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Marsupials and monotremes possess a
novel family of MHC class I genes that is
lost from the eutherian lineage
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Abstract

Background: Major histocompatibility complex (MHC) class I genes are found in the genomes of all jawed
vertebrates. The evolution of this gene family is closely tied to the evolution of the vertebrate genome. Family
members are frequently found in four paralogous regions, which were formed in two rounds of genome
duplication in the early vertebrates, but in some species class Is have been subject to additional duplication or
translocation, creating additional clusters. The gene family is traditionally grouped into two subtypes: classical MHC
class I genes that are usually MHC-linked, highly polymorphic, expressed in a broad range of tissues and present
endogenously-derived peptides to cytotoxic T-cells; and non-classical MHC class I genes generally have lower
polymorphism, may have tissue-specific expression and have evolved to perform immune-related or non-immune
functions. As immune genes can evolve rapidly and are subject to different selection pressure, we hypothesised
that there may be divergent, as yet unannotated or uncharacterised class I genes.

Results: Application of a novel method of sensitive genome searching of available vertebrate genome sequences
revealed a new, extensive sub-family of divergent MHC class I genes, denoted as UT, which has not previously been
characterized. These class I genes are found in both American and Australian marsupials, and in monotremes, at an
evolutionary chromosomal breakpoint, but are not present in non-mammalian genomes and have been lost from
the eutherian lineage. We show that UT family members are expressed in the thymus of the gray short-tailed
opossum and in other immune tissues of several Australian marsupials. Structural homology modelling shows that
the proteins encoded by this family are predicted to have an open, though short, antigen-binding groove.

Conclusions: We have identified a novel sub-family of putatively non-classical MHC class I genes that are specific
to marsupials and monotremes. This family was present in the ancestral mammal and is found in extant marsupials
and monotremes, but has been lost from the eutherian lineage. The function of this family is as yet unknown,
however, their predicted structure may be consistent with presentation of antigens to T-cells.

Background
The major histocompatibility complex (MHC) is a re-
gion unique to the genomes of jawed vertebrates and
contains genes that are critical to the generation of im-
mune responses. It is the most gene dense and poly-
morphic region in the genome (reviewed in [1]). The

MHC is named for its role in recognition of ‘self ’ and
‘non-self ’, and was first identified in connection with
tumour transplant rejection [2]. Genes in the MHC are
also associated with resistance to infectious diseases,
autoimmunity, reproductive success, inflammatory re-
sponse and innate immunity (reviewed in [3, 4]).
The genes of the MHC are sub-divided into class I, II

and III. The MHC class I genes are particularly note-
worthy for having undergone gene duplication and
divergence, resulting in an extended gene family whose
members perform a broad range of functions. The
classical role of class I molecules is to present
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endogenously-derived peptides to CD8+ T cells to stimu-
late cytotoxic responses against virus-infected or tumour
cells. The class I molecules performing this role are
sometimes referred to as classical MHC class I. Exam-
ples of classical class I genes include HLA-A, -B and -C
in humans and H2-K, H2-D and H2-L in mouse.
Classical MHC class I genes are generally broadly
expressed in nucleated cells and highly polymorphic.
Class I molecules performing other functions, collect-
ively known as non-classical MHC class I, generally have
low polymorphism, may have tissue-specific expression
and in some cases have evolved functions other than
antigen-presentation, including immuno-regulatory and
non-immune roles. Examples of non-classical class I
genes include HLA-E, -F and -G in human, B1 and Qa1
in mouse, as well as MIC. The function of non-classical
molecules is not limited to the immune system. The
HFE gene, for example, serves as part of the transferrin
complex involved in iron storage (reviewed in [5]).
Others, such as the neonatal Fc receptor, FcRN, that
transports maternal IgG to fetal or neonatal mammals,
has a role in the immune system that is distinctly differ-
ent from conventional class I (reviewed in [6]). Typically,
classical and some non-classical genes are located in the
MHC, although many of the non-classical are located
elsewhere in the genome [7].
In humans, the MHC is located on chromosome 6p

[1]. Additionally, there are three regions of the genome
that are paralogues of the MHC, indicative of the two
rounds of whole genome duplication thought to have oc-
curred in early vertebrate evolution [8]. These paralo-
gous regions are located on chromosomes 1q, 9q, and
19p. They contain additional non-classical class I genes,
including the CD1 gene family, MR1 and FCGRT. Other
non-classical class I genes are found on chromosome 20
(PROCR), chromosome 7 (AZGP1) and chromosome 6q
(ULBP and RAET families), suggesting that duplication
and translocation have acted to further distribute MHC
class I genes throughout the genome.
In other species, similar processes have acted to spread

class I genes from the MHC. Two tightly linked, classical
class I-like genes (UB and UC) in the opossum, Mono-
delphis domestica, for example, were translocated out-
side the MHC although they remain syntenic to the
MHC on chromosome 2 [9, 10]. In a more extreme ex-
ample, in the tammar wallaby, Macropus eugenii, the
classical class I-like genes have been completely translo-
cated out of the MHC and are distributed across mul-
tiple chromosomes [11].
Both classical and non-classical class I molecules have

a conserved and distinctive protein domain structure.
MHC class I genes typically have 5–9 exons encoding
proteins with well-defined domain organization (Fig. 1a
and 1b). The first exon encodes a signal peptide. Exons

