, is
greater than the population sizes commonly found in oil
palm and allowed, with moderate genotyping cost, to
conduct QTL mapping based on a very high amount of
phenotypic data, thus enhancing the detection power. In
future studies, the flexibility of a mixed model frame-
work should allow us to easily extend this approach to
test environmental responses and dominance or epistasis
effects.
In a two-step variance component approach, QTL map-

ping is influenced by the precision of IBD kinship matrices
that highlight allele identities between individuals and
recombination events between genetic positions. Marker

a b
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Fig. 3 QTL effects on the three production traits in oil palm. a Correlation between production variables at QTL positions, measured as the
Pearson correlation coefficient between BLUPs of the random QTL effects for each variable pair. The color scale indicates the strength of the
correlation, with green and red being perfect positive and negative correlations, respectively. b Relationships between QTL effects for bunch
number (BN) and average bunch weight (ABW) in heterotic group B parents are presented using the convex hull encompassing the scatter plot
of parental BLUP values (n = 146). Convex hulls are drawn for BLUPs at three QTL positions on linkage group 1 (B_1@159), 15 (B_15@117) and
16 (B_16@57)
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Fig. 4 Co-localization of QTLs between oil palm heterotic groups. Log-likelihood ratio tests (LRT) for QTL mapping are plotted in heterotic group
A (GA) versus heterotic group B (GB) for the three production traits, i.e. fresh fruit bunch (FFB, a), bunch number (BN, b) and average bunch
weight (ABW, c)
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and pedigree information were combined in multipoint
analyses using Simwalk2 Bayesian software to estimate
these matrices [35], which allowed us to handle such large
and complex pedigrees. The pedigree information quality
is a key factor in this step. Unlike the group B pedigree,
which is well known for the different genetic origins that
compose it, the group A pedigree is not fully known in
higher generations. MOLCOANC software [28] was used
to reconstruct the pedigree, and QTL mapping using the
reconstructed pedigree identified two additional QTLs
compared to the raw pedigree (Additional file 1: Figure
S4). One of them on linkage group 12 is highly supported
by a QTL found in the same location for the same traits in
a multiparental population involving related palm trees as
parents [6].

Comparison to previous results in oil palm
Few other studies have aimed at mapping QTLs for the
same production traits, despite frequent limitations for
collecting data for a number of individuals that would be
optimal for QTL mapping. Rance et al. [5] first
attempted to map QTLs based on 84 individuals from
an F2 population derived from a single palm selfing pro-
geny. A saturated genetic map could not be obtained,
and three putative QTLs were identified, one for each of
three production traits, i.e. FFB, BN and ABW. More re-
cently two studies investigated production traits in F1
populations based on 208 individuals [10] and 52 indi-
viduals [7]. The latest involved very few individuals and
identified two QTLs for FFB and one for ABW, but none
for BN. Ukoskit et al. [10], using a greater number of in-
dividuals, identified three QTLs for FFB. Three, two and
five QTLs were found for FFB, BN and ABW, respect-
ively, in a multiparental population pooling 299 individ-
uals from an incomplete factorial design involving two
parents of each heterotic group [6]. The two-step vari-
ance component approach used in this study identified
eight, ten and nine QTLs for FFB, BN and ABW, re-
spectively, and some other suggestive QTLs that were
just below LRT threshold. The higher detection power
achieved in our study compared to previous works was
likely due to the higher genetic variation screened
through pedigree based analysis. Analysis in F1 from sin-
gle crosses, especially in oil palm for which our commer-
cial elite genotypes are partially inbreed, screen a very
restricted genetic basis and raises the risk that palms
used as parents had homozygous positive alleles at many
QTLs. Although the multi-parent design overcame this
issue, it was less efficient than pedigree-based analysis.
Moreover, the difference in detection power could be
linked to the higher number of individuals in the map-
ping population, at least compared to studies that have
fewer. The number of genotypes upon which the QTL
mapping was based was actually not very high (around

