Niu et al. BMC Genomics (2015) 16:693

DOI 10.1186/512864-015-1885-6
BMC

Genomics

RESEARCH ARTICLE Open Access
@CrossMark

Identification and expression profiles

of sSRNAs and their biogenesis and
action-related genes in male and female
cones of Pinus tabuliformis

Shi-Hui Niu, Chang Liu, Hu-Wei Yuan, Pei Li, Yue Li and Wei Li"

Abstract

Background: Small RNA (sRNA) play pivotal roles in reproductive development, and their biogenesis and action
mechanisms are well characterised in angiosperm plants; however, corresponding studies in conifers are very
limited. To improve our understanding of the roles of sRNA pathways in the reproductive development of conifers, the
genes associated with sSRNA biogenesis and action pathways were identified and analysed, and sRNA sequencing and
parallel analysis of RNA ends (PARE) were performed in male and female cones of the Chinese pine (Pinus tabuliformis).

Results: Based on high-quality reference transcriptomic sequences, 21 high-confidence homologues involved in sRNA
biogenesis and action in P. tabuliformis were identified, including two different DCL3 genes and one AGO4 gene. More

conifers.

than 75 % of genes involved in sRNA biogenesis and action have higher expression levels in female than in male
cones. Twenty-six microRNA (miRNA) families and 74 targets, including 46 24-nt sRNAs with a 5" A, which are
specifically expressed in male cones or female cones and probably bind to AGO4, were identified.

Conclusions: The sRNA pathways have higher activity in female than in male cones, and the miRNA pathways are the
main sRNA pathways in P. tabuliformis. The low level of 24-nt short-interfering RNAs in conifers is not caused by the
absence of biogenesis-related genes or AGO-binding proteins, but most likely caused by the low accumulation of these
key components. The identification of sSRNAs and their targets, as well as genes associated with sRNA biogenesis and
action, will provide a good starting point for investigations into the roles of sSRNA pathways in cone development in
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Background

The functional differentiation and adaptability to differ-
ent environments of cells and tissues harbouring the
same genetic material are dependent on epigenetic regu-
lation at different levels. Small RNA (sRNA)-mediated
gene silencing and chromatin modification play import-
ant roles in regulation [1]. The sRNA pathways in plants
mainly include the microRNA (miRNA) and short-
interfering RNA (siRNA) pathways [2]. According to the
biogenesis and action mechanisms of sSRNAs, the siRNA

* Correspondence: bjfuliwei@bjfu.edu.cn

National Engineering Laboratory for Forest Tree Breeding, College of
Biological Science and Technology, Beijing Forestry University, Beijing,
100083 People’s Republic of China

( BioMed Central

pathway is divided into trans-acting siRNA (tasiRNA),
natural-antisense siRNA (natsiRNA) and RNA-directed
DNA methylation (RdADM) pathways [3].

The miRNAs are a family of small endogenous noncod-
ing single-stranded RNA molecules that regulate gene
expression posttranscriptionally by directing mRNA
degradation or translational repression and control many
biological functions, including development and tissue-
specific processes in both plants and animals [4, 5]. Plant
miRNAs are generally 21 nucleotides long and regulate
endogenous gene expression by recruiting silencing fac-
tors assembled into the RNA-induced silencing complex
(RISC) to complementary binding sites in target tran-
scripts [6, 7]. In most studied plants, such as Arabidopsis
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[8], rice [9], tomato [10], soybean [11], peanut [12], apple
[13], miRNAs are the second most abundant sRNAs,
followed by siRNAs [14]. siRNAs are distinguished from
miRNAs in that they are derived from double-stranded
RNA precursors. In plants, 24-nt siRNAs are associated
with DNA methylation through the RADM pathway at
homologous loci guided by AGO4 proteins [15-18].

The sRNAs play a pivotal role in flower transformation
and development [19, 20]. miR156 participates in ambi-
ent temperature-responsive flowering [21] and male fer-
tility [22], miR159 controls anther development [23, 24]
and pollen tube-synergid interaction [25], miR172 medi-
ates sex determination and floral meristem determinacy
[26—28], miR319 is required for petal development [29],
and miR396 is involved in pistil development [30, 31].
Although there has been much work on the reproduct-
ive regulatory roles of miRNAs, there has been less em-
phasis on siRNAs. However, there is evidence that 24-nt
siRNAs are probably critical in the regulation of flower-
ing time [32], anthers [33], petals [34] and embryonic
[35] development.