2 and 3 encode the α1 and α2 domains, which together
make up the antigen-presenting domain (APD). An im-
munoglobulin domain (Ig or α3) is encoded by exon 4.
Additional exons may encode one or more transmem-
brane domains and the final exon contains a conserved
cytoplasmic domain at the C-terminal of some MHC
class I genes. The α1, α2 and Ig domains are the hall-
mark of MHC class I genes. However, different isoforms
of some MHC class I genes exist. These may splice out
some of these domains to produce other membrane
bound versions of the protein or secreted forms. Add-
itionally, the UL16-binding protein (ULBP) and retinoic
acid early transcript (RAET) families, known in euthe-
rians, are MHC class I-related genes that lack immuno-
globulin domains and may utilize a GPI-anchor, rather
than a transmembrane domain [12–15].
To better understand the evolution of MHC class I

genes, particularly in mammals, we undertook to catalogue
the class I genes. Here, we describe a sensitive comparative
genomics analysis of MHC class I genes spanning verte-
brate life. This was achieved using a novel approach based
upon combining profile hidden Markov models (HMMs),
which represent the separate domains characteristic of
MHC class I genes. Our results reveal a new sub-family of
MHC class I genes in marsupials and monotremes, which
are not found in non-mammals and have been lost from
the eutherian lineage. We show that these genes are tran-
scribed in immune tissues in the gray short-tailed opos-
sum, tammar wallaby, brushtail possum and Tasmanian
devil. Structural homology mapping is used to begin to in-
vestigate the function of these genes.

Methods
Collection of annotated protein sequences
Predicted MHC class I proteins were identified and ex-
tracted from the Ensembl genebuilds (Release 75) of a
selection of species spanning the gnathostomes, a jawless
vertebrate and 3 invertebrate species. Protein sequences
from human [16], mouse [17], dog [18], cow [19], opos-
sum [20], wallaby [21], Tasmanian devil [22], platypus
[23], chicken [24], zebra finch [25], turkey (The Turkey
Genome Consortium), green anole lizard [26], Xenopus
tropicalis [27], zebrafish [28], pufferfish [29], lamprey
[30], sea squirt [27], fruitfly [31] and yeast [32] were
searched using profile HMMs representing the MHC
class I APD (PFAM:PF00129 and SUPFAM:0045513),
C1-type Ig domain (PFAM:PF07654) and MHC class II
β domain (PFAM:PF00969) using HMMer version 2 (fs
and ls) and HMMer version 3 (PFAM models only). The
separate domain searches were integrated and MHC
class I proteins predicted using a simple heuristic: pro-
teins were annotated as predicted MHC class I proteins
if they had a significant match to the MHC class I APD
(E-value < 10-5) or a weak match to the APD (score > 0)
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and a significant match to the Ig domain model
(E-value < 10-5) in the correct order, with the additional
requirement that the MHC class I APD model score is

higher than the MHC class II β domain model score.
Where a gene had multiple isoforms, the longest pro-
tein was selected as representative. The most sensitive
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Fig. 1 Sensitive pan-genome search for MHC class I genes. a The canonical domain structure of MHC class I proteins and (b) genes. c The location in
the opossum genome and score of matches to profile hidden Markov models representing the antigen-presenting domain (split into α1 and
α2 regions), C-type immunoglobulin domain and C-terminal domain. d Example of a high-scoring run of α1, α2, Ig and C-terminal domains in
the opossum genome. e Finite state automata of the alignment algorithm to search for runs of α1, α2, Ig and C-terminal domains, taking domain score
and distance between domains into account. The nodes (circles) show match states. Symbols on edges show scores/penalties: +m is the match score,
which is based on the HMM match score; -γ is a distance-dependent affine gap penalty, which models introns and allows the alignment to skip over
matches that interrupt a run of domains; -ψ is a constant penalty for dropping the C-terminal domain
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approach (based on the number of proteins matched)
used the SUPFAM MHC class I APD model, the PFAM
Ig domain and HMMer2 in fs-mode. ULBPs and
RAETs, which may not possess immunoglobulin
domains, were identified by searching with the MHC
class I APD HMM only.