150 in each heterotic group) as only the parents were
genotyped, but the general combining abilities of these
individuals were estimated very precisely via numerous
progeny tests, with an accuracy of 0.9 [43].
CIRAD microsatellite marker resources have been

widely used in oil palm genetics since the publication of
a reference genetic map [29] that facilitated comparison
of QTL mapping results between different studies.
Among the 18 QTL regions identified in this study, eight
were found by other authors for the same traits. Billotte
et al. [6] identified the set of QTLs closest to our, with
five shared regions as well as three with suggestive
QTLs. This was not surprising as the parents derived
from their factorial design were founders in the pedi-
grees of the group A and B individuals used in our study.
The co-localization of pedigree-based QTLs with those
found in previous studies in related or unrelated popula-
tions confirms the ability of the two-step variance com-
ponent approach to identify regions that control
production traits.

Determinism of heterotic effects on fresh fruit bunch
yield
The implementation of the large genetic trial used in
this study follows the RRS with progeny testing of par-
ents, motivated by the observations of increased FFB in
A × B palms compared to the maximal value of intra-
group crosses [3]. This heterosis effect might be ex-
plained by the better combination of underlying produc-
tion traits, i.e. bunch number and average weight, that
exhibited marked differences between heterotic groups,
with group A palms having a low number of big bunches
and group B palms having a high number of small
bunches. Heterosis is an important phenomenon in
plant breeding, especially in crops that exploit it through
commercial hybrid production, but the details of its mo-
lecular determinism are still not well known. Dominance
through complementation of inferior alleles and over
dominance are the main mechanisms proposed without
being mutually exclusive [44]. In maize, a QTL mapping
approach on large pedigree of heterotic groups showed
that complementation of positive alleles in the hybrids
could be an important factor [21]. The low occurrence
of collocations of QTLs between heterotic groups noted
in the present study, only one among 18 significant QTL
regions, confirms that both heterotic groups are genetic-
ally distant and suggests that complementation of favor-
able alleles would also be part of the phenomenon in oil
palm. However, the experimental design used in this
study was not adequate to identify QTL fixed for alter-
native alleles in heterotic groups and could have a major
role on heterosis, because QTL effects were tested
within heterotic groups and were identified only if the
QTL was polymorphic within the group.
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Inclusion of QTL information in oil palm breeding
programs
Our QTL mapping approach based on data from current
breeding programs overcame usual ineffective analysis
problems by pooling a sufficient amount of data, and the
identified QTLs are highly relevant for integrating infor-
mation for breeding. Moreover, the incomplete factorial
design allowed us to obtain estimates of QTL allele
effects from a wide range of genetic backgrounds, thus
enhancing the transferability to breeding programs.
However, as mentioned by Würschum [18], a validation
step is necessary in marker-assisted selection to avoid
the use of false-positive or overestimated QTLs, a prob-
lem that can arise due to biases in the statistical design.
QTLs can be validated in independent oil palm pedi-
grees in other genetic trials to assess the stability of
QTLs in different genetic or environmental settings, as
has been done in other perennial species [45, 46]. An al-
ternative approach would be to use the A × B popula-
tion, described in this study, to validate QTLs at the
progeny level by genotyping a high number of A × B in-
dividuals with markers identified at QTL locations. In
addition, genotyping directly A × B individuals in several
related progenies would offer two advantages: to give the
statistical power for testing QTL effects conditionally of
genetic background, and so detect dominance or epista-
sis effects between heterotic group A and B alleles, and
to increase the number of recombination events in the
pedigree analyzed in regions of interest, which combined
with an increased genotyping density of these regions
would reduce the confidence interval around QTLs. The
latter would be interesting for QTLs identified in less
well covered regions (e.g. top of linkage group 14)
caused by difficulties in genetic map construction [33].
For the QTL validation or marker-assisted selection

