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Abstract

Background: In recent years, increasing amounts of genomic and clinical cancer data have become publically
available through large-scale collaborative projects such as The Cancer Genome Atlas (TCGA). However, as long as
these datasets are difficult to access and interpret, they are essentially useless for a major part of the research
community and their scientific potential will not be fully realized. To address these issues we developed MEXPRESS,
a straightforward and easy-to-use web tool for the integration and visualization of the expression, DNA methylation
and clinical TCGA data on a single-gene level (http://mexpress.be).

Results: In comparison to existing tools, MEXPRESS allows researchers to quickly visualize and interpret the different
TCGA datasets and their relationships for a single gene, as demonstrated for GSTP1 in prostate adenocarcinoma. We
also used MEXPRESS to reveal the differences in the DNA methylation status of the PAM50 marker gene MLPH
between the breast cancer subtypes and how these differences were linked to the expression of MPLH.

Conclusions: We have created a user-friendly tool for the visualization and interpretation of TCGA data, offering
clinical researchers a simple way to evaluate the TCGA data for their genes or candidate biomarkers of interest.
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Background
Over the last few years, large-scale cancer genomics pro-
jects have had a significant impact on cancer research.
The goal of these projects is to create extensive, publically
available and multidimensional oncogenomic datasets
using high-throughput technologies. These datasets allow
researchers to compare the genomic sequences, epigenetic
profiles and transcriptomes of cancer cells to those of
normal cells or cells of different cancer (sub)types. The
Cancer Genome Atlas (TCGA), a joint effort of the Na-
tional Cancer Institute and the National Human Genome
Research Institute, is an example of such a project (http://
cancergenome.nih.gov/).
New findings derived from the statistical and data min-

ing analysis of TCGA data are published regularly and
have already proven to be a valuable addition to cancer
research [1–4]. Large-scale datasets like TCGA also

provide a validation platform for newly identified bio-
markers and they are becoming a standard tool for
current biomarker research. Another powerful aspect of
the TCGA data is the possibility to correlate different
types of data. Promoter DNA methylation for example
influences gene expression, and aberrant methylation is
found in almost every human cancer [5]. The ability to
compare these data in a large number of cancer patients
is therefore extremely valuable, especially for the identi-
fication of DNA methylation biomarkers. Given the
growing importance of large-scale datasets for cancer
research, intuitive data visualization tools are increas-
ingly crucial to help researchers understand the data,
especially when multiple samples and datasets have to
be compared.
A number of visualization tools, each focused on one or

more specific research questions, are available for TCGA
data and offer a wide range of visualization methods [6–9].
There is however no tool available that offers fast and
straightforward visualization and interpretation of the
expression, methylation and clinical data in TCGA, as well
as the relation between these different data types. Such a
tool could be of particular use to the large community of

* Correspondence: alexander.koch@ugent.be
1Department of Mathematical Modeling, Statistics and Bioinformatics, Ghent
University, Ghent, Belgium
3Department of Mathematical Modeling, Statistics and Bioinformatics, Faculty
of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent,
Belgium
Full list of author information is available at the end of the article

© 2015 Koch et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Koch et al. BMC Genomics  (2015) 16:636 
DOI 10.1186/s12864-015-1847-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-015-1847-z&domain=pdf
http://mexpress.be/
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
mailto:alexander.koch@ugent.be


clinical researchers without bioinformatics expertise who
are looking for a way to explore genes of interest or candi-
date biomarkers in the TCGA data.
Here we introduce MEXPRESS, an intuitive web tool

for the fast and straightforward querying and visualization
of the clinical, expression and methylation data in TCGA
and the relationship between these datasets on a single-
gene level. MEXPRESS was designed after the principles
of graphical excellence as described by Edward Tufte [10]
to ensure that the complex and multidimensional TCGA
data would be presented in a clear, precise and efficient
way to the user. It is generally accepted that analysis and
visualization tools intended for a broad research audience
should be easy to use and should not require computational
or bioinformatics expertise [7, 9, 11, 12]. MEXPRESS was
therefore developed to have virtually no learning curve,
allowing especially clinical researchers to get their results
fast without having to invest time in learning yet another
tool.

Implementation
Ease of use is a key feature of MEXPRESS. Just three simple
steps are needed to create a plot: a user has to enter a gene
name, select one of the available cancer types and click the
plot button. The resulting figure (Figs. 1 and 2) shows the
selected gene together with its transcripts and any CpG
islands. Next to the gene, blue line plots illustrate the methy-
lation data for each probe location (Infinium HumanMethy-
lation450 microarray data). A yellow line plot displays the
RNA-seq-derived expression data and grey bar plots repre-
sent the values of the clinical parameters. The numbers on
the far right indicate the significance of the relation (correl-
ation coefficient or P value, depending on the data types
compared) between each row of data (clinical, expression
or methylation) and the selected “sorter”. By default,
expression is the selected “sorter”, which means that the
samples are ordered by their expression value. Clicking on
one of the clinical parameters will reorder the samples
based on the selected variable and the relationships will be
recalculated. The resulting images can be downloaded in
PNG or SVG file format.