Sensitive genome search
Predicted MHC class I proteins were used to construct
more sensitive custom profile HMM models in HMMer2.
The 6-frame translations of the human (hg19), mouse
(mm9), dog, cow, opossum (mondom5), wallaby
(Meug_1.0), Tasmanian devil (assembly 7), platypus
(OANA5), chicken, zebra finch, turkey, green anole,
Xenopus tropicalis, zebrafish, tetraodon, lamprey, sea
squirt, fruitfly and yeast genome sequences (Ensembl
Release 75) were searched using profile HMMs represent-
ing the MHC class I APD (PFAM:PF00129, SUPFAM:0
045513 and a custom model), C1-type Ig (PFAM:PF07654
and the custom model), C-terminal (PFAM:PF06623) and
MHC class II β (PFAM:PF00969) domains with HMMer
(version 2) with an E-value threshold of 10. Local align-
ment models (fs) were used.
The coordinates of predicted domains in the 6-frame

translation were then transformed back to genomic co-
ordinates. Genomic regions matching the first half of the
MHC class I domain model were annotated as α1 do-
mains, while features matching the second half were an-
notated as α2 domains. Regions also matching MHC
class II β domains were removed if the class II match
scores were greater than the class I match scores.
Genomic regions containing matches to the α1, α2, Ig

and C-terminal domains with the correct orientation
and order and intron-like separation were identified by
aligning a model representing the canonical domain
architecture of class I genes to the predicted domains
(Fig. 1). The alignment algorithm was implemented using
dynamic programming on the sequence of symbols, α1,
α2, Ig and C-terminal, of predicted domains and taking
into account their scores and the gaps between them. It
used weighted HMMer scores as match scores. The
weights were selected to approximately normalise the
contributions from each domain (weights were α1: 1, α2: 1,
Ig: 2, C-terminal: 20). An affine gap penalty was used to
model introns with gaps shorter than 5000 nt penalty-free
and calibrated so that a 20,000 nt gap gets a penalty of
300. Mismatches are effectively disallowed by applying a
very large mismatch score (−20,000), but the affine gap
function can skip over mismatching domains. Parameters
were selected to have maximum sensitivity on the well-
annotated human MHC class I genes and then tested on
the mouse (positive control) and lamprey and sea squirt
genomes (negative controls).

The method is summarized in Additional file 1:
Figure S1 and code is available at https://github.com/
papenfuss/MHC-clogs.

Phylogenetic analysis
Multiple sequence alignments of predicted peptide se-
quences were generated using Clustal Omega [33, 34]
and edited in jalview [35].
The phylogeny of the 449 predicted MHC class I genes

identified in the representative jawed vertebrates was in-
ferred using the Jones, Taylor and Thornton (JTT)
model [36] in BEAST2 [37]. A discrete Gamma distribu-
tion with 4 categories was used to model evolutionary
rate differences among sites. Four Markov chains were
run for 3,000,000 steps each starting from random trees.
Trees were output every 1000 steps. The consensus tree
was estimated from the last 500,000 steps of the 4
chains.
To infer the evolutionary history of 30 selected hu-

man, mouse, marsupial and monotreme MHC class I
genes, and the gene tree of the 46 UT family members,
the best phylogenetic model was first selected using
PROTTEST3 [38]. In both cases, the best model based
on Akaike Information Criterion (AIC) was the JTT
method [36] with invariant sites, gamma rate distribu-
tion, and empirical amino acid frequency (JTT + IGF).
Phylogenetic trees were estimated using the maximum
likelihood method with MEGA5 [38]. The bootstrap
consensus tree inferred from 500 replicates was taken to
represent the evolutionary history of the genes analysed.
A discrete Gamma distribution was used to model evo-
lutionary rate differences among sites with 4 categories.
The rate variation model allowed for some sites to be
evolutionarily invariable. The UT gene tree and the spe-
cies tree were reconciled using NOTUNG [39] to iden-
tify gene duplication and loss events.

BAC library screening
Overgo probes representing each of the wallaby and
platypus novel class I genes were designed from genomic
sequence using the Overgo Maker program. The specifi-
city of the resulting overgo probes was judged by using
the 40 bp probe sequence to BLASTN search the tam-
mar wallaby or platypus genomes. All overgo probes
used to screen the BAC libraries are listed in Additional
file 1: Table S1. Overgo probes were radioactively labelled,
pooled and hybridised to tammar wallaby (Me_KBa; Ari-
zona Genomics Institute) BAC library filters as previously
described [11]. Positive BACs from this initial screening
were spotted onto Hybond N+ subjected to a further
round of screening with individual probes as previously
described [40].
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Fluorescence in situ hybridisation
DNA from each positive Bacterial Artificial Chromosome
(BAC) clone was directly labelled with either Spectrum-
Orange or SpectrumGreen deoxyuridine triphosphate
(dUTP; Abbott Molecular Inc., Des Plaines, IL, USA). La-
belled BACs were hybridised to male metaphase chromo-
somes spreads, visualised and imaged as previously
described protocol described [40].

