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Abstract

Background: Keratinocytes (KCs) are the most frequent cells in the epidermis, and they are often isolated and
cultured in vitro to study the molecular biology of the skin. Cultured primary cells and various immortalized cells
have been frequently used as skin models but their comparability to intact skin has been questioned. Moreover,
when analyzing KC transcriptomes, fluctuation of polyA+ RNA content during the KCs’ lifecycle has been omitted.

Results: We performed STRT RNA sequencing on 10 ng samples of total RNA from three different sample types: i)
epidermal tissue (split-thickness skin grafts), ii) cultured primary KCs, and iii) HaCaT cell line. We observed significant
variation in cellular polyA+ RNA content between tissue and cell culture samples of KCs. The use of synthetic RNAs
and SAMstrt in normalization enabled comparison of gene expression levels in the highly heterogenous samples
and facilitated discovery of differences between the tissue samples and cultured cells. The transcriptome analysis
sensitively revealed genes involved in KC differentiation in skin grafts and cell cycle regulation related genes in
cultured KCs and emphasized the fluctuation of transcription factors and non-coding RNAs associated to sample types.

Conclusions: The epidermal keratinocytes derived from tissue and cell culture samples showed highly different polyA+
RNA contents. The use of SAMstrt and synthetic RNA based normalization allowed the comparison between tissue and
cell culture samples and thus proved to be valuable tools for RNA-seq analysis with translational approach. Transciptomics
revealed clear difference both between tissue and cell culture samples and between primary KCs and immortalized
HaCaT cells.
Background
Skin is a multi-layered tissue that is composed of con-
tinuously renewing epidermis – with keratinocytes (KCs)
as a predominant cell type – and underlying dermis pop-
ulated mostly by fibroblasts. The life span of epidermal
keratinocytes is controlled by two alternative pathways:
differentiation as their normal function or activation as
an altered function in wound healing or skin diseases [1].
Epidermal KCs residing in the basal layer of the epidermis
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differentiate through multiple layers and finally shed as
cornified dead cells from the skin surface [2, 3].
The relatively noninvasive sampling together with the

methods that allow culturing of pure KCs have greatly
facilitated research on skin and KCs. In cell culture, KCs
are uncoupled from their tissue environment that natur-
ally provides a network of homeostatic control signals;
they are induced to either retain an active proliferative
state or to differentiate. However, the prolonged KC cul-
turing leads to the induction of cellular senescence [4] and
therefore not only primary KCs but also immortalized KC
lines, such as HaCaT (a spontaneously immortalized cell
line) [5], have been widely studied to understand various
normal and altered functions of the skin. HaCaT cells rep-
resent a highly popular model system since despite some
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UV-inducible mutations in TP53 alleles [6, 7] they are
non-tumorigenic and have retained their capacity to differ-
entiate [5, 7, 8]. The comparability of each of the models to
intact skin has often been questioned. In the current study,
we address the question of how representative models cul-
tured KCs and HaCaTs are for studying human epidermis.
Genome-wide expression profiling is an useful approach

to screen key genes with respect to different cellular sta-
tuses and to further model the regulatory networks [9].
Microarray technology provides a traditional profiling
method to measure thousands of known genes simultan-
eously, but it has recently been replaced by RNA-seq tech-
nology that has proven to give more detailed insights into
transcriptome. Both technologies have been previously
applied to study the gene expression in skin [10–12]. How-
ever, an important fact has been largely omitted: when KCs
undergo their complex lifecycle, they change not only cell
size and cell cycle kinetics, but also the actively transcribed
RNA content, with the largest RNA content in fresh,
actively growing cultured KCs [13]. In microarray, RNA-
seq and even qRT-PCR, the same amount of total RNA is
loaded for each sample, although yields of the polyA+
RNAs purified from total RNAs may differ. Moreover,
normalization for the differential expression test expects
equivalent expression levels for several co-expressed genes
[14]. Therefore, the genome-wide expression profiling in
the previous studies might have underestimated the com-
plexity of the KC transcriptome during their lifecycle.
In this study, we revisit the skin and KC transcriptome

