
Ghoshal et al. BMC Genomics  (2015) 16:999 
DOI 10.1186/s12864-015-1933-2

RESEARCH ARTICLE Open Access

MicroRNA target prediction using
thermodynamic and sequence curves
Asish Ghoshal1, Raghavendran Shankar1, Saurabh Bagchi2, Ananth Grama1 and Somali Chaterji1*

Abstract

Background: MicroRNAs (miRNAs) are small regulatory RNA that mediate RNA interference by binding to various
mRNA target regions. There have been several computational methods for the identification of target mRNAs for
miRNAs. However, these have considered all contributory features as scalar representations, primarily, as
thermodynamic or sequence-based features. Further, a majority of these methods solely target canonical sites, which
are sites with “seed” complementarity. Here, we present a machine-learning classification scheme, titled Avishkar,
which captures the spatial profile of miRNA-mRNA interactions via smooth B-spline curves, separately for various input
features, such as thermodynamic and sequence features. Further, we use a principled approach to uniformly model
canonical and non-canonical seed matches, using a novel seed enrichment metric.

Results: We demonstrate that large number of seed-match patterns have high enrichment values, conserved across
species, and that majority of miRNA binding sites involve non-canonical matches, corroborating recent findings. Using
spatial curves and popular categorical features, such as target site length and location, we train a linear SVM model,
utilizing experimental CLIP-seq data. Our model significantly outperforms all established methods, for both canonical
and non-canonical sites. We achieve this while using a much larger candidate miRNA-mRNA interaction set than prior
work.

Conclusions: We have developed an efficient SVM-based model for miRNA target prediction using recent CLIP-seq
data, demonstrating superior performance, evaluated using ROC curves, specifically about 20 % better than the
state-of-the-art, for different species (human or mouse), or different target types (canonical or non-canonical). To the
best of our knowledge we provide the first distributed framework for microRNA target prediction based on Apache
Hadoop and Spark.

Availability: All source code and data is publicly available at https://bitbucket.org/cellsandmachines/avishkar.

Background
MicroRNAs (miRNAs) are short 20–24 nucleotide
(nt), endogenous RNAs that modulate gene regulatory
pathways [1, 2] and form the most widely studied class
of non-coding RNAs (ncRNAs). miRNAs mediate RNA
interference (RNAi) by targeting the 3’ UTR of themRNA,
or in some cases, other mRNA regions, such as the
mRNA’s coding sequence (CDS) or its 5’ UTR [3]. Fol-
lowing their biogenesis, miRNAs complex with Argonaute
(AGO) proteins, which are the catalytic components of
the RNA-induced silencing complex (RISC) [4]. This
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miRNA-RISC complex then targets its cognate mRNA
fragment. These interactions result in mRNA repression,
destabilization, or, in more complex ways, contour the
gene expression landscape [5, 6]. There are over two thou-
sand miRNAs that have been annotated in humans [7],
displaying many-to-many associations with mRNA tar-
gets. Such associations are speculated to be controlling
a vast majority of mammalian genes [8], involving all
cellular pathways, from development to pluripotency to
oncogenesis [9–14].
Notwithstanding the biological importance of miRNAs,

determining their targets with high accuracy and exhaus-
tively has remained elusive, with in-silico predictions
plagued by high false-positive and false-negative rates
[15]. This is due inmany ways to the small size of miRNAs,
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which requires as few as 6 base pairs of complementar-
ity for functional miRNA targeting, as well as the diverse
miRNA targetome [16]. As a machine learning task, the
problem of miRNA target prediction is that of link pre-
diction in a bipartite graph, where vertices in one set
represent all possible target regions across all mRNAs
while vertices in the other set represent miRNAs. We
can either predict if an edge exists (1/0) between a pair
of vertices representing an mRNA region and a miRNA
(classification), or we can predict the strength of the asso-
ciation i.e., edge weights (regression). In this paper, we
focus on the classification problem of whether a miRNA
targets an mRNA region.
CLIP-seq, crosslinking via immunoprecipitation fol-

lowed by high-throughput sequencing, an elegant albeit
lengthy biochemical procedure, is a state-of-the-art-
player in developing genome-scale regulatory insights
[17–19]. The technology allows target mRNAs to be iden-
tified within a small window of resolution, beyond which,
statistical models are needed to exactly localize the MRE,
that is, the miRNA recognition element or the binding
site. This is true even for recent CLIP-seq variants [19],
in order to account for background noise and sequenc-
ing artifacts [20, 21]. Further, CLIP-seq has the advan-
tage of profiling the native miRNA levels, as opposed to
supra-physiological levels obtained via miRNA transfec-
tion experiments [22], the latter being better suited for
developing small-interfering RNA (siRNA)-based thera-
peutics [23, 24].
While CLIP-seq can identify miRNAs and targets that

form a part of the RISC complex, it cannot decipher
which miRNA forms a heteroduplex with which targets.
CLASH is an initial attempt in experimentally solving this
problem [25]. Several computational methods have been
developed to decipher the specifics of miRNA-mRNA
interactions captured by CLIP-seq [26–31]. These meth-
ods have contributed to understanding the diverse nature
of interactions between miRNA and mRNA. The evolv-
ing knowledgebase has further supported the paradigm
switch, wherein it is now widely appreciated that the per-
fect complementarity between the miRNA seed and the
mRNA 3’ UTR is neither necessary nor sufficient for
miRNA regulation.

Our contribution In this paper, we seek to leverage this
ability of the CLIP-seq technology to capture endogenous
MREs to develop a unified method to understand the sig-
natures of miRNA-mRNA heteroduplexes. Our method
applies equally to standard, canonical seed matches, and
non-standard, non-canonical seedless matches1. Specif-
ically, in our system, which we call Avishkar2, we use
smooth B-spline, thermodynamic curves and sequence
curves for adenosine-uracil (AU) content, in order to

extract enriched interaction features from the experimen-
tally CLIPed (i.e., immunoprecipitated) regions.
Our main contributions through this work can be sum-

marized as follows:

1. We develop an efficient Support Vector Machine
(SVM)-based classifier to identify the positive
miRNA-mRNA interactions. Our classifier produces
significantly better ROC curves than all prior work
[26–28, 32, 33] when evaluated on CLIP-seq data,
while also providing insights on which features are
discriminating, and in which direction, that is,
positive or negative interactions. Our
Area-Under-the-Curve (AUC) values for the ROC
curves for both human and mouse datasets are
greater than that of all prior works, quantitatively
19.7 % and 22.0 % better for human (seed and
seedless respectively) and 15.0 % and 22.8 % better
for mouse (seed and seedless respectively).
The classification performance of our model in
inter-species validations while being slightly worse
compared to intra-species validations, is still able to
beat all prior methods. Our improved performance
(in terms of true-positive and false-positive rates)
over all prior work arises from a combination of
multiple factors, with the total benefit being greater
than the sum of the constituents. The contributory
factors are the use of an extensive set of features,
converting noisy data points into smooth curves,
converting the categorical feature of seed or seedless
match into a numerical feature and treating both
under one unified umbrella, and a careful
consideration of the spatial nature of the
miRNA-mRNA binding process into our
classification scheme. Our candidate dataset of
miRNA-mRNA interactions is the largest among
other computational approaches, which we achieve
by employing the least strict filtering criteria on the
original CLIP-seq data. Finally, our method is able to
predict significantly more non-canonical sites that
are present within CLIPed regions than prior
computational approaches.

2. We characterize thermodynamic and sequence
scores as “curves” and demonstrate how the shape of
the curves discriminates between positive and
negative miRNA-mRNA interactions. We compute
curves at two levels of granularity for each of the
thermodynamic and sequence features—curves
centered at the target site (we refer to them as “site
curves”) and curves computed at a finer granularity
and centered at the mRNA seed-matched region (we
call them “seed curves”). We demonstrate that a sum
of 20 basis-splines (B-splines), each of degree 3, gives
us satisfactory curve-fitting. Our use of B-splines
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enables us to fit relatively smooth curves over high
dimensional, noisy data—the scalar data points for
thermodynamic and sequence scores.

3. We develop and incorporate in our model a novel
metric called seed enrichment that captures all
patterns of seed matches, including multiple
mismatches, GU wobbles (sequence-based
imperfections), and long bulges (architectural
imperfections), in forming the miRNA-mRNA
heteroduplex. By doing so, we are able to adopt a
unified approach toward modeling canonical and
non-canonical heteroduplexes. This creates a
numerical feature that makes it easier for our ML
classifier (and other ML-based approaches) to use
this feature for classification. We also demonstrate
that a whole gamut of non-canonical seed matches,
involving bulges on the mRNA, are enriched in the
set of positive miRNA-mRNA interactions, seen in
both human and mouse-derived data. In fact, the
proportion of non-canonical matches is higher than
that of canonical matches. This category of matches
had been missed in much of prior work, e.g., [32, 33].

Importance of seed and seedless matches Early studies
on miRNA target recognition revealed near-perfect
(contiguous) and conserved, Watson-Crick complemen-
tarity at the 5’ miRNA end, which was called the “seed
region”. The seed is a 6–8 nt substring within the first 8
nucleotides, starting from the 5’ miRNA end. Typically,
positions 2–7 from the 5’ end are considered to be the
primary (canonical) determinant of target specificity [34–
37]. However, given the large number of random occur-
rences of any given hexamer in 3’ UTRs, a canonical “seed”
match by itself is a poor predictor of miRNA-based regu-
lation [38]. To complicate matters, non-canonical interac-
tions involving “seedless sites”, where the interactions are
not nucleated by perfectly complementary miRNA seed
regions and yet effectively downregulate gene expression,
have been described [39–45]. Popular sequence alignment
tools such as BLAST cannot align short sequences with
specific bulges or mismatch configurations [46]. Taken
together, computational methods for miRNA target pre-
diction have traditionally focused on canonical (seed-
based) matches. Along the same lines, interactions with
the 3’ UTRmRNA target region have been primarily mod-
eled, as opposed to the 5’ UTR, or CDS, or non-coding
mRNA regions. In our work, we remove these two restric-
tions and find seedless matches (in addition to the seed
matches) throughout the gene regions3.