Despite this broad knowledge of sSRNA biogenesis and
the action mechanisms underlying growth and develop-
ment of angiosperm plants, there is still a considerable
lack of corresponding research on gymnosperms. With
the popularisation of next-generation sequencing technol-
ogy, sSRNA sequencing and identification were also per-
formed for some conifers [9, 36]. The sRNA expression
profiles of infectious diseases [37], somatic embryonic in-
duction and germination [38, 39], and male and female ga-
metophytes [40, 41] were analysed in different conifer
trees. However, these studies focused mainly on changes
in expression of specific SRNAs, while research on the
sRNA biogenesis and action pathways is very limited.

To improve our understanding of the roles of sRNA
pathways in male and female cones of Pinus tabulifor-
mis, the genes associated with sRNA biogenesis and
action pathways were identified and analysed, and high-
throughput sequencing of sRNAs and degradome tags of
P. tabuliformis male and female cones was performed.
These data provide compelling new insights into the
regulation of sRNA pathways involved in male and fe-
male cone development in P. tabuliformis.

Results

Identification of homologues involved in sSRNA biogenesis
and action in P. tabuliformis

The sRNA biogenesis and action pathways are well de-
fined in Arabidopsis [3]. Through a Blast search of the P.
tabuliformis transcriptomic sequences [42] using the
amino acid sequences of proteins from Arabidopsis, sev-
eral highly similar sequences were selected and mapped
to the Picea abies genome [43]. Specific screening
primers were designed based on the longest sequence in
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each cluster to isolate the full-length sequences from the
P. tabuliformis SMART c¢DNA library (Clonetech, USA).
Finally, 24 candidate genes with complete coding regions
were isolated, and the phylogenetic relationships be-
tween these P. tabuliformis genes and those of other
land plants were inferred using the ML method. Surpris-
ingly, the sSRNA pathway genes were highly conserved
during evolution, except for methyltransferases involved
in the anRdDM pathway (Additional file 1). Twenty-one
high-confidence homologues involved in sRNA biogen-
esis and action in P. tabuliformis were identified
(Table 1).

Two different DCL3 genes exist in conifers

DCL enzymes are large proteins that catalyse primary
sRNA transcript cleavage and produce mature sSRNAs of
different sizes [44]. Four different AtDCL enzymes were
found in Arabidopsis and were divided into four groups,
corresponding to DCLs from other plants. All four clas-
ses of DCLs exist in P. tabuliformis, indicating that they
evolved before the divergence of angiosperms and gym-
nosperms (Additional file 1).

Different DCLs specifically process precursor tran-
scripts into differently sized sRNAs. DCL1 and DCL4
generate 21-nt sRNAs, DCL2 generates 22-nt sRNAs,
while DCL3 generates 24-nt sRNAs [45]. In angio-
sperms, the 24-nt sRNAs are the major endogenous
sRNAs [9]; however, their levels are substantially lower
in gymnosperms [43]. DCL3 was once considered to be
absent in gymnosperm plants [46], but later studies sug-
gest multiple DCL3 members exist in conifers [47].

Our results demonstrated two different DCL3 genes in
P. tabuliformis (Table 1, Fig. 1). The identities between
the PtDCL3a and PtDCL3b cDNA sequences are only
68.5 %; however, the identity of PtDCL3a to its Pinus
taeda and Picea abies homologues are 98 % and 94 %,
respectively, while the identity of PtDCL3b to its homo-
logues are 97.0 % and 93 %, respectively. These results
indicate that DCL3a and DCL3b were separated for a
long time before the divergence of conifer species.

The AGO4s binding to the 24-nt DCL3-derived siRNAs
were conserved during land plant evolution
AGO proteins are key components of the RNA-induced
silencing complex (RISC) [48, 49]. Phytogenetic analyses
showed that plant AGO proteins group into three clades
(Fig. 2a). Five AGOs were found in P. tabuliformis.
PtAGO]1, 5, and 10 belong to the AGO1 clade, and
PtAGO4 and PtAGO?7 belong to the AGO4 and AGO7
clades, respectively (Fig. 2b). The catalytic DDH amino
acid core in the PIWI domain of land plant AGOs was
extremely conserved (Fig. 2c).