RT-PCR of predicted transcripts in opossum
Coding sequences of mdUT genes were amplified by
targeted PCR with primers (Additional file 1: Table S2)
designed based on predicted exon two and three gene
sequence, using a cDNA library constructed from
opossum thymus mRNA. The PCR was done using Ad-
vantage HF 2 PCR kit (Clontech, Mountain View, CA),
with the following parameters for all primers: 94 °C for
1 min, 35 cycles of 94 °C for 30 s and 61 to 65.1 °C gradi-
ent for 4 min, and 68 °C for 5 min. The amplified DNA
was then ligated into the pCR4-TOPO TA vector, trans-
formed into One Shot Chemically Competent TOP10 E.
coli, and incubated with 250 μL LB medium at 37° while
shaking for 1 h (Invitrogen, Carlsbad, CA). A total of
120 μL of the transformed cells were then plated on ampi-
cillin agar plates and incubated between 12–18 h at 37 °C.
A minimum of 8 clones per plate were chosen, and plas-
mid DNA were generated using the boiling lysis method.
Both the forward and reverse strands were sequenced with
BigDye Terminator v3.1 Cycle Sequencing Kit (Invitrogen,
Carlsbad, CA) Analysis of the sequences was done using
Sequencher 5.0 (Gene Codes, Ann Arbor, MI).

Searching marsupial immune tissue transcriptome data
To find support for the expression of UTs in several mar-
supials, sequencing data from the following immune tissue
cDNA or Expressed Sequence Tag (EST) libraries were
searched: Roche 454 sequencing data from tammar wal-
laby, Macropus eugenii, thoracic and cervical thymus
cDNA libraries [GenBank:SRX019250,SRX019249] [41];
Roche 454 sequencing data from Tasmanian devil, Sarco-
philus harisii, spleen and lymph node cDNA libraries
[EMBL:PRJEB7940]; Roche 454 sequencing data from the
opossum, Monodelphis domestica, thymus cDNA libraries
(Katina Krasnec and Robert Miller, unpublished data);
17,818 ESTs from brushtail possum, Trichosurus vulpec-
ula, spleen, lymph node and stimulated splenocytes [Gen-
Bank:LIBEST_019237]; and a small set of 1319 ESTs from
a northern brown bandicoot, Isoodon macrourus, thymus
ESTs [GenBank:EE743888-EE745206] [42].
Reads from each library were aligned to predicted tam-

mar wallaby UTs, or Tasmanian devil UTs, in the case of
the devil spleen and lymph libraries, using BLASTN. An
E-value threshold of 10−5 was used and only a single best
hit was recorded.

Structural homology modelling
Structure prediction used the I-TASSER method [43].
Structural similarity or divergence was evaluated by a pair-
wise root mean square deviation (RMSD) value upon
superposition of the backbone Cα trace from the two
groups of structurally equivalent atoms in MHC class I α1
and α2 domains. Structure visualization and the RMSD
calculation are using Pymol (http://www.pymol.org/).

Results
Sensitive peptide searches for MHC class I proteins
We first set out to identify all annotated MHC class I
proteins in 15 representative species sampled from
across vertebrate life. The selected species comprised
human, mouse, dog, cow, three species of marsupials
with sequenced genomes, platypus, three avian species, a
lizard, a frog, and two fish species. Additionally, we se-
lected 4 eukaryotic species known to lack MHC class I
genes as negative controls (lamprey, sea squirt, fruitfly
and yeast). Predicted protein sequences from these spe-
cies were obtained from Ensembl and searched using
profile HMMs representing the MHC class I APD and
the C1-type Ig domain, which are characteristic of MHC
class I genes, and the MHC class II β domain, with
HMMer. The separate domain searches were integrated
and MHC class I proteins predicted using a simple heur-
istic: proteins were annotated as predicted MHC class I
proteins if they had a significant match to the MHC
class I APD or a weak match to the APD and a signifi-
cant match to the Ig domain model in the correct order,
with the additional requirement that the MHC class I
APD model matched with higher score than the class II
β domain model. MHC class I genes frequently encode
multiple isoforms; in these cases, we selected the longest
protein as the representative protein. A variety of HMMs
were tested (e.g. PFAM, SUPFAM and iteratively con-
structed custom models; see Methods for details) and
the most sensitive combination was adopted.
Our search identified 348 MHC class I proteins across