Related work
Among non-canonical prediction methods, mirSVR [26]
allows for a single GU wobble or a mismatch in the 6-
mer seed region. For encoding the seed match pattern,

mirSVR uses an 8-bit long vector, with “1” representing a
match and “0” representing a mismatch and then uses the
bit-vector as a feature in their Support Vector Regression
(SVR) model. Recent methods have expanded the target
search to other genic regions, such as, to the 5’ UTR and
coding sequence (CDS) [27, 47]. In this bracket, Liu et al.
generate predictions for sites involving non-canonical
(seedless) matches. However, they do not take into con-
sideration the type of non-canonicality for the exam-
ined seedless sites. Instead, they use thermodynamic and
mRNA sequence features (e.g., local AU content) to gen-
erate predictions for the seedless sites. In doing so, they
miss out on potential signal from the non-canonical seed-
less match patterns that our findings indicate as enriched
in the identified functional miRNA-mRNA interactions.
One possible reason for this, as pointed out by Xu et al.
[48], is the difficulty in incorporating the large numbers
of possible patterns of insertions and deletions in the
mRNA seed-matched region for different non-canonical
seedless match patterns. Computational methods have
also exclusively relied on thermodynamic features, such
as the stability of the miRNA-mRNA heteroduplex and
the accessibility of the mRNA target region to identify
functional miRNA binding sites. For example, Xu et al.
[48] only use binding energy and accessibility to predict
functional miRNA target sites.
Another method, MIRZA [28] develops a rigorous bio-

physical model via parameterizing the alignment between
a miRNA and an mRNA segment, interpreted as the bind-
ing energy between the two, and optimized using CLIP-
seq data. While MIRZA uses a novel model to incorporate
canonical and non-canonical matches in a unifiedmanner,
it does not take into account secondary mRNA struc-
tures (the spatial configuration) in developing their energy
model—mRNA secondary structures can potentially limit
the target site accessibility to the docking miRNA-RISC
complex and therefore plays an important role in miRNA
target recognition [32]. Further, these approaches com-
pute various thermodynamic scores only at the target site
region to summarize the thermodynamics of the miRNA-
mRNA interaction. For example, Xu et al. [48] observe
that a certain normalized measure of site accessibility, has
a characteristic pattern around the target site region. Yet,
they do not exploit this observation in their model. In con-
trast, while Liu et al. [27] compute site accessibility in the
target region’s vicinity in discrete chunks of 5, 10, 15, 20,
25, and 30 nt around the target site region, they report
only the accessibility computed at the target site region as
an important predictor of functional miRNA targets, fail-
ing to capture the mRNA secondary structures around the
target site, which define its structural accessibility. Iden-
tifying this, prompted us to characterize binding energy
and accessibility as curves to model the spatial profile of
the miRNA-mRNA interaction.
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Results and Discussion
This Section is segmented into four Sub-Sections. In the
first, titled “Approach” we describe our overall solution
approach. Next, in the Sub-Section titled “Results”, we
present our experimental results and draw our observa-
tions from them. Third, we compare our performance vis-
à-vis competition. Finally, we discuss some salient points
in developing our model and present potential threats to
the validity of our approach.

Approach
While CLIP-seq datasets identify short mRNA regions
that are functional AGO-mRNA interaction sites [18, 49, 50],
additional bioinformatic analysis is needed to identify the
miRNA-mRNA binding sites. In order to identify miR-
NAs that might target those AGO-crosslinked regions, we
followed the same general approach as previous methods
[26, 27, 32, 47]. The idea is to first generate a candi-
date set of mRNA binding sites for a list of mRNAs
and miRNAs by enforcing a minimum threshold on
the alignment score 4 or the minimum free energy of
hybridization (�G) of the miRNA and mRNA and/or
using seed-match constraints. In the next step, different
methods use varied approaches to identify true miRNA
target sites within the generated candidate set of miRNA-
mRNA interactions. Previous works have used various
criteria to generate the candidate set of mRNA target
sites. For example, in mirSVR [26], the authors use the
miRanda algorithm [51] to generate the initial candi-
date set. The miRanda algorithm computes an optimal
local alignment of the miRNA with an mRNA sequence,
by using various parameters for the overall alignment
score, gap opening, and gap extension penalties. The
authors generate candidate sites involving canonical seed
matches, which they define as “sites that contain mini-
mally a 6-mer perfect match, spanning miRNA positions
2 to 7”, and non-canonical seed matches. However, for
the latter, they only allow a single G:U wobble or a
single mismatch in the seed region. In [27], Liu et al.
use two criteria for generating the candidate set. First,
they use the RNAhybrid program [52] to generate can-
didate sites by enforcing a threshold of –15 kcal/mol
on the thermodynamic binding energy (�G). Second,
they constrain the seed match alignment, without con-
straining the binding energy for the match, to belong to
one of the five seed classes of miRNA seeds, as defined
in [4]. It is easy to see that by starting out with a more
restricted set of candidate target sites, a method can
achieve a higher true-positive rate for identifying positive
target sites within this restrictive set. However, this would
be at the cost of missing out on a large number of positive
target sites that are not present in the candidate set in the
first place.

For our method, we select the least restrictive filter to
have the most expansive superset for the initial selection
of possible target locations genome-wide. Specifically, in
our case we have the thermodynamic cut-off of –15
kcal/mol, and then, to generate seed-sites, we constrain
the seed match to be at least a 6-mer without using any
additional constraints. The cut-off value of –15 kcal/mol
was the least restrictive among previous work that con-
sider thermodynamic binding [27, 47]. If a target region
meets either of these two criteria, then we include it in the
candidate set. Thus, we challenge our model by coming up
with the most expansive set of potential target sites. This
shows up quantitatively in Table 1, where we see that the
dataset that we evaluate on is the largest among all prior
work.
Algorithm 1 describes our process of generating the

candidate set. Line 3 of the algorithm extracts all the can-
didate target regions for an miRNA-mRNA pair for which
the binding energy (�G) is less than –15 kcal/mol. Line 4
of the algorithm extracts all target sites which have at least
a 6-mer seed match. Line 5 removes from the entire set
of target sites (extracted in step 3), those target sites that
also have a seed match. Finally, the algorithm returns a set
of seed and seedless target sites for each miRNA-mRNA
pair.

Algorithm 1 Candidate set generation for miRNA target
prediction
Input: mRNA listM, miRNA listN
Output: Candidate target locations, involving canonical seed

matches Os and non-canonical seed matches O, for all
mRNA miRNA pairsM × N .

1: formRNAm ∈ M do
2: formiRNA n ∈ N do
3: Omn = Omn ∪ {t : �G(m[ t] , n) ≤ −15kcal/mol} � t

is a target site inm as computed by RNAhybrid [52]
4: Os

mn = Os
mn ∪ {t : 6 ≤ ∣∣seedMatch(m[ t] , n)

∣∣ ≤ 8} �∣∣seedMatch(m[ t] , n)
∣∣ is the length of the seed match

5: Omn = Omn \ Os
mn

6: end for
7: end for
8: return {Omn}|M|×|N |, {Os

mn}|M|×|N |

Since different methods use different numbers of miR-
NAs and mRNAs, we use a metric called “normalized
candidate set size” to compare against other methods. The
normalized candidate set size is defined to be the size of
the candidate set divided by the product of number of
miRNAs andmRNAs used by themethod. So, the normal-
ized candidate set size can be thought of as the average
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Table 1 Comparison of the normalized candidate set size used
by various methods

mirSVR PITA TargetScan STarMir Avishkar

Human 1.256 3.078 0.181 56.183 66.081

Mouse 0.56 2.179 0.318 37.418 75.503

The normalized candidate set size is obtained by dividing the candidate set size by
the number of miRNA times the number of mRNA. The normalized candidate set
size can be interpreted as the average number of candidate sites considered by the
method for a miRNA-mRNA pair. mirSVR, PITA, and TargetScan only consider the 3’
UTR region, so the normalized candidate set size is very low for those methods

number of potential target sites considered by a method
for a miRNA-mRNA pair. The higher the number, the more
general and less restrictive the method is.
After generating the candidate set, we use CLIP-seq

datasets to label the positive (that is, functional) sites.
Specifically, if the site is contained within an AGO-
crosslinked region for the mRNA, we label the mRNA
fragment to be a (positive) target site. Thus, miRNA-
mRNA interactions are deemed positive (functional) if
the target site is present in an AGO-crosslinked region
and, additionally, either the binding energy of the miRNA-
mRNA hybrid is below a certain threshold or if there is a
seed match. In this paper, we use the term “seed match”
to refer to a perfect pairing within nucleotides 1 to 8, of
length at least 6, from the 5’ end of the miRNA. We call
the corresponding mRNA target site as a “seed site”. On
the other hand, any pairing within nucleotides 1 to 8 from
the 5’ end of the miRNA that does not involve at least
a perfect 6-mer match is referred to as a “non-canonical
seed match”; the corresponding mRNA target site called a
“seedless site”. 5 While our method makes no distinction
between a canonical and non-canonical seed match, we
do present results for seed and seedless sites separately.
This is in order to gain more insight into the subtleties
of miRNA target recruitment, as demonstrated in Fig. 1
(there could be perfect matches, mismatches, gaps, or GU
wobbles, for example), as well as to compare the per-
formance of our algorithm against other methods that
generate predictions exclusively for sites involving canon-
ical seed matches. Notably, in the actual execution of our
method, we use a principled approach for all target sites,
whether seed or seedless, by calling into play a novel met-
ric that we call seed enrichment metric, which we describe
later in the Methods Section.
Thus, given the notion of a functional miRNA-mRNA

interaction, the learning problem becomes that of predict-
ing whether a given region in an mRNA is targeted by a
miRNA.