TCGA data
We downloaded the following TCGA data from the
TCGA ftp site: level 3 per-gene RNA-seq v2 expression
data (UNC IlluminaHiSeq_RNASeqV2), level 3 DNA
methylation data (JHU_USC HumanMethylation450) and
clinical data in Biotab format (both clinical patient and
tumor sample data). Bash scripts running on the back-end
Linux server check the TCGA ftp site monthly for any
data updates, which are then automatically uploaded to
the database. Whenever TCGA publishes data for new
cancer types, these will also be included in MEXPRESS.
Before the upload, R scripts (R version 3.0.2) process the

data to address missing values, to combine separate files
into one where necessary, to reformat the data and to
generate SQL scripts for the data upload. The RNA-seq
data is log-transformed before being used to draw the
plots and only a selection of the most relevant clinical
parameters (for which data is available) is shown in the
MEXPRESS plots in order to reduce data clutter.

Other data sources
For the breast invasive carcinoma samples, we down-
loaded a table with the expression subtype (normal,
basal, luminal A, luminal B and Her2) for each sample
from the UCSC cancer genome browser [8]. The CpG
island data was downloaded from the UCSC genome
browser [13] using the table browser with the following
settings: clade: Mammal, genome: Human, assembly:
Feb. 2009 (GRCh37/hg19), group: Regulation, track:
CpG Islands, table: cpgIslandsExt. The exon and tran-
script annotation was obtained from Ensembl using the
BioMart tool (Ensembl Genes 75, Homo sapiens genes
GRCh37.p13). We designed MEXPRESS in such a way
that it will be easy in the future to include new types of
data, such as mutation or proteomics data.

Statistical analyses
We recreated all the statistical functions used in MEX-
PRESS in Javascript, with the Pearson correlation and the
non-parametric Wilcoxon’s rank-sum test being the two
main functions. The former is used to compare two types
of data that both have more than 2 levels (e.g. expression
and methylation data), whereas the latter is used to calcu-
late the difference of a variable between two groups (e.g.
the difference in expression between male and female). To
correct for multiple comparisons, we included a false dis-
covery rate correction step [14].

MEXPRESS website
The MEXPRESS site runs on an Apache server and uses
PHP to interact with the back-end database. It employs
Javascript, the jQuery Javascript library (version 1.11.0),
Ajax autocomplete for jQuery (version 1.2.10, https://
github.com/devbridge/jQuery-Autocomplete) and the d3.js
Javascript library (version 3.0.6, http://d3js.org/) to create
the interactive plots and to perform the calculations for the
statistical analyses. When a user downloads a figure, the
SVG image is converted into a PNG image using Inkscape,
an open source vector graphics editor (http://www.inksca-
pe.org/). The backbone of MEXPRESS is a MySQL data-
base that contains the TCGA data needed for the
visualizations. PHP scripts handle the database queries,
package the results in JSON and send them back to the
user. All the MEXPRESS code (back-end, front-end and
data processing) can be cloned or downloaded from this
GitHub repository: https://github.com/akoch8/mexpress.
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Fig. 1 Visualization of the TCGA data for GSTP1 in prostate adenocarcinoma using MEXPRESS. a In the default MEXPRESS plot, the samples are
ordered by their expression value. This view shows how GSTP1 expression and promoter methylation are negatively correlated, which is confirmed by
the Pearson correlation coefficients on the right. It also indicates that normal samples tend to have higher GSTP1 expression than tumor samples. b
When reordered by sample type, the differences in expression and methylation between normal and tumor samples become even more apparent
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Results and discussion
One of the best-studied examples of epigenetic aberrations
in human cancer is the hypermethylation of the GSTP1 pro-
moter region in prostate cancer, leading to the transcrip-
tional silencing of GSTP1 [15–17]. Using MEXPRESS, this
effect can be observed in the TCGA data. Figure 1a shows
the default MEXPRESS plot for GSTP1 in prostate adeno-
carcinoma with the samples sorted by their GSTP1 expres-
sion value. It is immediately clear that the normal samples
cluster towards higher GSTP1 expression and that there is a
negative correlation between expression and methylation
around the promoter region. The P value for the compari-
son of expression between normal and tumor samples
(Wilcoxon rank-sum test, P = 2.2e-14) and the Pearson cor-
relation coefficients (ranging from −0.670 to −0.769 around
the promoter region) confirm the visual interpretation of
the data. When the samples are rearranged based on the
sample type (normal vs. tumor), this difference in methyla-
tion and expression between normal and tumor samples
stands out even more (Fig. 1b). It is not possible to create a