Despite the fact that 24-nt DCL3-derived siRNAs are
only present at very low levels in conifers [43] and that
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Table 1 The sRNA pathway genes in Pinus tabuliformis
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At gene Locus Pt homolog NCBI NO. Protein Function
AtHST At3g05040 PtHST KJ711062 1195 Exprotin-5 homolog
AtHENT At4g29160 PtHEN1 KJ711060 977 SRNA-sprecific methyltransferase
AtDRB4 At3g62800 PtDRB4 KJ711042 550 nuclear dsRNA-binding protein
AtHYL1 At1g09700 PtHYL1 KJ711063 485 nuclear dsRNA-binding protein
AtSGS3 At5g23570 PtSGS3 KJ711106 776 Coiled-coil protein
AtRDR1 At1g14790 PtRDR1 KJ711100 1726 RNA-dependent RNA polymerase
AtRDR2 At4g11130 PtRDR2 KJ711101 1189 RNA-dependent RNA polymerase
AtRDR6 At3g49500 PtRDR6 KJ711102 1123 RNA-dependent RNA polymerase
AtDCLT At1g01040 PtDCL1 KJ711036 2126 Rnase IlI
AtDCL2 At3g03300 PtDCL2 KJ711037 1435 Rnase I
AtDCL3 At3g43920 PtDCL3a KJ711038 1871 Rnase Il
AtDCL3 At3g43920 PtDCL3b KJ711039 1792 Rnase Il
AtDCL4 At5g20320 PtDCL4 KJ711040 1716 Rnase Il
AtNRPD1a At1g63020 PtNRPD1a KJ711089 1856 DNA-dependent RNA polymerase
AtNRPD1b At2g40030 PtNRPD1b KJ711090 2530 DNA-dependent RNA polymerase
AtNRPD2 At3g23780 PtNRPD2 KJ711091 1348 DNA-dependent RNA polymerase
AtAGO1T At1g48410 PtAGOT KJ710984 1144 RNA slice
AtAGO2 At1g31280 NA RNA slice
AtAGO3 At1931290 NA RNA slice
AtAGO4 At2g27040 PtAGO4 KJ710986 930 RNA slice
AtAGOS At2g27880 PtAGO5 KJ710987 1097 RNA slice
AtAGO6 At2g32940 PtAGO4 KJ710986 930 RNA slice
AtAGO7 At1g69440 PtAGO7 KJ710988 1127 RNA slice
AtAGO9 At5g21150 PtAGO4 KJ710986 930 RNA slice
AtAGOT0 At5g43810 PtAGOT0 KJ710985 955 RNA slice
AtCMT3 At1g69770 NA Methyltransferase
AtDRM?2 At5g15380 NA Methyltransferase
AtMETT A5t49160g NA Methyltransferase
100 PIDCL3a —=
100 PDCL3b —e
90 AtDCL3IAT3G43920.2
[——— AtDCLIIAT1G01040.1
100 =——————PIDCL1 —==<
100 AtDCL2IAT3G03300.1
PIDCL2 —=—
I AtDCLAIAT5G20320.1
100" PIDCLA —=

0.2

Fig. 1 Phylogenetic analysis of PtDCL and AtDCL proteins. The figures show an unrooted maximum likelihood tree based on amino acid sequences.

The gene names and IDs are provided to the right of each branch. The horizontal branch lengths are proportional to the estimated number of amino
acid substitutions per residue. Bootstrap values were obtained from 1000 bootstrap replicates. The arrows indicate P. tabuliformis genes investigated in
this study. The ML tree of DCL proteins from 42 land plants is shown in Additional file 1
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(See figure on previous page.)

Fig. 2 Phylogenetic analysis of AGO proteins in land plants. (a), The figures show an unrooted ML tree based on the amino acid sequences of all
AGO proteins in land plants. (b), The figures show an unrooted ML tree based on the PtAGOs and AtAGOs. The horizontal branch lengths are
proportional to the estimated number of amino acid substitutions per residue. Bootstrap values were obtained from 1000 bootstrap replicates.
The arrows indicate the P. tabuliformis genes investigated in this study. (c) The catalytic DDH amino acid core in the PIWI domain of land plant

AGOs. The sizes of letters represent the residue frequency of each site

the AGO4 clade ago mutants in Arabidopsis (ago4, ago6,
ago9) have no obvious developmental defects [48],
AGO4s were conserved during land plant evolution.
Moreover, the number, position, and size of exons of
AGO4 homologues in land plants remained surprisingly
consistent (Fig. 3). Greater efforts are needed to under-
stand the specific role of AGO4 in species maintenance
and evolution.