Results
By representing the features�G,��G, and local AU con-
tent as curves (Fig. 2), some interesting patterns immedi-
ately emerge. For instance, we see that all three features,

on an average, have a characteristic V-shape, where the
value of the feature has a steep dip at the target site. This is
partly due to fact that the target site mostly has a smaller
size than the size of the consecutive windows that we
use to compute values at regions flanking the target site.
For all the features, we do notice that there is significant
overlap between the values of curves for positive and neg-
ative miRNA-mRNA interactions—observe the overlap in
Fig. 2 between the mean + standard deviation of the posi-
tive and the negative samples. What is interesting though
is that, among the three features, the curves for local AU
content have the most separability for the positive and
negative examples.
Another subtle difference between positive and negative

miRNA-mRNA interactions is that for AU content and
�G, the value of the curves gradually increases from the
5’ to the 3’ end. Also, the rate of increase is greater for the
positive examples than for the negative examples.
Finally, we note that the difference in binding energy

(�G) is sharply lower at the target site compared to that
at the flanking regions. The difference becomes increas-
ingly pronounced as we move from the 5’ end to the 3’
end of the mRNA. So the curves for �G seem to suggest
that the one of the factors that determines if a miRNA will
target a certain mRNA region is governed not so much
by the stability of the miRNA-mRNA duplex at the tar-
get region but more by the difference in duplex stability
between the target site and the target-flanking regions.
A larger difference between duplex stability at the site
and flanking regions translate to a greater preference for
binding. Thus, given the differences between positive and
negative miRNA-mRNA interactions, in terms of the var-
ious thermodynamic and sequence (AU) curves, it only
seemed natural to incorporate some sort of representa-
tion of these curves into our model. Toward that end, we
use non-parametric representations of the curves. These
curves are represented as linear combinations of cubic B-
spline basis functions with only very general smoothness
assumptions. Specifically, for a B-spline, the assumption is
that the second derivative of the curve exists and is con-
tinuous everywhere. In the next section, we describe the
performance of our methods vis-à-vis competition.

Comparison against other methods
For comparison with competition, we use the CLIP-seq
datasets, which have mRNA information, and coarser-
grained (larger) nucleotide regions that include the actual
AGO binding site, call that: l1. For our synthetic data,
which is generated from the experimental data, we have:
(mRNA,miRNA, l2), where the location l2 is finer-grained
and is localized within l1. We give competitive proto-
cols a victory, if they predict a binding site as: (mRNA,
miRNA, l3), if l3 has at least a threshold amount of overlap
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Fig. 1 A schematic of some of the features used in the model. The alternating blue and green regions denote the 13 consecutive windows around
the target site (shown in red), where various thermodynamic and sequence features are computed. The seed alignment pattern is computed by
considering the mRNA nucleotides that are aligned with nucleotides from index 1 to 8 from the 5’ end of the miRNA. The alignment is represented
by a vector of 1 (match), 2 (mismatch), 3 (gap), and 4 (GU wobble). The relative position of the target site within an mRNA region and the length of
the target site are also used as features

with location l1 (AGO-crosslinked region). The threshold
that we use for our evaluation is 90 % 6. Note that this
gives competition the benefit. Further, let us consider the
following scenario: if the actual synthetically-generated
data is (mRNA-a, miRNA-b, l2) and the prediction from

competition is (mRNA-a, miRNA-c, l2), we count that up
as a victory for the competitive protocol. So, our evalu-
ation procedure does not penalize other methods if the
identity of the miRNA is different for a target site than
what we have computed.
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Fig. 2 The mean curves (μ(t)), plus 1 × standard deviation (σ(t)), for various curves in the positive (red) and negative (black) miRNA-mRNA set for
the human dataset (PAR-CLIP). The mean and standard deviations were computed for each index −13 ≤ t ≤ 13 over all examples. A window offset
of 0 corresponds to the target site in the mRNA while other offsets correspond to positions of the moving window on either side of the target site.
The mean is computed over examples where the entire curve was available, i.e., discarding the cases where the matching region was toward one
end of the mRNA

Figure 3 shows the 10-fold cross-validation as well as
cross-species prediction performance of our algorithm
vis-à-vismirSVR [26], PITA [32], TargetScan [27, 33], and
MIRZA [28], on the human and mouse datasets. Since
mirSVR, TargetScan, and PITA, only consider the 3’ UTR
region for making predictions, to have a fair comparison,
we also validated our model only for those target sites that
are present in the 3’ UTR region.
From Fig. 3, it is clear that our method outper-

forms all competition for all the genic regions. We note
that the curves for Avishkar are smoother because they
have been averaged over multiple hold-out datasets dur-
ing cross-validation and sub-sampling from the larger
negative dataset. Further, another factor contributing
to the smoothness of our ROC curves is the fact
that our model has very low variance at the cost of
increased bias. This is further discussed in the Discussion
Sub-Section.
There are only a few methods that predict non-

canonical target sites.Weare able to get better performance
for these non-canonical site predictions as well. Also,

the difference in performance between intra-species
and inter-species prediction is quite small, indicating
that our method performs quite well in predicting
across species, and by extrapolation, across multiple cell
types.

Performance evaluation on experimentally validated
mRNA-miRNA interactions
We also evaluated the quality of our predictions against
experimentally validated positive miRNA-mRNA interac-
tions obtained from the miRTarBase database [53]. Since
the miRTarBase database has very few experimentally val-
idated non-functional miRNA target interactions (MTIs),
we compared the predictions against functional MTIs
only and are thus able to calculate the recall metric value.
For mouse, using a threshold of 0.5 on the probability
scores output by Avishkar, (greater than the threshold
means we conclude the interaction is functional) we were
able to successfully predict 1,942 functional MTIs out
of 2,445 functional MTIs available in the miRTarBase
database for the mRNAs and miRNAs evaluated in our
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Fig. 3 ROC curves for Human (PAR-CLIP) and Mouse (HITS-CLIP). The figures in the first row are for target sites involving canonical seed matches
while the second row shows results for non-canonical seed match target sites. The legend "Human train" in the ROC curves for mouse data indicates
the model which was trained on human data while the mouse data was used as the test dataset. Similarly the legend "Mouse train" in the ROC
curves for human data indicates the model which was trained on mouse data while the human data was used as the test dataset. MirSVR [26], PITA
[36], and TargetScan [37] only generate predictions for seed match sites in the 3’ UTR region. Note that for seedless sites in human, although mirSVR
appears to perform slightly better than MIRZA, it generates very few seedless target sites, thereby resulting in a very jagged ROC curve. The markers
indicate points on the curve where the difference between the TPR and FPR is maximum

method. This amounts to a recall value of 79.4 %. Simi-
larly for humans, our method was able to predict 895 out
of 914 functional MTIs, amounting to a recall value of
97.9 %.

Performance on unseenmRNAs
From the features that we generated for 1,200 mRNAs for
humans and 4,000 mRNAs for mouse, we wanted to check
how our method would perform on mRNAs that it had
not seen before. To answer that question, we trained our
method on features generated for a subset of mRNAs and
evaluated the performance of the model on the remain-
ing mRNAs. We started out by training on only 1 % of
the mRNAs and progressively increased the fraction of
mRNAs used in training. Figure 4 shows the average ROC
curves obtained for human mRNAs. We see that when
training on only 1 % of the mRNAs, our model achieves
performance close to the full set of mRNAs—AUC is only
7 % less. The performance of our model quickly saturates
(at around training size of 20 %) and adding data for more
mRNAs in the training set does not increase the predic-
tive power of our model. This is evidenced by the fact that
the curves for training sizes of 20 %, 40 %, and 60 % are
all overlapping. This further alludes to the fact that the

performance of our model is limited by bias and not due
to over-fitting on the training data. From this experiment,
we conclude that our method generalizes well to unseen
examples.

Performance onmiRNAs that are not abundantly
expressed
There are two factors that determine if a miRNA will tar-
get a mRNA segment and hence show up in a CLIPed
region. One being the affinity of themiRNA for themRNA
segment and the other is the relative abundance of the
miRNA in the cell-line (the prior probability). In our
model we try to learn the affinity of a miRNA for a mRNA
segment from CLIP-seq data and to do that it is important
to eliminate the other factor, i.e. the prior probability of
a miRNA targeting a mRNA fragement due to its relative
abundance (or lack thereof) in the cell-line. That is why
it is important to train the model on the most-frequently
expressed miRNA families. However, once the model is
trained it can be used to predict for miRNAs that are not
adequately expressed. To validate that hypothesis we gen-
erated target site predictions for the humanmiRNA family
miR-99, consisting of four different miRNAs, for all 9158
human mRNAs by training on the 10 most-abundantly
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Fig. 4 Performance of model on V-CLIP data by progressively varying the fraction of mRNAs used for training and prediction. In the first case, data
for 1 % of the total mRNAs (around 1200) was used for training and data for the rest of the mRNAs was used to evaluate the model. The percentage
of mRNAs used for training was then progressively increased to 20 %, 40 %, and finally 60 %. These three curves are overlapping, indicating that
there is no performance improvement by increasing the training size beyond 20 %

expressed human miRNAs. We validated the predictions
against data from miRTarBase database. We were able
to successfully predict 134 out of 155 MTIs in the miR-
TarBase database for the miR-99 miRNA family, thereby
achieving a recall value of 86.5 %. This shows that our
model can be used to generate accurate predictions for
miRNAs on which the model wasn’t trained.