process, target QTL genotypes of pedigree members must
be known in order to be able to design efficient crosses
that test and combine segregating QTLs. The variance
component approach modeled QTL effects as a random
term, and estimates of the additive value of each individual
at a given QTL were obtained with BLUPs. Despite the
normal distribution of BLUPs for QTL effects, the segre-
gation in full-sib families and alleles carried by pedigree
members could be inferred qualitatively, e.g. by looking at
the pedigree with projected BLUP values (Additional file
1: Figure S5). The Bayesian approach implemented in
FlexQTL software offers an interesting way to predict the
QTL genotype [23]. The presence of biallelic QTLs in the
genome are tested simultaneously with QTL alleles car-
ried by founders by inference on QTL genotype probabil-
ities for any members of the pedigree based on pedigree,
marker and phenotype data.
Such robust information about QTLs and their segrega-

tion in genetic backgrounds used in a breeding scheme

could be integrated in the RRS to favor complementation
of QTLs for production traits and thus to enhance the
heterotic effects. As shown in Additional file 1: Figure S5,
QTL segregation in heterotic groups differed depending
on the genetic origins, e.g. La Mé and Yangambi, and re-
combination between these genetic origins could lead to
improvements within heterotic groups by combining fa-
vorable alleles. Conventional pyramiding of interesting
QTL approaches could be a way to obtain in few genera-
tions improved parents in each heterotic group. Although
pyramiding could be efficient in the case of traits with
simple genetic determinism, genomic selection is becom-
ing an attractive approach for traits with genetic architec-
ture following an infinitesimal model, especially in species
with long breeding cycles and biological constraints. Vari-
ous authors have proposed the inclusion of genetic archi-
tecture information to prioritize genomic regions in the
estimation of breeding value [47–49]. The benefits of a
genomic selection approach was evaluated using data
from the same oil palm breeding program [43] and our re-
sults provide an opportunity to test, based on empirical
data, a combined QTL and genomic selection approach to
achieve efficient marker-assisted selection.

Conclusions
18 QTL regions controlling production traits in oil palm were
identified using data from current breeding programs ana-
lyzed with an efficient pedigree-based approach. Pleiotropic
QTL regions with distinct patterns between and within oil
palm heterotic groupswere identified and provide valuable in-
formation for orienting oil palm breeding strategies.

Additional file

Additional file 1: Figure S1. Pedigree of oil palm heterotic groups A
(A) and B (B) individuals related to A×B progenies providing phenotypic
data. Palm trees from group A originate from populations Deli (DELI) and
Angola (AN), those of group B originate from populations La Mé (LAME),
Yangambi (YBI), Nigeria (NI) and Sibiti (SI). Palm trees used as parents of
A×B progenies are in white, and for group A pedigree, palm trees
surrounded with red were reconstructed using MOLCOANC software.
Figure S2. Oil palm consensus genetic map obtained from
recombination information in group A and B pedigrees. Linkage groups
are numbered according to Billotte et al. (2005, 2010). Map distance is
given on the left in centimorgans (cM) and marker names on the right.
Figure S3. Null distribution of log-likelihood ratio test in oil palm group
A (green) and B (blue) for first (LRT_1,A) and second (LRT_2,B) genome
scan for fresh fruit bunch weight (FFB), bunch number (BN) and average
bunch weight (ABW) in heterotic group A (green lines) and B (blue lines).
Figure S4. Log-likelihood ratio test (LRT) profile obtained in the first
genome scan (see Material and Methods) using known (black lines) or
reconstructed (green lines) pedigree of oil palm heterotic group A
individuals. Figure S5. Example of QTL segregation in oil palm pedigree.
Additive effects on bunch number for pedigree term (A,D) and QTLs on
linkage group 9 at 69 cM (B,E) and on linkage group 15 at 117 cM (C,F)
are projected on two subsets of heterotic group B pedigree, one
centered on La Mé LM10T individual (A-C) and one grouping most of Yan-
gambi individuals (D-F) . Red to green scale indicates lowest to highest
value of BLUP of bunch number. (PPTX 289 kb)
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