The sRNA biogenesis and action pathways have higher
activity in female than in male cones of P. tabuliformis
The expression profiles of genes involved in the sSRNA
biogenesis and action pathways in male and female
cones were analysed. The results show that more than
75 % of genes have higher expression levels in female
than in male cones (Fig. 4a). These differences were con-
firmed by microarray data (Additional file 2). Interest-
ingly, the female structures (carpels) in Arabidopsis also
had similarly higher activities than those of the male
structures (stamens) (Fig. 4b). Moreover, AGOI had the
highest expression level, and AGO4 and AGOI0 were
highly differentially expressed between male and female
structures in both P. tabuliformis and Arabidopsis, indi-
cating that a similar sSRNA regulatory mechanism prob-
ably underlies the development of male and female
structures in both gymnosperms and angiosperms.
sRNAs in male and female cones were then analysed
by high—throughput sequencing. The results showed
that 21-nt sRNAs were the major sSRNAs in both male
and female cones in P. tabuliformis, with more in female
than male cones (Fig. 5). Proportionally, the male cones

had relatively high levels of 24-nt sRNAs (Fig. 5), but
AGO4, which plays a key role in the action of 24-nt
sRNAs, was expressed at a very low level in male cones
(Fig. 4a), indicating that both miRNA and siRNA path-
ways have higher activities in female than male cones.

Identification of miRNAs and targets in male and female
cones of P. tabuliformis

To globally and directly identify miRNAs and miRNA-
directed targets of cleavage, a parallel analysis of RNA
ends (PARE), also known as degradome analysis, was
applied. Twenty-six miRNA families and 74 targets
were identified by sRNA sequencing and PARE
analysis. Three novel miRNAs with unknown func-
tions were isolated (Table 2, Additional file 3). When
a two-fold change (FC) in expression was used to
filter the differentially expressed miRNAs between
male and female cones, 50 miRNAs were identified
(Additional file 4). Eighteen genes had higher expres-
sion levels in male cones, while the other 32 miRNAs
had higher expression levels in female cones (Add-
itional file 4). This result is consistent with the sSRNA
biogenesis and action pathways having higher activ-
ities in female than in male cones in P. tabuliformis
(Fig. 4).

The completed coding DNA sequences (CDSs) of
36 target genes were isolated, of which 20 miRNA
targets were conserved in the evolution of conifers
and angiosperms (Table 2). The important miRNA
targets involved in angiosperm reproductive develop-
ment, such as miR156/miR529-SPLs [50], miR159-
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MYBs [51], miR172-AP2Ls [52], miR319-TCPs [53]
and miR396-GRFs [31], also exist in P. tabuliformis
(Table 2, Additional file 5). The miR396-GRFs were
previously found to be required for coordination of
cell division and differentiation during leaf develop-
ment [54, 55], and recent studies have shown that
they also play a role in reproductive development
[30, 31]. We isolated three GRF homologues from P.
tabuliformis, namely PtGRFI-3, and miR396 medi-
ated cleavage of the PtGRFs and regulated PtGRF
mRNA accumulation (Fig. 6).

Identification of 24-nt sSRNAs containing a 5' “A” terminal
differentially expressed between male and female cones
in P. tabuliformis

Compared with the miRNA pathway, the role of the 24-
nt siRNA-mediated RADM pathway in the reproductive
development of plants is largely unknown [48]. Only one
AGO4 homologue, the key component of RISC associ-
ated with 24-nt siRNAs, was found in P. tabuliformis
(Table 1, Fig. 2). Because AGO4 was revealed to pre-
dominantly bind 24-nt sRNAs with a 5" A [56], the 24-nt
sRNAs containing 5" “A” termini differentially expressed
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b

<zn 60+ wAF1

= =R

2 50 SYF3

=3 vz M1

'E 40' = M2
N M3

5 30

)

& 20+

=

S 10+

S i

= 20

21 22 23 24 25
Length (nt)

0+ i
17



http://jsp.weigelworld.org/expviz/expviz.jsp

Niu et al. BMC Genomics (2015) 16:693

Table 2 Experimental identified miRNA targets in P. tabuliformis
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miRNA family Target Protein Conserved target / miRNA sequence Action sites
miR156 comp75271_c0_seq2 PtSPL1 [50] Flowering
miR156 Iw_isotig09062 PtSPL3 [50] Flowering
miR529 comp85892_c0_seq1 PtSPL2 [76] Flowering
miR159 Iw_hbkxs4402jlyd6 PtMYB33 [51] Flowering
miR162 comp74382_c0_seq3 PtDCL1 [52] SRNA
miR172 comp64707_c0_seq1 PtAP2L3 [52] Flowering
miR172 Iw_isotig05156 PtAP2L2 [52] Flowering
miR172 Iw_isotig06154 PtAP2L1 [52] Flowering
miR319 Iw_isotig09509 PtTCP2 [53] Flowering
miR319 Iw_isotig09013 PtERF1 5-TTGGACTGAAGGGAGCTCC-3'