Importance of various features
Figure 5 shows the feature weights learned by our model
for both canonical seed sites and seedless sites. Nega-
tive weights for a scalar feature correspond to it being
negatively correlated with the positive miRNA-mRNA
interactions. In contrast, for functional covariates, it is
difficult to interpret the “sign” of the weights for the B-
spline basis functions. This is because the coefficients of
the basis functions control the shape of the curve, where,
larger absolute weights correspond to higher predictive
power. Table 3 ranks the top 20 features in descending
order of the absolute value of their weights. For functional
covariates, the number within square braces indicates the
coefficient index in the B-spline basis function expansion
of that feature.
It is immediately evident from Table 3 that for seed

sites, most of the B-spline basis function coefficients,
with the exception of AU content, correspond to the

“seed” curves. While, for the seedless sites, the “site”
curves are more effective in differentiating positive
mRNA-miRNA interactions from negative ones. This
goes on to show that when there is a seed match,
the thermodynamic profile of the mRNA seed region
is what matters more in determining functional binding
sites.
Local AU content is a strong differentiator of posi-

tive miRNA-mRNA interactions from negative ones. The
weights learned by our model corroborate the conclu-
sion from Fig. 2—since AU curves for positive and neg-
ative miRNA-mRNA interactions have the least amount
of overlap compared to other features like �G, ��G,
etc., they are strong indicators of miRNA-mediated down-
regulation. In fact, local AU content curves are among
the top 5 features for both seed and seedless sites. The
fact that the local AU content is one the most impor-
tant predictors for miRNA target prediction has also
been confirmed by mirSVR [26] (Supplementary Figure
S1) and, to some extent, by the Random Forest Model,
described in [47]. Notably, our representation of local
AU content is able to extract significant signal from the
feature, which is otherwise missed by scalar representa-
tions of the feature. Further, we are also able to capture
other spatial characteristics of the feature e.g., the slope of
the curve.
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Fig. 5 Mean feature weights (along with standard deviation) learned by the linear SVM model for seed and seedless sites

Another interesting observation is that for seed sites,
accessibility (��G) of the target site is a better indica-
tor of miRNA-mediated downregulation of mRNA than
the thermodynamic stability of the miRNA target duplex
(�G). This is evident from the number of ��G coeffi-
cients showing up in the top 20 features for seed sites.
On the other hand, for seedless sites, �G coefficients
dominate in the top 20. Kertesz et al. [32] argue that acces-
sibility along with binding energy is a better indicator of
miRNA targeting than binding energy alone (�G). How-
ever, from our results this appears to be the case more
often for seed sites. One possible explanation for this
might be that the binding free energy (�G) is mostly sim-
ilar for different classes of seed matches (6-mers, 7-mers,
and 8-mers). So, for seed sites, accessibility of the target
region (��G) becomes the major discriminator between
positive and negative miRNA-mRNA interactions. In con-
trast, for (non-canonical) seedless sites, where there may
be little base pairing at the seed region, the binding free
energy becomes the limiting factor.
We notice that our metric, seed enrichment, is also

an important indicator of miRNA targeting. In fact, seed
enrichment is among the top three features for seedless
sites. We are able to get more signal from the seed enrich-
ment feature for non-canonical sites than for canonical
sites. This is because there are only a few different types
of seed-match patterns for canonical seed sites, all with
high values of enrichment. On the other hand, for non-
canonical sites, seed enrichment varies greatly between
different types of non-canonical interaction patterns.

Figure 6 shows the proportion of various types of seed-
match patterns, canonical and non-canonical, in the posi-
tive dataset for human and mouse. We see that the occur-
rence frequency of various patterns in the human and
mouse data is highly correlated, as indicated by the corre-
lation coefficient of 0.923. This indicates that the various
patterns of canonical and non-canonical seed matches are
conserved across species, rather than occurring merely by
chance. What is also surprising is that among the top-10
most frequently occurring patterns, only two are canon-
ical seed matches, namely, a 6-mer and a 7-mer match.
Other frequently occurring seed-match patterns have long
bulges, as indicated by a series of gaps (denoted by 3s).
We also note that the prediction performance for 3’

UTR sites is almost identical to those of other sites (see
Fig. 7)7. This goes on to show that the inclusion of the cat-
egorical feature indicating the type of region, namely, 3’
UTR, CDS, or 5’ UTR, is able to explain the differing effi-
cacies of target sites in different regions, and that other
features like thermodynamic binding, accessibility, con-
servation, etc., have the same predictive power in the three
different regions.
It should be noted that Table 2 indicates that a large

number of positive target sites, around 40 % for both
human andmouse datasets, are present in the CDS region.
However, our model aggressively tries to label those tar-
get sites as negative sites—note the large negative weight
for the CDS regions in Fig. 5. This hints at one of two
possibilities. First, a lot of the target sites reported by
the CLIP-seq methods in the CDS region may be due
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Fig. 6 Scatter plot of frequencies of various types of seed alignment patterns in set of positive miRNA-mRNA interactions for Mouse (x-axis) and
Human (y-axis). Among the top-10 most frequently occurring patterns, only two, namely, the 6-mer and 7-mer, are canonical seed match patterns.
In the labels for the top-10 most frequently occurring patterns, 1 indicates a match, 2 indicates a mismatch, 3 a gap, and 4 indicates a GU wobble

Fig. 7 ROC curves for 10-fold cross-validation performance of Avishkar in different regions of the gene in the human dataset
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Table 2 Attributes of data used for training and prediction in Avishkar

# Positive examples (Seed:Seedless)
# Negative examples # mRNA # miRNA

# Positive target sites in

3’ UTR CDS 5’ UTR

HITS-CLIP (Mouse) 861,208 (6 %:94 %) 35,608,333 4,059 119 478,138 (≈ 56 %) 367,371 (≈ 43 %) 15,699 (≈ 1 %)

PAR-CLIP (Human) 141,109 (8 %:92 %) 2,659,748 1,211 35 80,775 (≈ 57 %) 55,250(≈ 39 %) 5,084 (≈ 4 %)

For both mouse and human data, most of the positive miRNA target sites are found in the 3’ UTR region, followed by the CDS region, with very few target sites located in the
5’ UTR region

to transient protein-binding events and, thus, the level
of downregulation due to such binding sites may not be
significant [18, 54, 55]. Alternately, the mechanism of
miRNA action in the CDS region is different from that in
other regions and that other features (or methods) might
be needed to explain miRNA targeting in the CDS region.
Finally, we draw attention to the weights learned for

conservation, site length, and the relative position of a
site within one of the 3 regions, namely, 3’ UTR, 5’ UTR,
and CDS Table 3. It is evident that conservation plays
a positive, albeit small, role in determining true miRNA
binding sites. Again, for canonical seed sites, conserva-
tion of the seed region (seed consv) is more important

Table 3 Relative importance of features for seedless and seed
sites

Seedless Sites Seed Sites

Rank Feature Weight Feature Weight

1 CDS –0.452 Site length –0.591

2 Site length –0.404 CDS –0.436

3 Seed enrichment 0.364 AUseed [ 9] 0.287

4 AUsite [ 10] 0.198 ��Gsite [ 10] –0.250

5 AUseed [ 10] 0.198 AUseed [ 10] 0.235

6 AUseed [ 9] 0.192 Seed enrichment 0.210

7 5’ UTR –0.165 AUsite [ 9] 0.208

8 Consv 0.149 �Gseed [ 9] –0.195

9 ��Gsite [ 10] –0.148 ��Gseed [ 9] –0.193

10 Relative site location –0.141 ��Gseed [ 10] –0.190

11 AUsite [ 9] 0.134 ��Gsite [ 9] –0.187

12 �Gsite [ 15] 0.118 AUsite [ 10] 0.187

13 �Gsite [ 19] 0.116 �Gseed [ 10] –0.179

14 �Gsite [ 14] 0.113 5’ UTR –0.178

15 �Gsite [ 17] 0.111 Seed consv 0.175

16 �Gsite [ 16] 0.098 Relative site location –0.154

17 ��Gsite [ 9] –0.093 �Gsite [ 12] 0.100

18 AUseed [ 8] 0.089 �Gsite [ 14] 0.097

19 AUseed [ 11] 0.088 3’ UTR –0.089

20 �Gsite [ 12] 0.078 AUseed [ 3] 0.088

The rank is computed by sorting by absolute value of weight in descending order.
For functional covariates, the numbers in square braces indicate the coefficient
index for the B-spline basis functions

than conservation of the overall mRNA target site (consv).
We note that since we use conservation as a feature (one
among many used in our SVM classifier), as opposed
to using it as a filter, like some methods have done in
the past [56, 57], we are also able to predict target sites
that are not conserved. The length of the target site
is also strongly anti-correlated with the probability of a
site being a true binding site which shows that shorter
miRNA-mRNA alignments, i.e., miRNA-mRNA align-
ments with fewer gaps or bulges, are preferred.

Difference between 3’ UTR and 5’ UTR binding patterns for
seedless sites
In order to understand the difference between 3’ UTR and
5’ UTR binding patterns for seedless sites, we analyzed
the weights learned by our model for the two regions8.
The results are given in Fig. 8. There are two important
differences between 3’ UTR and 5’ UTR binding pat-
terns. One, conservation plays a much more important
role in the 3’ UTR region in determining the positive tar-
get sites, compared to the 5’ UTR binding region. This is
evident by the large positive weight for conservation in
the 3’ UTR. This result is widely known in the literature
[58]. Second, where the matching location is found differs
between the 3’ UTR seedless site and the 5’ UTR seed-
less site. For the 3’ UTR, the matching location is more
likely to be toward the beginning while for the 5’ UTR, it
is more likely to be toward the end. The evidence for this
comes from Fig. 8 for the “relative site location” feature
which takes a value between 0 and 1, with 1 indicating the
3’ end.

Discussion
The number of basis functions (K), controlling the
smoothness of the various curves, used in our model is the
only other tunable parameter, apart from the regulariza-
tion parameter (λ). We set a very low value for λ because
of our use of a simple linear model that avoids overfitting
anyway. We choose the value of K using 10-fold cross-
validation to maximize the difference between TPR and
FPR (see Fig. 9). So, in effect, by fitting a smooth curve
through noisy observations, and using the coefficients of
the basis functions as features, we reduce the dimension-
ality of the feature space used in our method. Currently,
we use a single number K for all the curves, which is a
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Fig. 8 Feature weights for seedless sites in 3’ UTR and 5’ UTR

Fig. 9 Optimal number of basis functions (K) computed using 10-fold cross-validation and Gaussian process regression
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simplification done to reduce the parameter space that
needs to be searched during training.
We use a linear SVM model, a relatively simple ML

classifier. This has the advantage that the model is inter-
pretable, directly from the weights of each feature, and the
computational burden is low. However, it displays a bias
in its prediction. For example, the misclassification rate
of our model remained close to 30 % both during train-
ing and during intraspecies and inter-species validation.
We are looking to improve on this by using a slightly more
expressive model, such as, non-linear SVMmodel.
Finally, we found that the TPR-FPR performance of

STarMir [27] is much worse than that reported in their
paper. We contacted the authors multiple times regarding
the issue but were unsuccessful in eliciting a response.