similar figure that allows a comparable interpretation using
one of the existing tools, as they lack the necessary data
implementation and/or features, making them less suit-
able for clinical researchers (Table 1, Additional file 1:
Figures S1, S2, S3 and S4).
Breast cancer is a heterogeneous disease that covers a

myriad of subtypes. Each subtype has distinct biological fea-
tures, leading to differences in clinical outcome and
response to treatment. Perou et al. [18] were the first to de-
scribe breast cancer subtypes based on gene expression pat-
terns and it was found that these subtypes (luminal-like,
basal-like, Her2-enriched and normal-like) have signifi-
cantly different survival times [19]. The classification of
breast cancer samples into these subtypes (based on the
PAM50 gene signature [20]) is available in MEXPRESS,
allowing users to compare expression, methylation and
clinical data between the different subtypes. One member
of the PAM50 signature is the gene MLPH. Using MEX-
PRESS, it becomes clear that MLPH expression is nega-
tively correlated with DNA methylation in the promoter

Fig. 2 MEXPRESS view of the TCGA data for MLPH in breast invasive carcinoma. The samples are ordered by breast cancer subtype, revealing
clear differences in expression and methylation, as well as HER2, estrogen and progesterone receptor status, between the different subtypes
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region (a so far unpublished result) and that expression
and methylation, as well as HER2, estrogen and progester-
one receptor status, differ between the breast cancer sub-
types (Fig. 2).
Traditional genome browsers, such as the UCSC genome

browser [13], present data as horizontally stacked genomic
tracks, which is very useful to display different types of
location-bound genomic data. This allows users to observe
differences within a track or between a limited number of
tracks from different samples. MEXPRESS rotates this
more traditional “genome browser view” and organizes
samples vertically and the different data types horizontally.
This simple transformation offers a very different view of
the data, resulting in an easier interpretation of the differ-
ences between samples than could be achieved through a
conventional genome browser, especially when comparing
hundreds of samples at the same time. It also allows for the
easy comparison of location-bound genomic features, such
as DNA methylation, to expression data or clinical informa-
tion. The combination of this visualization approach with a
simple user interface and the strengths listed in Table 1 sets
MEXPRESS apart from existing tools when it comes to
visualizing and integrating the expression, DNA methyla-
tion and clinical TGCA data.

Conclusion
Along with their expanding size, the value and significance
of large-scale oncogenomics datasets will continue to rise
in the coming years. This growth creates a need for intui-
tive and straightforward tools that enable researchers to
quickly analyze and visualize the data of interest. The tool
presented here offers a unique set of features, including its
ease of use and the integrated visualization of different
data types over hundreds of samples. It may therefore help
to quickly test hypotheses that concern the discovery of
DNA methylation or expression-based biomarkers.

Availability and requirements
Project name: MEXPRESS
Project home page: http://mexpress.be

Operating systems: MEXPRESS can be accessed using
any modern desktop browser
Programming language: Javascript, PHP, MySQL, R, bash
Other requirements: Javascript must be enabled in order to
use MEXPRESS. We recommend using a desktop browser;
MEXPRESS was not intended to work on mobile devices.
Any restrictions to use by non-academics: None

Additional file

Additional file 1: Figure S1. This file contains all the supplementary
figures. Figure S1. shows a UCSC Cancer Genome Browser visualization
of the GSTP1 methylation, expression and clinical TCGA data in prostate
adenocarcinoma. Figure S2. displays a cBioPortal visualization of the
correlation between the TCGA expression and methylation data for
GSTP1 in prostate adenocarcinoma. Figure S3. depicts a Cancer Genome
Workbench view of the TCGA expression data for GSTP1 in prostate
adenocarcinoma. Figure S4. shows an Integrative Genomics Viewer
visualization of the GSTP1 expression and methylation TCGA data in
glioblastoma multiforme. (DOCX 1513 kb)

Abbreviation
TCGA: The cancer genome atlas.
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Table 1 A comparison of different tools for the visualization of TCGA data. As illustrated by the Additional file 1: Figures S1, S2, S3
and S4, there are obvious differences between existing tools and MEXPRESS in both the data and the features these tools offer. This
table lists the most relevant of these differences, thereby highlighting some of the strengths and weaknesses of each tool. (CGW
Cancer Genomics Workbench, IGV Integrative Genomics Viewer)

UCSC genome browser cBioPortal CGW IGV MEXPRESS

All TCGA cancer and data types available yes yes no no no

Integration of expression, DNA methylation and clinical data no no no no yes

Statistical interpretation of the relationships no yes no no yes

Registration and download required no no no yes no

CGW Cancer Genomics Workbench, IGV Integrative Genomics Viewer
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