miR166 comp65619_c0_seq?2 PtHB3* [77] Vascular
miR166 comp78056_c0_seq1 PtHB3* [77] Vascular
miR166 comp83755_c0_seq] PtHB4 [77] Vascular
miR166 Iw_isotig05204 PtHB2 771 Vascular
miR169 comp77240_c0_seq3 PtNF-YA7 [78] Root
miR171 comp65826_c0_seq] PtHAM1 [79] Meristem
miR171 Iw_hbkxs4402gb50u PtHAM?2 [79] Meristem
miR391 comp48694_c0_seq1 unknown 5-TACGCAGGAGAGATGACACCG-3'

miR391 Iw_isotig02711 unknown 5-TACGCAGGAGAGATGACACCG-3'

miR394 Iw_isotig14380 PtKRF2 [80] Stem cell
miR396 comp57471_c0_seq2 PtGRF2* [31] Flower/Pistil
miR396 comp73392_c0_seq]1 PtGRF1 [31] Flower/Pistil
miR396 Iw_isotig04039 PtGRF3 [31] Flower/Pistil
miR408 comp20033_c0_seq PtSINAT1 5-TGCACTGCCTCTTCCCTGGCT-3'

miR408 Iw_isotig03980 PtAPRN 5-TGCACTGCCTCTTCCCTGGCT-3'

miR482 comp10992_c0_seq1 PtNBS1 [81] Defense
miR482 comp2059_c0_seq1 unknown 5-TCTTTCCTACTCCTCCCA-3'

miR482 comp270247_c0_seq1 unknown 5-TCTTCCCTACTCCTCCCATTCC-3’

miR482 comp43645_c0_seq1 unknown 5-TTTCCTACTCCTCCCAAGCCCA-3’

miR482 comp57920_c0_seq1 unknown 5-TTTCCTACTCCTCCCAAGCCCA-3'

miR482 comp59077_c0_seq2 unknown 5'-TCTTGCCTACCCCTCCCATTCC-3'

miR482 comp66603_c0_seq1 unknown 5-TTTCCTACTCCTCCCAAGCCCA-3'

miR482 comp76079_c0_seq1 unknown 5-TCTTCCCTACTCCTCCCATTCC-3

miR482 comp80951_c0_seq5 unknown 5-TTTCCTACTCCTCCCAAGCCCA-3'

miR482 Iw_isotig06642 PtKRF3 5-TCTTCCCTACTCCTCCCATTCC-3

miR482 lw_isotig09777 unknown 5-TCTTCCCTACTCCTCCCATTCC-3

miR482 Iw_isotig12233 unknown 5-TTCCCTATTCCTCCCATTCCTA-3'

miR482 lw_isotig17369 unknown 5-TCTTCCCTACTCCTCCCATTCC-3'

miR482 Iw_isotig25482 unknown 5-TTTCCTACTCCTCCCAAGCCCA-3'

miR946 comp74586_c0_seq] un known 5-CAGCCCTTCTCCTATCCACAAC-3

miR947 comp58863_c0_seq?2 unknown 5'-CATCGGAATCTGTTACTGTTTC-3'

miR947 comp69066_c0_seq2 unknown 5-CATCGGAATCTGTTACTGTTTC-3

miR947 Iw_hbkxs4402jaz6z unknown 5-CATCGGAATCTGTTACTGTTTC-3'

miR947 Iw_isotig08583 unknown

5-CATCGGAATCTGTTACTGTTTC-3
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Table 2 Experimental identified miRNA targets in P. tabuliformis (Continued)

miR949 comp29204_c0_seq1 unknown
miR949 comp4036_c0_seq1 unknown
miR950 comp314883_c0_seq1 NB-ARC
miR950 Iw_hbkxs4402g5r7f unknown
miR951 comp77599_c0_seq2 unknown
miR951 comp79416_c0_seq1 unknown
miR951 comp79471_c2_seqb unknown
miR951 Iw_hbkxs4401es9bl unknown
miR1311 Iw_isotig09685 unknown
miR1312 comp141994_c0_seq1 PtGRF2*
miR1312 comp78456_c0_seq1 PtHB1
miR1313 comp70891_c0_seq2 PtLRK1
miR1314 comp14858_c0_seq1 unknown
miR1314 comp47488_c0_seq1 unknown
miR1314 comp62379_c0_seq1 unknown
miR1314 comp66316_c0_seq1 unknown
miR1314 comp67690_c0_seq unknown
miR1314 comp77805_c0_seq6 unknown
miR1314 comp78314_c0_seq] PtRNAase
miR1316 Iw_isotig01063 PtLIP1*
miR1316 Iw_isotig22693 ptLIP1*
miR1316 Iw_isotig25086 PtLIP2
miR1316 Iw_isotig25889 PtLIP1*
miR1448 Iw_isotig17502 unknown
miR2111 Iw_isotig01996 PtKRF1
miR2118 comp35426_c0_seq] unknown
miR3710 comp76797_c0_seq3 unknown
new comp333751_c0_seq1 unknown
new comp54693_c0_seq1 unknown
new comp69194_c0_seq1 PtmTERF1