Threats to validity of our approach
In our approach, we have made the assumption that func-
tional miRNA target sites are those that are present within
the AGO-crosslinked regions, as identified by CLIP-seq.
In that respect, our method has the most agreement with
CLIP-seq data, among other computational approaches.
However, since the identity of the miRNA present in
the CLIP region is unknown, it may happen that the
miRNA predicted by our model is different from the
miRNA that was actually involved in the binding event.
Also, given AGO-crosslinked regions for various mRNAs,
we attempt to extract finer-grained target sites within
the AGO-crosslinked regions that may be targeted by a
set of miRNAs. Toward that end, we only consider the
most abundantly expressed miRNAs in a cell-line—top-
10 miRNA families for human and top-20 families for
mouse data. This choice is as per the prior work [49]
for mouse and [50] for human datasets, which state that
those families accounted for most (95 % for human) of the
miRNA sequence reads. Thus, our method misses out on
functional miRNA target sites that may be outside AGO-
crosslinked regions or fails to identify mRNA sites that are
targeted by the miRNAs whose expression levels are low.
We take the CLIP data as ground truth and that is not

completely correct because the CLIP data itself has false
positive examples. In future work, we will augment this
with other data types, such as, RNA-seq data for gene
expression to reduce such false positives.

Conclusion
In this paper, we have presented an efficient SVM-based
model called Avishkar for miRNA target prediction uti-
lizing CLIP-seq datasets. Avishkar has in its dataset
the largest number of potential miRNA-mRNA interac-
tion sets and demonstrates the best performance among
other established computational methods for miRNA tar-
get prediction. In developing our model, we leveraged
the fact that functional miRNA-mRNA interactions have

specific spatial thermodynamic and sequence profiles.
We used non-parametric representations of curves, in
the form of cubic B-spline basis functions, in order to
represent these contributory features, such as thermo-
dynamic and sequence features. This is in contrast to
traditional methods that rely on simplistic scalar repre-
sentations of the features. We further unified canonical
and non-canonical seed matches into a single model and
were able to demonstrate that a lot of non-canonical
seed match patterns are, in fact, enriched in the set of
functional miRNA-mRNA interactions. Our Area-Under-
the-Curve for the ROC curve for both human and mouse
datasets are better than all prior work, quantitatively
19.7 % and 22.0 % better for human (seed and seed-
less respectively) and 15.0 % and 22.8 % for mouse
(seed and seedless respectively). We conclude by not-
ing that further experimental or computational analy-
sis of the functional sites predicted by our algorithm
is needed to confirm the identity of miRNAs involved
in the protien (AGO) binding events and to quantify
the amount of repression of different genes by those
miRNAs.

Methods
Data
The characteristics of the data that we used are summa-
rized in Table 2.
We downloaded CLIP-seq data for the human HEK

293 cell line, a human embryonic kidney cell line, pub-
lished by [50] from Gene Expression Omnibus (series
GSE28865). To be specific, we used the three datasets
having codes GSM714642, GSM714644, and GSM714646,
which correspond to samples from replicate A exper-
iments involving AGO2 protein. The datasets iden-
tify 40 nucleotide-long AGO binding sites for each
mRNA. The combined data from all three datasets con-
tained 190,764 AGO binding sites across 10,159 differ-
ent mRNAs. Following the same approach as [50], we
used the 10 most abundantly expressed miRNA fam-
ilies, comprising of 44 different miRNAs, in human
HEK 293 cells, to identify miRNA-mRNA binding sites.
Since the total number of potential binding sites of
44 miRNAs across 10,159 mRNAs is enormous and
then generating features for all those binding sites
is computationally expensive, we randomly selected
around 1,200 different mRNAs to train and evaluate our
model.
For mouse, we downloaded HITS-CLIP data obtained

from the mouse brain tissue [49], from the starBase
database [59, 60]. The data contained locations of 11,117
AGO-CLIP tags (actually CLIP tag clusters) in the mouse
genome (mm9 assembly) in a BED file. We mapped
chromosome coordinates to mRNA locations by first
extracting the nucleotide sequence for the corresponding
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chromosome segment from the UCSC DAS server using
the provided REST API.
Then we use NCBI BLAST to map those sequences

to mRNA names (and locations) using the RefSeq RNA
database. As in [49], we used the 20 most abundant
miRNA families, containing 119 miRNAs to identify
miRNA-mRNA binding sites. We obtained the miRNA
names and sequences from the Supplementary Data pro-
vided by the authors [49]. We then generated the candi-
date set of miRNA-mRNA interactions using Algorithm 1.
After that, we labeled each target location in the candidate
set as 1 or 0, depending on whether the candidate location
for an mRNA was contained within an AGO-crosslinked
region or not.
To incorporate evolutionary conservation of genome

regions of human and mouse genomes, we downloaded
PhastCons [61, 62] conservation scores from the UCSC
Genome browser. For mouse, we used the conservation
scores generated by alignment of 30 vertebrate genomes to
the mouse genome (mm9 assembly). Similarly for human,
we used the conservation scores generated by alignment
of 44 vertebrate genomes to the human genome (hg18
assembly).
To compute the extents of various mRNA regions like

3’ UTR, 5’ UTR, and CDS, we downloaded annotations
for hg18 and mm9 assemblies from the UCSC Table
browser (RefSeq Genes track). Mature miRNA sequences
were downloaded from the miRBase [63] website [64].
In subsequent sections, we describe the various features
considered in our model.
During cross-validation, we use all the positive samples

and sub-sample to create an equal number of negative
samples. During all intra-species experiments, we use
9/10-ths of the data for training and the rest 1/10-th for
prediction. During inter-species runs, we use the entire
dataset’s positive examples and an equal number of nega-
tive samples, from species 1 to predict the entire dataset
for species 2.

Thermodynamic features
Thermodynamic stability of the miRNA-mRNA target
duplex have long been identified as being an important
predictor of true binding sites of a miRNA [4, 32]. Ther-
modynamic stability of themiRNA-mRNA duplex is given
by the free energy gained by binding of miRNA to the
target site and is denoted by �G. Thermodynamic acces-
sibility has also been argued to be an important predictor
of miRNA repression [32]. Accessibility is defined as the
“difference between the free energy gained by the bind-
ing of the miRNA to the mRNA (�G) and the free energy
lost by unpairing the target site nucleotides, �Gopen”
[32]. The target site nucleotides need to be unpaired to
make the site accessible to the RISC complex housing the
miRNA, so ��G measures the effective accessibility of a

region. We consider both the features in our model; how-
ever previous work that consider these features [26, 47],
compute the �G and ��G values either at the target
site or at the target site along with upstream and down-
stream flanking regions of a given length. Following this,
they use the features as scalar covariates into a classifi-
cation or regression model. Liu et al. [27] increase the
length of the flanking region in discrete chunks of five
nucleotides. However, all such prior characterizations of
target site accessibility oversimplify the spatial nature of
miRNA-mRNA interaction. For example, as shown in the
illustration in Fig. 1, the target sitemight be surrounded by
tight secondary structures, which make it difficult for the
miRNA-RISC complex to interact with the target site. So,
we had the idea that characterizing the thermodynamic
interactions as curves, and taking into account the shape
of the curves in our model, would improve the model’s
predictive power. Toward this end, we take a different
approach to characterizing the thermodynamic stability of
miRNA-mRNA duplex and the accessibility of the target
site. We consider the thermodynamic profile of miRNA-
mRNA interaction by taking into account �G and ��G
values at the target site and use 13 consecutive windows,
both upstream and downstream of the site region, of
size 46 nucleotides each. However, rather than treating
them as separate features to be fed into a classifier, which
effectively discards the spatial nature of the phenomenon,
we fit smooth curves through the noisy observations to
define what we call the “thermodynamic curves”. The
smoothed thermodynamic curves are used as functional
covariates in our model. Here, the word functional is
used in the statistical sense, meaning that the features are
infinite-dimensional functions, as opposed to being finite-
dimensional vectors. The window length was chosen to be
46 nucleotides because the AGO footprint on the mRNA
spans around 46 nucleotides [49]. The various curves used
in our model that are centered at the target site and com-
puted at a resolution of 46 nucleotides are collectively
referred to as “site curves” in our paper. Further, since the
dimensionality of the curve is not known a priori, we use
basis functions to achieve a “good-enough” fitting curve.
We experiment with different numbers of basis functions
and settle on the optimal number, 20, through our training
phase. Our results show that computing thermodynamic
profiles of miRNA-mRNA interactions in terms of these
curves, as in Fig. 2, captures richer information than com-
puting binding and accessibility energy at the target site
alone. We are able to discriminate the signatures of the
binding sites better due to the use of curves. Further, we
are able to extract the relative importance of the curves for
the various thermodynamic features, as also for the local
AU content feature, through our feature-analysis phase.
We also compute the thermodynamic curves at a finer

resolution, collectively referred to as “seed curves” in the
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paper, by using a window of size 9. We compute the
binding (�G) and accessibility (��G) curves centered at
the mRNA seed-matched region, i.e., nucleotides of the
mRNA that are paired with the seed region of the miRNA,
along with 13 consecutive windows both upstream and
downstream of the seed-matched region. The rationale
underlying this is that pairing of nucleotides 1–8 from
the 5’ end of the miRNA has been deemed to be much
more functional than pairing at other nucleotide regions.
For target sites, where there is no seed match (i.e., a 6, 7,
or 8-mer), we pick the region within the target site that
has the most favorable hybridization with nucleotides 1–8
of the miRNA as the seed-matched region. Thus, the
seed curves capture the thermodynamic signatures for the
mRNA seed region. It should be noted that the thermody-
namic curves considered in this paper are fundamentally
different from those computed by [27], where they com-
pute thermodynamic values by keeping the window cen-
tered at the target site region. They then increase the
window length on either site of the target site region in
increments of 5 nucleotides. Further, the different values
computed for �G and ��G are not factored in as curves.
Rather, they are fed as separate scalar features into a clas-
sifier. The authors do not provide any interpretation of the
nature of information that such features capture nor are
they able to demonstrate the usefulness of these features.
The only relevant features, as reported by the authors in
their website [65], appear to be thermodynamic features
computed at the target site alone.