the 15 jawed vertebrate species searched (summarized in
Table 1). This included all 24 known human and 41
mouse MHC class I proteins with no false positives.
Searches of several negative controls—lamprey, sea
squirt, fruitfly and yeast—did not identify any MHC class
I proteins. Aligning all PFAM-A domain models to the
set of predicted MHC class I proteins using hmmpfam
showed that for each protein the strongest matches con-
sisted only of the MHC class I APD, Ig and in some
cases the conserved MHC C-terminal domains, with no
other unexpected high quality matches. MHC class II
genes were never misidentified as class I genes in the
searches of any jawed vertebrate protein databases.
Taken together these observations indicate the approach
has high sensitivity and specificity.
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Sensitive genome searches for MHC class I genes
Next, we set out to identify any unannotated MHC class
I genes in these genomes using a highly sensitive search
method designed to take advantage of the conserved
exon/domain organisation of MHC class I genes (Fig. 1a).
Profile HMMs representing the MHC class I APD, C1-
type Ig, MHC C-terminal, and MHC class II β domains
were used to search the six-frame translation of each
genome. The domain matches in the 6-frame translation
were transformed back to genomic coordinates and the
α1, α2, Ig and C-terminal domains within the model
matches were identified. In each species, we found thou-
sands of matches to these domains (summarized in
Additional file 1: Table S3). For example in the opossum
genome, we found 2127 matches to the α1 domain, 3571
matches to the α2 domain, 5028 matches to the Ig do-
main and 5546 matches to the MHC C-terminal domain.
The majority of these matches had low scores. However,
both isolated and clustered high scoring matches were
also apparent (Fig. 1b). Genomic features matching the
expected structure of an MHC class I gene, that is a
chain of α1, α2 and Ig domains and optionally a C-
terminal domain on the same strand and at intron-like

distances (for example Fig. 1c) were identified by align-
ing a canonical model of an MHC class I gene, taking
match score and the gaps between domains into account
(Fig. 1d, and Materials and methods for details). Once
again, a variety of HMMs were tested (e.g. PFAM, SUP-
FAM, and custom models based on the protein search
results; see Methods for details). The custom models
were adopted as the most sensitive.
From the 388,409 domain matches across all species,

the genome search identified 361 genomic features pos-
sessing the MHC class I gene structure (summarized in
Table 1; Additional file 2: Table S4 for details). These in-
cluded 26 putative MHC class I genes in the human
genome, 49 in mouse, and 40 in the opossum. Again,
searches of the negative controls identified no MHC
class I genes, as one would expect. These genomic fea-
tures included annotated genes, and both annotated and
unannotated pseudogenes. Merging the protein and gen-
ome searches produced a total of 449 MHC class I genes
and proteins across the species searched (Additional file
3: Table S5), including a total of 33 in human, 55 in
mouse and 47 in the opossum.
The most dramatic differences between the results of

searching annotated class I proteins and an unbiased
search of the whole genome arose in the marsupials and
monotremes. The annotation of the opossum genome
(Ensembl Release 75) contains 28 MHC class I genes,
but 40 putative MHC class I genes (genomic features
with structural similarity to MHC class I genes) were
identified in the sensitive genome search results. Seven
of the annotated proteins were missed in the genome
search, as the corresponding loci lack Ig domains.
Fifteen of the loci identified by the genome search were
unannotated in the Ensembl genebuild. In some cases,
de novo gene predictions from genscan or evidence-
based prediction with N-scan (UCSC Genome Browser,
accessed 17 April 2015) did identify overlapping open
reading frames, however, these annotations were typic-
ally of poor quality (data not shown) with multiple run-
on annotations linking two or more MHC class I gene
features. Five of these unannotated features contained
in-frame stops, including opossum CD1, UH, and a
MIC-like gene (MIC2). These in-frame stops may be due
to sequencing errors in the draft opossum genome, poly-
morphisms in the individual sequenced or the fact that
our model does not take splice sites into account and
may erroneously include short segments of intronic se-
quence in the domain matches, resulting in the genomic
feature going out of frame. In fact, CD1 is known to be
a pseudogene in opossum [44] and does not show evi-
dence of transcription; MIC2 also shows no evidence for
transcription; while UH does show evidence of transcrip-
tion (data not shown). Consequently, we retain all genes
in our analyses. Thus, a total of 47 putative MHC class I

Table 1 Summary of the number of MHC class I genes across
species. The number MHC class I genes identified in each
species by searching annotated proteins using customized

Species Number of predicted MHC class I genes

Protein search Genome search Merged total

Human 24 26 33

Mouse 41 49 55

Dog 19 21 24

Cow 47 39 55

Opossum 28 40 47

Tammar wallaby 17 35 41

Tasmanian devil 22 23 25

Platypus 19 10 21

Chicken 24 21 26

Zebrafinch 11 3 11

Turkey 7 3 7

Green anole 25 19 26

Frog 26 31 32

Zebrafish 28 31 33

Tetraodon 10 10 13

Lamprey 0 0 0

Sea squirt 0 0 0

Fruitfly 0 0 0

Yeast 0 0 0

348 361 449
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genes were identified. A similar pattern emerged in
other marsupial and monotreme genomes.