5-TCTCCGGGAATCCAATGCGCCT-3"
5-TCTCCGGGAATCCAATGCGCCT-3"
5-TAACATCTGGGCCACGAGGGTT-3'
5-TCACATCTGGGCCACGATGGTT-3
5-TGTTCTTGACGTCTGGACCACG-3'
5-TGTTCTTGACGTCTGGACCACG-3'
5-TCGGCCTCAAATGTTAGGAGAA-3"
5-TGTTCTTGACGTCTGGACCACG-3'
5-TCAGAGTTTTGCCAGTTCCGCC3
5-TTTGGAGAGAAAATGGCCACT-3'
5-TTTGGAGAGAAAATGGCCACT-3'
5-TACCACTGAAATTATTGTTCG-3'
5'-CCGGCCTCAAATGTTAGGAGAA-3
5-CCGGCCTCAAATGTTAGGAGAA-3'
5-CCGGCCTCAAATGTTAGGAGAA-3'
5'-CCGGCCTCAAATGTTAGGAGAA-3
5-CCGGCCTCGAATGTTAGGAGA-3
5-CCGGCCTCAAATGTTAGGAGAA-3'
5-CCGGCCTCAAATGTTAGGAGAA-3
5-TTCCATGCACAAACCATTGGA-3'
5-TTCCATGCACAAACCATTGGA-3'
5-TTCCATGCACAAACCATTGGA-3'
5-TTCCATGCACAAACCATTGGA-3'
5-TCTTTCCAACGCCTCCCATACC-3'
5-TAATCTGCATCCTGAGGTTTG-3"
5-TTCCCTATTCCACCCATCCCAT-3"
5-TGAACAATGCCCACCCTTCATC-3"
5-TGACATTGTAAAATACGGGAAT-3"
5-TCAGGGCCTCGGTGGTTAATG-3'
5-TAATGCTTCACCCTCAATGCC-3'

The miRNAs that shown in the table were isolation and sequencing from at least two independent libraries and the targets cleavage by miRNAs were identified
by PARE analysis. * indicate the unigenes with same name were found as same gene after cloned

between male and female cones of P. tabuliformis were
identified. Eleven and 35 sRNAs specifically expressed in
male and female cones, respectively, were isolated
(Additional file 6). The functional identification of these
24-nt sRNAs in reproductive development will be in-
structive to our future research.

Discussion

The sRNA-mediated transcriptional regulation of genes,
including the miRNA and siRNA pathways, is an im-
portant epigenetic regulatory mechanism in plants [1].
In this study, we first isolated the key regulatory factors
involved in miRNA and siRNA biogenesis and action in P.
tabuliformis. Phylogenetic analysis indicated that sRNA
pathways were very ancient regulatory mechanisms during

the evolution of land plants, and most homologous genes,
such as DCLs, AGOs and RDRs, had already diverged in
the primitive vascular plants. However, the siRNA path-
ways probably evolved later than the miRNA pathways.
The sRNA binding and guiding protein AGOs and the 24-
nt siRNA-mediated DNA methylation catalytic genes have
expanded and diversified in angiosperms [57].

In addition to the sRNA target genes, the SRNA biogen-
esis and action pathways also play important roles in the
regulation of growth and development in plants [58, 59].
The expression profiles of the SRNA biogenesis and action
pathway genes and sRNA sequencing indicated that the
miRNA pathway is the main sRNA pathway in male and
female cones of P. tabuliformis. Previous studies showed
that the siRNA pathway has weak activity in other organs
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compared with cones [35, 43]. In angiosperms, the
miRNA pathway is also the most important sSRNA path-
way in reproductive regulation [20]. Based on sRNA se-
quencing and PARE analysis, the cleavage of 74 target
sequences by 26 corresponding miRNA families was iden-
tified. The complete CDS of 36 genes from these target se-
quences were cloned, while other genes were difficult to
obtain by PCR as the mRNA of these genes was almost
completely degraded by the high abundance of related
miRNAs (average RPM > 3700) in the cones of P. tabuli-
Sformis. The roles of turn off of these genes in reproductive
development remain unclear. It is noteworthy that we
found that at least a portion of these genes were probably
non-coding RNAs, and may be indirectly involved in de-
velopmental regulation.