Seedmatch enrichment
Bartel et al. [4] defined a hierarchy of five different
types of miRNA seeds that roughly correspond to the
miRNA’s efficacy in downregulating mRNA targets. So, a
lot of computational approaches for miRNA target pre-
diction use the seed type as a categorical feature in their
model.
In fact, Xu et al. [47] state that due to the difficulty of

incorporating various patterns of insertions and deletions
that may occur in the seed-matched region, they only
consider one type of non-canonical seed match by allow-
ing a single GU wobble. Indeed, a model that enumerates
all possible patterns of seed matches, and tries to learn
the importance of each type of pattern in mRNA down-
regulation, would perform poorly because of the sheer
number of possible patterns. We circumvent this prob-
lem by representing the alignment of a miRNA with an
mRNA as a vector, where each element takes four possi-
ble values corresponding to a match, mismatch, gap, and
GU wobble respectively. We come up with a metric called
“seed enrichment” that captures, in a single numeric fea-
ture, the relative efficacy of various kinds of seed matches.
We observed that a vast number of seed matches,
having long bulges (gaps) were enriched, providing further

justification for our consideration of non-canonical
seed matches. This observation is also corroborated
by [25].

Enrichment score for each seed match. We precompute
the number of occurrences of various seed-match pat-
terns in the positive miRNA-mRNA interaction dataset
and the corresponding seed enrichment score for each
pattern as follows. Let us consider the likelihood that a
particular pattern of seed match, a, is positively correlated
with miRNA repression. To do this, we calculate the fol-
lowing probability for a given seedmatch pattern, a, which
has say k occurrences among n positive samples. Let α

be the probability that there are k occurrences of pattern
a among n samples purely by chance. As an example, for
a region of length |a|, the expected number of pattern
matches a in n samples, purely by chance will be 0.25|a|n.
Then, α is given as:

α = Binomial
(
k|n, 0.25|a|) . (1)

We call 1 − α our enrichment score.

enrichment(a) = 1 − α. (2)

The advantage of our method is threefold. First, we are
able to consider a lot of different types of seed matches
(both canonical and non-canonical) that are enriched in
the set of positive miRNA-mRNA interactions in a unified
and principled manner. Second, since the overwhelming
majority of positive miRNA-mRNA interactions involve
non-canonical seed matches, we are able to generate
high quality predictions for a lot of target sites that are
missed by other methods. Finally, since ML methods typ-
ically handle numerical features better than categorical
features, especially those with high cardinality, our pro-
cess of creating a numeric (probability) value allows us
to get high accuracy on predictions for non-canonical
sites.

Sequence features
To incorporate sequence features in our model, we con-
sider the functional version of another popular feature:
local AU content, which is defined as the fraction of ade-
nine nucleotides (A) and uracil nucleotides (U) in a block
of mRNA. Grimson et al. [33] showed that the local AU
content is weakly correlated with reduced mRNA expres-
sion levels. In contrast, by considering AU curves, we
are able to extract significant signal from this feature.
In fact, as shown in (Table 3), local AU composition
is a top feature in our model. Again, like thermody-
namic features, we compute the local AU content at two
resolutions— site (window length 46) and seed (window
length 9).
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Conservation
Evolutionary conservation has been used in the past to
reduce the false positive rate of computational miRNA
target prediction methods [66]. So, we incorporate con-
servation scores of the overall target mRNA site, the
seed match site, and the off-seed site (nucleotides other
than those that are aligned with the seed region of the
miRNA)s as additional features into our model. The latter
two features are used only for sites containing canonical
seed matches, i.e., either a perfect 6-mer, 7-mer, or an
8-mer site.

Miscellaneous features
Other features used in our model are (a) the region in
which the mRNA target site is present, namely, 3’UTR,
5’UTR, and CDS, (b) relative location of the target site
within the aforementioned region, on a scale of 0 to 1,
where 0 indicates the 5’ end of the region and 1 indicates
the 3’ end, and (c) the length of the target site. For long,
it had been believed that most of the miRNA targets are
located within the 3’ UTR region of the mRNA. However,
recently CLIP-seq methods and some other computa-
tional methods e.g., [47] have identified functional miRNA
targets in other gene regions like the 5’ UTR region and
the CDS. So, we use a categorical feature to denote the
type of region in which the target site is present and

learn weights (importance measures) for the three differ-
ent genic regions. The relative site location feature might
help explain the fact that CLIP tags were enriched near
poly(A) sites (i.e., 3’ end) and, to a lesser degree, near stop
codons (5’ end), than in the middle of 3’ UTR regions, as
reported in [17]. Finally, the feature “site length” accounts
for the fact that a perfect pairing between miRNA and
mRNA, and hence shorter target site length, might be
more preferable than alignments with long bulges on the
mRNA (alignment of miRNA nucleotides to gaps), lead-
ing to longer target site lengths. The list of features used
in our model is summarized in Table 4.

Feature transformations
In Table 4, the first six features are functional covariates,
which are obtained by fitting smooth curves through the
vector observations as follows. Let fi denote one of six
feature vectors of length 2W + 1 for the i-th data point,
where W is the number of windows around either side
of the site region. Also, let fi(t) denote the corresponding
smooth curve. Then,

f (t) =
K∑

k=1
ci,kψk(t) (3)

Table 4 Summary of features used in our model

�Gsite(t) Thermodynamic binding curve centered at the target site obtained by fitting a smooth curve through the vector
observation �Gsite .

�Gseed(t) Finer resolution thermodynamic binding curve centered at the seedmatch region obtained by fitting a smooth curve
through the vector observation �Gseed .

��Gsite(t) Accessibility curve centered at the target site obtained by fitting a smooth curve through the vector observation
��Gsite .

��Gsite(t) Finer resolution accessibility curve centered at the seed match region obtained by fitting a smooth curve through
the vector observation ��Gseed .

ausite(t) Local AU content curve centered at the target site region obtained by fitting a smooth curve through vector
observation ausite .

auseed(t) Finer resolution local AU content curve computed at the seed match region obtained by fitting a smooth curve
through vector observation auseed .

Seed enrichment A scalar feature indicating the extent to which a seed match pattern in enriched in the set of positive miRNA-mRNA
interactions set on a scale of 0 to 1.

Site conservation The extent to which the mRNA site nucleotides are conserved across different species.

Seed conservation The extent to which the nucleotides in the mRNA site that are paired with the miRNA seed region are conserved
across different species. This is only used when there is a canonical seed match.

Off seed conservation Average conservation score of mRNA nucleotides that are not paired with the seed region of the miRNA. This is only
used when there is a canonical seed match.

Target site length Length of the mRNA target site

Target region mRNA region where the target site is present, namely, 3’ UTR, CDS or 5’ UTR

Relative position of target site Relative position of a target site within one of the 3 regions above on a scale of 0 to 1, with 0 indicating the 5’ end
and 1 indicating the 3’ end.

The first six are functional covariates (curves) that are obtained by fitting a smooth curve through the vector observations, indicated by bold-faced letters. The rest are scalar
covariates. For functional features, the domain of the function is in {t : t ∈ Z,−13 ≤ t ≤ 13}
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whereψk(t) are the cubic B-spline basis functions.We use
the zero value to replace missing values in the vector fi,
e.g., when the target site is toward the beginning or the
end of the mRNA. The coefficients ci,k are estimated for
each curve by minimizing the least squares error on the
discrete observations fi as follows:

ci =
(
�T�

)−1 (
�T fi

)
(4)

where � is the (2W + 1) × K matrix of the K basis func-
tions evaluated at {t : t ∈ Z, 0 ≤ t < (2W + 1)}.
This is accomplished by using the interpolation module in
SciPy (specifically LSQUnivariateSpline). The number of
knots for the cubic B-spline interpolation is computed as
K − degree + 2 (degree is 3 for cubic splines). The num-
ber of basis functions K controls the smoothness of the
curve, with smoothness decreasing with increasing K. It
should be noted that we use the same number of basis
functions K (≤ 2W + 1), and hence, the same smooth-
ness assumptions, for all six functional features, which
makes our model slightly restrictive. This is in contrast
to a model that uses different numbers of basis func-
tions (and hence different smoothness assumptions) for
each of the six functional features. The choice was made
to bound the size of the parameter space that has to be
explored. Now, for each of the functional features we use
the B-spline coefficients as features in the SVMmodel.
Let the feature ai denote the vector that represents

the alignment between the first eight nucleotides of the
miRNA with an mRNA segment, in the i-th data point, as
a vector of values, which can be 1 (match), 2 (mismatch),
3 (gap), or 4 (GU wobble), refer to Fig. 1. We precom-
pute the enrichment score for each seed match pattern, as
described in Eq. 2. Thus for the i-th data point, we lookup
the precomputed enrichment score of the seed match
pattern ai and use it as a feature in our SVM classifier.

Model
Let the training dataset be denoted by D̃ = {yi, x̃i}Ni=1,
obtained after transforming the various features, as men-
tioned in the previous section. We are interested in learn-
ing a classifier f (xi), such that yif (xi) ≥ 0 (the response
variable, yi, for negative examples here is -1 instead of 0,
done to simplify notation). We learn a linear classifier i.e.,
f (xi) = wTxi+b, by minimizing the loss function given in
Eq. 5, using stochastic gradient descent. The loss function
in Eq. 5 is the hinge loss and corresponds to a linear SVM.
The first term of Eq. 5 penalizes data points that are mis-
classified (wrong side of the decision boundary) as well as
those that are correctly classified points but are too close
to the decision boundary, i.e., points within some margin
of the decision boundary. Thus, minimizing the loss func-
tion results in a maximum-margin decision boundary that
best separates the two classes. The second term, called the

regularization term, penalizes complex models with large
weights.

L(w,X, y) = 1
n

n∑
i=1

max(0, 1 − yif (xi)) + λ

2
||w||22 (5)

We used Apache Spark [67], running on a Yarn [68] clus-
ter of 10 nodes, to train our model. The regularization
parameter λ, which controls the trade-off between train-
ing misclassification rate and model complexity, is set to a
low value of 0.001.