Phylogenetic analysis
To annotate these genes and understand the evolution-
ary relationship between them, we inferred the phylo-
genetic relationships between all MHC class I genes
identified in the selected vertebrates using a Markov
Chain Monte Carlo (MCMC) method on the JTT + IGF
model. Four MCMCs were run (see Additional file 1:
Figure S2 for traces of posterior probability) and the
consensus tree from the last 500 steps of each run was

taken to represent the evolutionary history of the genes
(Fig. 2a). Additionally, a smaller phylogeny consisting of
just human and opossum class I genes and the mouse
Mill genes was also inferred by maximum likelihood
(Additional file 1: Figure S3).
While support in parts of the trees is low, the phyloge-

nies provide a number of insights into the evolution of
MHC class I genes in vertebrates. The large tree pro-
vides additional evidence for the previous observation
that the non-classical MHC class I gene family MR1 is
found only eutherians and marsupials [45]. Similarly, it
suggests that the FCGRT, HFE and AZGP1 gene families
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are specific to eutherians and marsupials. It demon-
strates that the PROCR gene family is found across the
amniotes. It suggests that MIC is duplicated in opossum
(md_chain40), though this contains in-frame stops. The
small tree supports the previous observation that marsu-
pials may have a member of the ULBP gene family
(ENSMODG00000015798) [46]. It identifies a possible
expansion of AZGP1 in opossum (ENSMODG0000002
4063, ENSMODG00000027380, ENSMODG0000002
8158, and ENSMODG00000029679). The phylogenies
also reveals two new opossum MHC class I genes that
are located in the MHC, but have not previously been
identified, which we have denoted UA3 and UA4. These
appear to be closely related to UA1 and UA2.
Strikingly, the phylogenetic tree identifies an extensive

and entirely novel clade of MHC class I genes in marsu-
pials and monotremes, which we have named UT. There
are 17 UT family genes identified in the opossum gen-
ome, 9 in tammar wallaby, 13 in the Tasmanian devil
and 7 in the platypus. The numbering of UTs is based
on location in the gene cluster in the opossum and clear
orthology, or lack of it in other marsupials. Platypus UTs
are numbered independently as these appear to form a
distinct clade. This is highlighted by the UT gene tree
(Additional file 1: Figure S4), which was estimated using
maximum likelihood with the JTT + IGF model and rec-
onciled with the species tree using NOTUNG. No UTs
were identified outside of the marsupials and mono-
tremes in our searches.

Chromosomal location
The UT family of MHC class I genes is encoded in a
gene cluster on chromosome 1 in the opossum genome
(Fig. 3). This region is approximately 460 kilobases in

size. Interestingly, the cluster is located at an evolution-
ary breakpoint and is flanked by genomic regions that
share synteny with different chromosomes in human
(chr2 and chr20) and mouse (chr6 and chr2). The tam-
mar wallaby genome assembly (Meug1.0) is highly frag-
mented and scaffolds are not mapped to chromosomes.
Fluorescence In-Situ Hybridization (FISH) shows that
the UT gene cluster is also located on chromosome 1 in
the tammar wallaby genome (Fig. 4), as predicted by
conserved synteny between the tammar and opossum
[47]. Interestingly, the FISH also shows a signal on the
tammar Y chromosome. As all marsupial genomes se-
quenced were female, this locus was not detected in
genome-wide searches and the significance of this signal
is not yet understood. Based on the digital karyotype of
the Tasmanian devil [22], the UT gene family is also lo-
cated on chromosome 1.

Sequencing and gene expression
Of the 17 putative opossum UT genes, the expression of
8 genes, consisting of UT4, UT5, UT6, UT8, UT9, UT10,
UT15, and UT17, was confirmed in opossum thymus
using RT-PCR (Additional file 1: Figure S5). Predicted
sequences obtained from our sensitive search method
were confirmed using RT-PCR to obtain amplicon se-
quences from within exons 2 and 3 (Additional file 4:
Table S6). A further 4 UT loci, UT2, UT3, UT7, and
UT16, were confirmed as expressed in Roche 454 se-
quencing data from an opossum thymus cDNA library
(data not shown).
Transcription of tammar wallaby UT8, UT15, UT16,

UT17, UT18, UT19, UT20, and UT21 was confirmed in
454 data from thoracic and cervical tammar thymus
cDNA libraries. There was support for Tasmanian devil

UT1 UT2 UT3 UT4 UT5 UT6 UT7 UT8 UT9 UT10 UT11 UT12 UT13 UT14 UT15 UT16 UT17
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Tasmanian 
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A