Our results showed that the important miRNAs and
their targets involved in angiosperm reproductive devel-
opment, such as miR156/miR529-SPLs [50], miR159-
MYBs [51], miR172-AP2Ls [52], miR319-TCPs [53] and
miR396-GRFs [31], coevolved and have an ancient evolu-
tionary history, similar to the sSRNA pathways, such as
miR156 and miRNA319, which have evolved in moss
plants [60]. These miRNA-target-mediated regulatory

pathways may have also coevolved as a "package", as
MYB33 is the target of miR159, which is predominantly
expressed in the male reproductive structures in differ-
ent species [23, 24].

DNA methylation is involved in the control of all gen-
etic functions including transcription, replication, DNA
repair, gene transposition and cell differentiation in
plants [61]. It is a common and very ancient epigenetic
regulatory mechanism in plants that is found in the
DNA of all archegoniates investigated; however, the de-
gree and features of DNA methylation are species-,
tissue-, organelle- and age-specific [61]. 24-nt siRNA-
mediated site-specific DNA methylation through the
RdDM pathway is an important DNA methylation
mechanism [62]. Previous studies suggested that gym-
nosperms have lower DNA methylation levels than
those of flowering plants [63], which may be associ-
ated with the high degree of conservation and low
morphological diversity between conifer species [43].
The 24-nt sRNAs involved in RdADM only represent a
small proportion of all sRNAs in conifers [35, 43],
but the proportions are opposite in the flowering plants
[9]. Therefore, some researchers have speculated that the
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RdDM pathway in conifers is incomplete [46]. Our results
have shown that, except for methyltransferase, all RADM
pathway components are present and conserved in P.
tabuliformis, including PtDCL3, PtAGO4, PtRDR2,
PtHEN1, PtNRPD1a, PtNRPD1b and PtNRPD2. The low
level of 24-nt sRNAs is not because of a lack of biogenesis
enzymes. The real reason may be, the low expression
levels of RDR2-NRPD1a-DCL3 coding genes necessary for
24-nt sSRNA accumulation.

AGO proteins are sSRNA binding and guiding proteins
and the most important proteins downstream of the
sRNA pathways [64]. Despite the RADM pathway having
only weak activity in conifers, the components of RADM
were still conserved at a high degree through time. The
structures of AGO4 in moss, lycophyte, gymnosperm and
angiosperm plants maintain a high level of consistency.
Interestingly, the role of RADM in mosses and lycophytes
is unclear, as the ago4 mutant has no obvious develop-
mental defects [65, 66] and the evolutionary significance
and selective pressure of the conservation of AGO4 and
RdDM is difficult to understand. Some evidence indicates
that the absence of AGO4 makes the plants more sensitive
to disease [65]. Investigating the role of PLAGO4 in P.
tabuliformis in disease resistance may be valuable for un-
derstanding the role of RADM in evolution and may facili-
tate disease resistant breeding of P. tabuliformis.

We found 46 24-nt sRNAs with a 5" A that probably
bind to AGO4 [56]. They were specifically expressed in
either male cones or female cones, and more than 75 %
of these sSRNAs have significant accumulation in female
cones but were not detected in all male samples. This is
consistent with the higher activity of SRNA biogenesis
and action pathway genes in female cones compared
with male cones of P. tabuliformis. Because of the huge
genome size, the analysis of large-scale genome methyla-
tion is difficult in conifers, and the function of these spe-
cifically expressed 24-nt sRNAs is unclear and deserves
more attention in future studies.