Validation protocol
We perform the validation of our protocol Avishkar on
a validation dataset that is distinct from the dataset that
was used to train the model. For each example in the
test dataset, we compute the probability score, with fea-
ture vector x∗, using the weights learned from training,
according to the logistic function given in Eq. 6.

p(y∗ = +1) = 1
1 + exp

(−wTx∗ − b
) (6)

We show the overall workflow for the validation pro-
tocol in Fig. 10. The results shown in Fig. 3 were gen-
erated by sub-sampling from the set of negative (larger)
miRNA-mRNA interactions in order to have roughly the
same number of positive and negative examples in each
iteration. Then, for each iteration, we used 10-fold cross-
validation to evaluate the performance of our model on
the hold-out (validation) dataset. For each run, we com-
puted the true-positive and false-positive rates by varying
the threshold for the probability scores generated by our
model. We then averaged the true-positive rate and the
false-positive rate, obtained over the 100 hold out datasets
(10 sub-sampling runs and 10-fold cross-validation for
each run). For inter-species validation, we similarly sub-
sampled from both the human dataset and the mouse
dataset, in order to have roughly the same number of
positive and negative examples in each iteration. How-
ever, instead of doing cross-validation, we trained on the
human dataset and used themouse dataset as test and vice
versa. We then averaged the true-positive rate across the
10 validation datasets, obtained by sub-sampling, for both
the human and mouse datasets.
We downloadeded target locations and their corre-

sponding scores for each mRNA, as computed by mirSVR
[26], PITA [32], TargetScan [33], and STarMir [27]. When
comparing performance against competition we only
considered those miRNA-mRNA pairs for which we gen-
erated data. Then, we labeled each miRNA-mRNA inter-
action, reported by other methods, as 1 or 0, depending
on whether the reported target location was contained
within an AGO cross-linked region for the mRNA in the
CLIP-seq datasets. Since, mirSVR reports sequences for
hg19 assembly of the human genome, while we generated
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Fig. 10Workflow of the validation protocol used to evaluate Avishkar. There are 100 different true positive rate and false positive rate values
(10 from the sub-samples of the -ve samples times 10 from the cross-validation) that are averaged to create the ROC curves

predictions using the hg18 assembly, we mapped mRNA
target sites from hg19 assembly to the hg18 assembly.
Then, we computed mean ROC (receiver operating char-
acteristics) curves, for each method from the scores and
the computed CLIP labels (1/0).
We also evaluated the performance of our method

against another method—MIRZA [28], on the human
dataset. The biophysical model developed in [28] also
considers all possible canonical and non-canonical seed
matches to identify miRNA target sites. We downloaded
the MIRZA tool from their website [69]. To generate ROC
curves for MIRZA, we ran MIRZA on our candidate set
of positive and negative examples. Since MIRZA requires
that all target sites be of the same length, we made sure
that each target site was expanded, or shrunk if necessary,
to have a length of 50 nucleotides. We averaged the ROC
curve for MIRZA over 5 runs, where in each run, we ran-
domly sub-sampled negative examples to have, roughly,
the same number of positive and negative examples. The
ROC curve for each run was generated by varying the
threshold for the target quality score computed byMIRZA
to compute the true- and false-positive rates.

Endnotes
1Throughout this paper, we will synonymously and

interchangeably use the terms “non-canonical match”,
“seedless match”, and “non-canonical seedless match”.

2Avishkar means “discovery” in Sanskrit. The word
captures our enthusiasm in using functional data analysis
techniques to extend and refine the discovery of genomic
targets modulated by these small, albeit powerful
regulatory RNA—miRNA, which can chisel the process

of gene regulation, post-transcriptionally. This in turn
will accelerate the discovery of novel disease biomarkers
[70, 71] that can cause network perturbations, in vivo
[72], and facilitate the development of novel
miRNA-based therapeutics [73].

3However, this discussion of seedless matches has to be
balanced with the fact that the level of downregulation of
gene expression is higher for seed matches [28].

4Loosely speaking, “alignment score” is a quantitative value
that represents how well the miRNA is paired with the mRNA.
So the score depends on the lengths of exact matches and the
degree of mismatches.

5It should be noted that our definition of a seed match is
slightly different from what others have used in the past. We
used a slightly more general definition of a canonical seed
match to account for different types of canonical seed matches
that are considered by various computational methods. For
example, Bartel et al. [4] define three types of alignments
involving perfect complementarity with nucleotides 2–7 from
the 5’ end of the miRNA as canonical seed match.

6For TargetScan[33] we reduced the threshold to 80 %
since a threshold of 90 % resulted in 0 overlaps with
CLIP-seq data.

7For seed matches, the sparse 5’ UTR match sites show
slightly better performance, but considering the small size
of this sample set, this is likely not statistically significant.

8For seed sites, there are not enough positive examples
for the 5’ UTR to draw statistically significant
conclusions.

Abbreviations
AGO: Argonaute; API: Application program interface; AUC: Area under the
curve; CDS: Coding sequence; CLIP: Crosslinking immunoprecipitation; FPR:



Ghoshal et al. BMC Genomics  (2015) 16:999 Page 20 of 21

False positive rate; HEK: Human embryonic kidney; MRE: miRNA recognition
element; NCBI: National Center for Biotechnology Information; REST:
Representational state transfer; RISC: RNA-induced silencing complex;
ROC: Receiver operating characteristics; SVM: Support vector machines; SVR:
Support vector regression; TPR: True positive rate; UTR: Untranslated region.

Availability of supporting data
Samples of data used for generating candidate set and feature set can be
downloded from https://bitbucket.org/cellsandmachines/avishkar. The
complete data files can be downloaded from publicly available sources as
described in the paper.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Asish Ghoshal (AG) and Somali Chaterji (SC) designed the majority of the
methods. AG implemented the code. AG and Raghav Shankar (RS) performed
the experiments and collected the data. Saurabh Bagchi (SB) helped with the
experimental design as well as in interpreting the results. Ananth Y. Grama
(AYG) provided guidance relative to the theoretical and practical aspects of
the methods. SC conceptualized the project, charted the sequence of
activities, and prepared the bulk of the manuscript. All authors read, edited,
and approved the final manuscript.

Acknowledgments
This work was supported by NSF Center for Science of Information (CSoI)
Grant CCF-0939370 and NSF Grants IOS-1124962 and CCF-1337158.

Author details
1Department of Computer Science, Purdue University, West Lafayette, IN,
47907, USA. 2School of Electrical and Computer Engineering, Purdue
University, West Lafayette, IN, 47907, USA.

Received: 27 April 2015 Accepted: 9 September 2015

References
1. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, et al. mir2disease: a

manually curated database for microRNA deregulation in human disease.
Nucleic Acids Res. 2009;37(suppl 1):98–104.

2. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function.
Cell. 2004;116(2):281–97.

3. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and
siRNAs. Cell. 2009;136(4):642–55.

4. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell.
2009;136(2):215–33.

5. Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden
A. MicroRNAs can generate thresholds in target gene expression. Nat
Genet. 2011;43(9):854–9.

6. Hausser J, Zavolan M. Identification and consequences of miRNA-target
interactions [mdash] beyond repression of gene expression. Nat Rev
Genet. 2014;15(9):599–612.

7. Friedlander M, Lizano E, Houben A, Bezdan D, Báñez-Coronel M,
Kudla G, et al. Evidence for the biogenesis of more than 1,000 novel
human microRNAs. Genome Biol. 2014;15(4):57.

8. Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs
are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.

9. Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR,
et al. The let-7 microRNA family members miR-48, miR-84, and miR-241
function together to regulate developmental timing in caenorhabditis
elegans. Dev Cell. 2005;9(3):403–14.

10. Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW. A microRNA
imparts robustness against environmental fluctuation during
development. Cell. 2009;137(2):273–82.

11. Shao NY, Hu HY, Yan Z, Xu Y, Hu H, Menzel C, et al. Comprehensive
survey of human brain microRNA by deep sequencing. BMC Genomics.
2010;11(1):409.

12. Li Y, Xu J, Chen H, Bai J, Li S, Zhao Z, et al. Comprehensive analysis of
the functional miRNA–mRNA regulatory network identifies miRNA
signatures associated with glioma malignant progression. Nucleic Acids
Res. 2013;41(22):203–3.

13. Heinrich EM, Dimmeler S. MicroRNAs and stem cells control of
pluripotency, reprogramming, and lineage commitment. Circ Res.
2012;110(7):1014–22.

14. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, et al.
MicroRNAs modulate the angiogenic properties of huvecs. Blood.
2006;108(9):3068–071.

15. Ritchie W, Flamant S, Rasko JE. Predicting microRNA targets and
functions: traps for the unwary. Nat Methods. 2009;6(6):397–8.

16. Clark PM, Loher P, Quann K, Brody J, Londin ER, Rigoutsos I. Argonaute
CLIP-seq reveals miRNA targetome diversity across tissue types. Sci Rep.
2014;4:5947.

17. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, et al. Hits-clip
yields genome-wide insights into brain alternative rna processing. Nature.
2008;456(7221):464–9.

18. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P,
et al. Transcriptome-wide identification of RNA-binding protein and
microRNA target sites by par-clip. Cell. 2010;141(1):129–41.

19. König J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, et al. I-CLIP reveals
the function of hnrnp particles in splicing at individual nucleotide
resolution. Nat Struct Mol Biol. 2010;17(7):909–15.

20. Sugimoto Y, König J, Hussain S, Zupan B, Curk T, Frye M, et al. Analysis
of clip and iclip methods for nucleotide-resolution studies of protein-rna
interactions. Genome Biol. 2012;13(8):67.

21. Friedersdorf MB, Keene JD. Advancing the functional utility of PAR-CLIP
by quantifying background binding to mRNAs and lncRNAs. Genome
Biol. 2014;15(1):2.

22. Thomson DW, Bracken CP, Goodall GJ. Experimental strategies for
microRNA target identification. Nucleic Acids Res. 2011;39(16):6845–853.

23. Gumienny R, Zavolan M. Accurate transcriptome-wide prediction of
microRNA targets and small interfering rna off-targets with mirza-g.
Nucleic Acids Res. 2015;43(3):1380–91.

24. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA
therapeutics. Nat Mater. 2013;12(11):967–77.

25. Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human
miRNA interactome by clash reveals frequent noncanonical binding. Cell.
2013;153(3):654–65. 60 % of seed interactions are noncanonical,
containing bulged or mismatched nucleotides. Seed matches contains
bulges.

26. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling
of microRNA targets predicts functional non-conserved and
non-canonical sites. Genome Biol. 2010;11(8):90.

27. Liu C, Mallick B, Long D, Rennie WA, Wolenc A, Carmack CS, et al.
Clip-based prediction of mammalian microRNA binding sites. Nucleic
Acids Res. 2013;41(14):138–8.

28. Khorshid M, Hausser J, Zavolan M, van Nimwegen E. A biophysical
miRNA-mRNA interaction model infers canonical and noncanonical
targets. Nat Methods. 2013;10(3):253–5.

29. Chou CH, Lin FM, Chou MT, Hsu SD, Chang TH, Weng SL, et al. A
computational approach for identifying microRNA-target interactions
using high-throughput clip and par-clip sequencing. BMC Genomics.
2013;14(Suppl 1):2.

30. Corcoran DL, Georgiev S, Mukherjee N, Gottwein E, Skalsky RL, Keene
JD, et al. Paralyzer: definition of rna binding sites from PAR-CLIP
short-read sequence data. Genome Biol. 2011;12(8):79.

31. Majoros WH, Lekprasert P, Mukherjee N, Skalsky RL, Corcoran DL, Cullen
BR, et al. MicroRNA target site identification by integrating sequence and
binding information. Nat Methods. 2013;10(7):630–3.

32. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site
accessibility in microRNA target recognition. Nat Genet. 2007;39(10):
1278–84.

33. Grimson A, Farh KK-H, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP.
MicroRNA targeting specificity in mammals: determinants beyond seed
pairing. Mol Cell. 2007;27(1):91–105.

34. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the
heterochronic gene lin-14 by lin-4 mediates temporal pattern formation
in c. elegans. Cell. 1993;75(5):855–62.

35. box consensus AS uGGAAGAC G. MicroRNAs are complementary to 3’
UTR sequence motifs that mediate negative post-transcriptional
regulation. Nat Genet. 2002;30:363.

https://bitbucket.org/cellsandmachines/avishkar


Ghoshal et al. BMC Genomics  (2015) 16:999 Page 21 of 21

36. Lewis BP, Shih I-h, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction
of mammalian microRNA targets. Cell. 2003;115(7):787–98.

37. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA
targets. Cell. 2005;120(1):15–20.

38. Moore MJ, Zhang C, Gantman EC, Mele A, Darnell JC, Darnell RB.
Mapping argonaute and conventional rna-binding protein interactions
with rna at single-nucleotide resolution using HITS-CLIP and CIMS
analysis. Nat Protoc. 2014;9(2):263–93.

39. Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ. The c. elegans microRNA
let-7 binds to imperfect let-7 complementary sites from the lin-41 3’ UTR.
Genes Dev. 2004;18(2):132–7.

40. Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O’Day E, et al. mir-24
inhibits cell proliferation by targeting e2f2, myc, and other cell-cycle
genes via binding to “seedless” 3’ UTR microRNA recognition elements.
Mol cell. 2009;35(5):610–25.

41. Didiano D, Hobert O. Perfect seed pairing is not a generally reliable
predictor for miRNA-target interactions. Nat Struct Mol Biol. 2006;13(9):
849–51.

42. Shin C, Nam JW, Farh KK-H, Chiang HR, Shkumatava A, Bartel DP.
Expanding the microRNA targeting code: functional sites with centered
pairing. Mol cell. 2010;38(6):789–802.

43. Vo NK, Dalton RP, Liu N, Olson EN, Goodman RH. Affinity purification of
microRNA-133a with the cardiac transcription factor, hand2. Proc Natl
Acad Sci. 2010;107(45):19231–6.

44. Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T, et al.
Function of mir-146a in controlling treg cell-mediated regulation of th1
responses. Cell. 2010;142(6):914–29.

45. Loeb GB, Khan AA, Canner D, Hiatt JB, Shendure J, Darnell RB, et al.
Transcriptome-wide mir-155 binding map reveals widespread
noncanonical microRNA targeting. Mol cell. 2012;48(5):760–70.

46. Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D,
Fedorov Y, et al. 3 utr seed matches, but not overall identity, are
associated with RNAi off-target. Nat Methods. 2006;3(3):199–204.

47. Xu W, San Lucas A, Wang Z, Liu Y. Identifying microRNA targets in
different gene regions. BMC Bioinforma. 2014;15:1–11.

48. Xu W, Wang Z, Liu Y. The characterization of microRNA-mediated gene
regulation as impacted by both target site location and seed match type.
PloS one. 2014;9(9):108260.

49. Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes
microRNA–mRNA interaction maps. Nature. 2009;460(7254):479–86.

50. Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M. A
quantitative analysis of clip methods for identifying binding sites of
rna-binding proteins. Nat methods. 2011;8(7):559–64.

51. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human
microRNA targets. PLoS Biol. 2004;2(11):363. miranda algorithm.

52. Krüger J, Rehmsmeier M. Rnahybrid: microRNA target prediction easy,
fast and flexible. Nucleic Acids Res. 2006;34(suppl 2):451–4.

53. Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, et al.
mirtarbase update 2014: an information resource for experimentally
validated miRNA-target interactions. Nucleic Acids Res. 2014;42(D1):
78–85.

54. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of
microRNAs on protein output. Nature. 2008;455(7209):64–71.

55. Schnall-Levin M, Rissland OS, Johnston WK, Perrimon N, Bartel DP,
Berger B. Unusually effective microRNA targeting within repeat-rich
coding regions of mammalian mRNAs. Genome Res. 2011;21(9):
1395–1403.

56. Bandyopadhyay S, Mitra R. Targetminer: microRNA target prediction with
systematic identification of tissue-specific negative examples.
Bioinformatics. 2009;25(20):2625–631.

57. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al.
Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):
495–500.

58. Liu G, Zhang R, Xu J, Wu CI, Lu X. Functional conservation of both
cds-and 3’-utr-located microRNA binding sites between species. Mol Biol
Evol. 2015;32(3):623–8.

59. Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH. starbase: a database
for exploring microRNA–mRNA interaction maps from argonaute clip-seq
and degradome-seq data. Nucleic Acids Res. 2011;39(suppl 1):202–9.

60. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starbase v2. 0: decoding
miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks
from large-scale CLIP-seq data. Nucleic Acids Res. 2014;42(D1):D92–D97.

61. Siepel A, Haussler D. Phylogenetic hidden markov models. In: Statistical
methods in molecular evolution. New York: Springer; 2005. p. 325–51.

62. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K,
et al. Evolutionarily conserved elements in vertebrate, insect, worm, and
yeast genomes. Genome Res. 2005;15(8):1034–50.

63. Kozomara A, Griffiths-Jones S. mirbase: annotating high confidence
microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(D1):
D68–D73.

64. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence
microRNAs using deep sequencing data. 2013. http://www.mirbase.org/
ftp.shtml. Accessed 01 Dec 2014.

65. Liu C, Mallick B, Long D, Rennie WA, Wolenc A, Carmack CS, et al.
CLIP-based prediction of mammalian microRNA binding sites. 2013.
http://sfold.wadsworth.org/starmirDB.php. Accessed 01 Jan 2015.

66. Stark A, Brennecke J, Russell RB, Cohen SM. Identification of drosophila
microRNA targets. PLoS Biol. 2003;1(3):60.

67. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Cluster
computing with working sets. In: Proceedings of the 2nd USENIX
conference on hot topics in cloud computing. HotCloud’10. Berkeley, CA,
USA: USENIX Association; 2010. p. 10–10. Apache Spark. http://dl.acm.
org/citation.cfm?id=1863103.1863113.

68. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, et al.
Apache hadoop yarn: Yet another resource negotiator. In: Proceedings of
the 4th annual symposium on cloud computing. SOCC ’13. New York, NY,
USA: ACM; 2013. p. 5–1516. doi:10.1145/2523616.2523633. Apache YARN.
http://doi.acm.org/10.1145/2523616.2523633.

69. Khorshid M, Hausser J, Zavolan M, van Nimwegen E. A biophysical
miRNA-mRNA interaction model infers canonical and noncanonical
targets. 2013. http://www.clipz.unibas.ch. Accessed 01 Mar 2015.

70. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs novel
biomarkers and extracellular communicators in cardiovascular disease?
Circ Res. 2012;110(3):483–95.

71. Jeffrey SS. Cancer biomarker profiling with microRNAs. Nat Biotechnol.
2008;26(4):400–1.

72. Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based
approach to human disease. Nat Rev Genet. 2011;12(1):56–68.

73. van Rooij E, Purcell AL, Levin AA. Developing microRNA therapeutics.
Circ Res. 2012;110(3):496–507.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.mirbase.org/ftp.shtml
http://www.mirbase.org/ftp.shtml
http://sfold.wadsworth.org/starmirDB.php
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dx.doi.org/10.1145/2523616.2523633
http://doi.acm.org/10.1145/2523616.2523633
http://www.clipz.unibas.ch

	Abstract
	Background
	Results
	Conclusions
	Availability

	Background
	Our contribution
	Importance of seed and seedless matches

	Related work

	Results and Discussion
	Approach
	Results
	Comparison against other methods
	Performance evaluation on experimentally validated mRNA-miRNA interactions
	Performance on unseen mRNAs
	Performance on miRNAs that are not abundantly expressed
	Importance of various features
	Difference between 3' UTR and 5' UTR binding patterns for seedless sites
	Discussion
	Threats to validity of our approach

	Conclusion
	Methods
	Data
	Thermodynamic features
	Seed match enrichment
	Enrichment score for each seed match.

	Sequence features
	Conservation
	Miscellaneous features
	Feature transformations
	Model
	Validation protocol

	Endnotes
	Abbreviations
	Availability of supporting data
	Competing interests
	Authors' contributions
	Acknowledgments
	Author details
	References