B

Fig. 3 Comparative map of the UT gene cluster. a Genomic region containing the UT cluster in opossum showing the non-synteny of flanking
genes between the opossum and human (hs) and mouse (mm) genomes. b Comparative map of UT cluster in opossum, tammar wallaby and
Tasmanian devil. The fill colour summarises the evidence for expression: RT-PCR in opossum thymus detected (green) and not detected (red); 454
sequencing data (blue); in-frame stop (yellow); not tested (white)
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UT2, UT8, and UT11 in 454 cDNA data from devil
spleen, but no UTs were detected in a lymph node library.
Limited transcriptome sequence data is available from

immune tissues of other species of marsupial. An EST (id:
161106CS44009845FFFFF) from brushtail possum im-
mune tissues with homology to meUT2 was also identi-
fied, providing support for the existence of functional UTs
in the possum. No UT transcripts were detected in
BLASTN searches of 1318 bandicoot thymus EST library,
probably due to the small size of this library. No platypus
immune tissues transcriptome data was available.

Homology mapping
To investigate the function of UT family members we
predicted the protein structure of selected UTs (opos-
sum UT4, UT5 and UT8) using homology modelling
with the I-TASSER method [43]. Protein structures from
the Protein Data Bank (PDB) that were closest to the
predicted models comprised both classical and non-
classical MHC class I genes from chicken, cow, mouse
and human (Additional file 1: Table S7; Fig. 5a for an an-
notated sequence alignment of 7 of the top matches).
The structure of the classical chicken MHC class I pro-
tein B21 (3BEV [48]) was the best match for UT8 and
appeared in the top 5 templates for all UTs examined.
The backbone structural alignment of UT4 with 3BEV
and 3P73 [49], the top 2 structural analogs for UT4 and
UT8, are shown in Fig. 5b. The peptide-binding grooves
of UT4, 5 and 8 are shown in Fig. 5c.

Discussion
MHC class I molecules have historically been defined by
their function. The classical MHC class I typically

presents peptide fragments derived from antigens to
CD8+ cytotoxic T lymphocytes. This particular function
is ubiquitous across the jawed vertebrates and is likely
the primordial function of the class I protein. However,
it is clear that members of the MHC class I family have
evolved to perform other functions, often in lineage spe-
cific ways. Therefore, a more appropriate definition of
an MHC class I molecule is its unique structure which is a
heterodimer of a α-chain paired with β2-microglobulin.
The MHC class I α-chain is composed of three extracellu-
lar domains. The α3 domain is an immunoglobulin do-
main, a protein fold that predates the origin of jawed
vertebrates in evolution. The origins of the α1 and α2 do-
mains that make up the antigen-binding groove are more
enigmatic and appear unique to the MHC molecules.
Searching the genomes of jawless vertebrates and inverte-
brates failed to uncover genes encoding α1- and α2-like
domains, shedding no light on their evolutionary origin.
The diversity of functions that MHC class I molecules

have evolved to perform demonstrate the plasticity of
this protein structure. For example, FcRN, which func-
tions as an IgG receptor in mammals, does not bind the
Fc region using the antigen-binding groove. Rather that
groove is fairly closed and the IgG binds to a combin-
ation of the outer face of the α2 and β2-microglobulin
domains [50]. Such functional plasticity of a protein
structure leads to the question of what other roles these
molecules may have evolved to perform and how diver-
gent they may have become. The results presented here
demonstrate that highly divergent genes, based on nu-
cleotide sequence can encode proteins that fold to pro-
duce the MHC class I α-chain structure. This is not to
say that the UT genes are a product of convergent evolu-
tion. Indeed, the phylogenetic analyses places them
squarely within the extended MHC class I family. The
phylogenetic position of these genes, close to CD1 and
PROCR, suggests they are non-classical MHC class I
genes, but diversity and expression also need to be
assessed.
The presence of the UT family of MHC class I genes

in both marsupials and monotremes is consistent with
their being ancient and present in the most recent com-
mon ancestor of all living mammals. The common
ancestor of marsupials and eutherians (placental mam-
mals) lived approximately 165 million years ago [51]. It
appears that after the divergence of these two lineages
the UT family was lost in the eutherians, likely prior to
the radiation of the modern eutherians. Without know-
ing the function of UT genes it is difficult to speculate
on why they were dispensable in the eutherians. How-
ever this is not the first case where mammal-specific im-
mune system genes have been lost in the eutherians.
Both marsupials and monotremes have orthologues of a
uniquely mammalian T cell receptor called TCRμ, which