Conclusions

Based on high-quality reference transcriptome sequences
[42], 21 high-confidence homologues involved in SRNA
biogenesis and action in P. tabuliformis were identified.
Phylogenetic analysis indicated that the sSRNA pathways
are highly conserved from mosses and ferns to higher
plants. The expression profiles of these genes suggested
that the SRNA pathways have higher activities in female
than in male reproductive structures. In contrast to the
angiosperms [14], both biogenesis- and action-related
gene expression and sRNA sequencing revealed that the
miRNAs are the most abundant sSRNAs in P. tabuliformis,
rather than siRNAs. In this study, 26 miRNA families and
the miRNA-directed cleavage of 74 corresponding targets
were identified though correlation analysis of sSRNA and
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PARE sequencing data. The miRNAs and their targets
participating in reproductive development in angiosperms,
such as miR156-SPLs, miR159-MYBs, miR172- AP2Ls,
miR319-TCP and miR396-GRFs, were also found in P.
tabuliformis. They have ancient evolutionary histories
similar to the sRNA pathways.

In conifers, the low level of 24-nt DCL3-derived siR-
NAs was not caused by the absence of DCL3 and AGO4.
Two DCL3 genes and one AGO4 gene were found in
P. tabuliformis, its ortholog PgAGO in Picea glauca [67]
was previously identified. Forty six 24 nt sSRNAs with a 5’
A, which probably bind to AGO4, specifically expressed in
either male or female cones were isolated. The specific,
highly expressed 24-nt sSRNAs identified in conifers will
provide a good starting point for investigations into the
function and evolution of siRNAs in conifers.

Methods

Plant material and sample collection

P. tabuliformis immature male and female cones were
collected from 3 individual trees selected at random
(genetically distinct) in the botanic gardens in Beijing,
China (116°33.9116" E, 40°00.0861" N and 44 m as.l.).
Cones were sampled at 11:00 am on April 21, 2013. Each
experiment was performed with at least three biological
replicates per event. Samples were immediately placed in
liquid nitrogen in the field after collection and all samples
were stored at —80 °C in the laboratory before analysis.

Identification of homologues involved in sSRNA pathways
in P. tabuliformis

Amino acid sequences of Arabidopsis thaliana genes
(Table 1) were downloaded from the TAIR database
(http://Arabidopsis.org). The protein sequences of Ara-
bidopsis were used in queries to screen the P. tabulifor-
mis transcriptome sequences (NCBI accession number
SRA 056887) based on the TBLASTN method. The candi-
date sequences were selected and compared with other
available conifer transcriptome sequences (http://dendro-
me.ucdavis.edu/resources/) and the Picea abies genome
(http://congenie.org). The P. tabuliformis complete-length
SMART c¢DNA library (Clonetech, USA) was screened
using specific primers. The full-length sequences were ob-
tained and compared with the original sequences. The nu-
cleotide sequences of candidate genes were selected for
preliminary phylogenetic analysis based on the NJ method
using the MEGA software [68] and renamed.

Phylogenetic analysis

Homologues of 41 land plant species, which have been
whole genome sequenced (http://phytozome.jgi.doe.gov),
were selected for phylogenetic analysis. Multiple alignments
of protein sequences were obtained using the MUSCLE
software [69] and a maximum-likelihood tree, based on the
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JTT model, was generated using MEGA software [68].
Bootstrap values were obtained from 1000 replicates.

sRNA sequencing and PARE analysis

Total RNA isolation from samples and cDNA library
construction were performed as described previously
[39]. Pooled libraries were used for cluster generation on
[lumina’s Cluster Station (Illumina, San Diego, USA)
and then sequenced on an Illumina Hiseq2000 at
YQYK-BIO (Beijing, China) following the vendor's rec-
ommended protocol. The sRNA abundance was mea-
sured as reads per million reads (RPM). The PARE
library construction and sequencing were performed as
described previously [70, 71]. The identification of
miRNA and miRNA-directed targets of cleavage though
correlation analysis of SRNA and PARE sequencing re-
sults was performed as previously described [72, 73].
More details are available in the supplementary material
(Additional file 7).

Gene expression analysis

RNA sequencing and gene expression analysis were de-
scribed previously [74]. mRNA abundance was measured
as reads per kilobase per million (RPKM) [75]. Each ex-
periment was performed with at least three biological
replicates per event. The mean RPKM of three biological
replicates was compared among different samples.

Identification of differentially expressed 24-nt sRNAs con-
taining a 5’ "A" terminal between male and female cones

The 24-nt sSRNAs containing a 5 "A" terminal were ex-
tracted. Comparison of the expressions of these sRNAs
was conducted between small RNA libraries of male and
female cones. We first normalised the expression of
sRNA in six libraries (F and M, three biological repli-
cates each) to obtain the expression of reads per million
reads (RPM). Then, the data were analysed using Fisher’s
exact test with a Bonferroni correction for multiple hy-
pothesis testing. Those sRNAs with a p-value below 0.01
and specifically expressed in either male cones or female
cones were isolated.
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