Fig. 4 Fluorescence In-Situ Hybridisation showing location of UT
cluster on chr1 in the tammar wallaby. A signal is also observed on
the Y chromosome
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Fig. 5 Predicted structure of UT proteins. a Sequence alignment of the α1 and α2 domains of UT4, 5, 6, 8 with 7 of the top 10 structural analogs from
Protein Data Bank (PDB) identified by I-TASSER. Orange bars show α-helices. Green arrows highlight β-strands. Major differences between the UTs and
templates are indicated by arrows, or red lines, and the consequence of these on the protein structures are shown in Fig. 5c. b Overlay of the
backbone of the peptide binding groove of mdUT4 with its top 2 structural analogs, 3BEV_A (ggB21) and 3P73_A (ggYF1). c Superposed model
structures of mdUT4, 5 and 8 with the B21 template shows the antigen-binding groove is open, but possibly short. Filled sphere view shows
the α-helices and ribbons show the β-sheets of the peptide-binding platform on the modeled protein structures. The residues indicated with
arrows in Fig. 5a cause the binding grooves to be short or narrow (e.g. UT4: the distance between Pro81 Cγ to Tyr144 OH is 3.0 Å; UT5: the
distance between Pro81 Cβ to Tyr144 OH is 2.9 Å, and a close hydrophobic contact between 64LTQW67 and 161MNLY154; UT8: the distance
between Phe75 Cε to Phe138 Cξ is 2.9 Å)
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has been lost in the eutherian lineage [52, 53]. Given the
classical role of MHC class I molecules interacting with
TCR it is an intriguing possibility that there is a func-
tional connection between the UT molecules and TCRμ,
whereby UT present antigen to TCRμ+ T cells. Hence,
the loss of one may have resulted in the loss of the other
in eutherians. While possible this would not be consist-
ent with current models of how TCRμ chains interact
with antigen in an MHC independent manner [54].
Similar to UT loci, the TCRμ cluster is located in a re-
gion of the mammalian genomes that have a break in
synteny between marsupials and eutherians [55]. It may
be these gene families were independently lost due to
being in regions of the genome subject to instability or
rearrangement.
Other working hypotheses on the function of UT mol-

ecules are based on models predicting the structure of
the region corresponding to an antigen-binding groove.
Structurally, the UT proteins are most similar to the
chicken B21 MHC class I molecule (3BEV), which binds
peptide promiscuously [48]. The presence of some
hydrophobic residues in the α-helices may make the ef-
fective binding size short or narrow. This may suggest
the UTs present small peptide fragments, but is also
consistent with a structure where the space between the
α1 and α2 domains is relatively closed or alternatively,
UT molecules may be involved in presenting hydropho-
bic antigens such as lipids. Marsupials have a homologue
of the CD1 molecule that is normally involved in the
presentation of glycolipids and lipoprotein antigens [56].
However, the marsupial gene is single copy and not
orthologous to any of the known CD1a, b, c, d, or e
genes found in eutherians [44]. Furthermore, in the
opossum M. domestica CD1 is a pseudogene [44]. It is
possible that there has been less pressure to retain or di-
versify the CD1 family in marsupials due to some func-
tional overlap with the UT genes.
The region of chromosome 1 containing the UT clus-

ter does not correspond to one of the four MHC paralo-
gous regions. These paralogous regions are the remnant
of the two rounds of whole genome duplication that oc-
curred during vertebrate evolution [57]. In humans these
regions are located on chromosomes 1, 6, 9, and 19, with
chromosome 6 containing the bona fide MHC region. In
the opossum, they are located on chromosomes 1, 2, and
3, with two paralogous regions on chromosome 2, one
being the MHC proper [58]. The paralogous region on
opossum chromosome 1 corresponds to human chromo-
some 9 and is syntenic to, but not identical to, the opos-
sum UT region. Therefore, the extant UTs are the
product of the novel expansion of diverging MHC class I
genes in the marsupials and monotremes and likely ori-
ginate from the duplication of an MHC class I gene in
the ancestral mammal.

Conclusions
Using a novel, boutique method to search the annotated
proteins and genomes of a selection of species spanning
vertebrate life for MHC class I genes with high sensitivity,
we identified a new class I gene family, the UTs. UT family
members are encoded in gene clusters on chromosome 1
of the opossum, tammar wallaby and Tasmanian devil ge-
nomes, and are present but have not been mapped in
platypus. The region is located in a synteny break between
marsupial and eutherian genomes. Homology modelling
suggests UT genes have an open but short antigen-
presenting groove, raising the possibility that they may
present peptide epitopes or non-peptide fragments.
Further investigation of the expression and protein

structure of UTs is needed to understand their function.
This may be relevant to understanding the evolution of
the vertebrate immune system, immune surveillance,
and diseases affecting marsupials and monotremes, in-
cluding Tasmanian devil facial tumour disease, chla-
mydia in koalas, and mucormycosis in platypus, which
pose major threats to these species.
Finally, our boutique sensitive search method can be

adapted to study other gene families and will also be of
interest to comparative genomics researchers.
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