with respect to fluctuation of polyA+ RNA content by
the keratinocyte statuses; differentiated, activated, senes-
cent and immortalized. Four types of human keratinocyte
samples represented these cell statuses: epidermal tissue
(split-thickness skin grafts; SGs), cultured primary KCs in
early and late passages, and HaCaT cell line. To reduce
the sample size and sequencing costs and to control the
fluctuation of mRNA concentration, we applied single-cell
tagged reverse transcription (STRT) sequencing method
for expression profiling using 10 ng of total RNA per
sample which is ten times less than required for a con-
ventional RNA-seq method [15]. For accurate expression
profiling and statistical tests, we employed STRT RNA-seq
with synthetic polyA+ spike-in RNA [16], and SAMstrt
statistical package with spike-in based normalization [14].
We first evaluated the improvements of our approach on
the genome-wide expression profiling and confirmed the
accuracy of the improved methods by literature survey of
the keratin and collagen genes. Then we extracted genes
that correlated with the sample types, and genes contribut-
ing to the sample classification, especially transcription fac-
tors [17] and long noncoding RNAs [18], as candidate
regulators for keratinocyte characters. These results pro-
vide new insights into the skin transcriptome and into the
usefulness of primary KCs and HaCaTs as model systems.
Results and discussion
Sample preparation, STRT RNAseq, and quality control
The protocol for sample preparation is depicted in Fig. 1.
We collected SG biopsies with minimal inclusion of der-
mis and full thickness skin biopsies for KC culture from
8 donors undergoing plastic surgery (Additional file 1:
Table S1). The SG samples were used directly for total
RNA extraction whereas the full-thickness biopsies were
used to set up KC cultures from which total RNA was ex-
tracted at early (1st; EKC) and late (5th-6th; LKC) passages.
After RNA quality control (Additional file 2: Table S2), 16
samples were used to prepare two STRT libraries using
3 technical replicates, each containing 10 ng total RNA
(Additional file 3: Table S3). Each STRT library was se-
quenced on four lanes of Illumina HiSeq 2000 instrument.
In average, there were 10.8 million STRT reads and
7.92 million mapped reads per replica. After alignment
to the human genome and gene-based quantitation, we
confirmed consistency between all technical replicates
(Additional file 4: Table S4, Additional file 5: Figure S1
and Additional file 6: Figure S2). One sample (10k1b,
EKC replica 2 of donor 10k) exhibited exceptionally
high relative polyA+ transcript counts (Additional file 5:
Figure S1), and displayed unexpected overexpression of
some abundantly expressed genes (Additional file 6:
Figure S2). Therefore, we excluded it from further consid-
eration as an outlier potentially biasing further analyses.

Varying polyA+ RNA content in 10 ng total RNA
A common assumption is that cells to be compared
contain equal amounts of RNA. However, KCs have been
shown to change their RNA content over time in long-
term culture [13], leading us to further investigate the dif-
ferences in polyA+ RNA contents in our samples. We
found that the estimated polyA+ RNA contents as quanti-
fied against the added spike-in RNA controls varied in
different sample types (Additional file 5: Figure S1). The
variation was larger than the variation of the repeatedly
measured total RNA amounts that were loaded for sequen-
cing (Fig. 2a). Such differences can lead to the misin-
terpretation of differential expression when traditional
endogenous gene-based normalization is applied. This
is demonstrated in Fig. 2b, which is a comparison of
10k donor samples between SG and EKCs. The en-
dogenous gene-based normalization method did not
estimate the spike-in levels equivalently although the
amount of spike-in RNAs were equal in all samples. Because
the normalized spike-in levels must be same in the compari-
son, we employed the recently developed normalization
method, SAMstrt [14], which uses exclusively the spike-in
RNAs for normalization (Fig. 2c). Validation assays by
qRT-PCR confirmed the upregulation of two house-
keeping genes, RPLP0 and RPL13A, as predicted by
the spike-in-based normalization, both of which were



Fig. 1 Sample collection. a Split-thickness skin graft (SG) samples were harvested in the operating room using a dermatome. Lower panel shows
a haematoxylin-eosin stained section of SG sample demonstrating minimal dermis involvement (light blue tissue). b Full thickness biopsy samples
were collected as 3 mm punch biopsies. Red dotted line in the schematic drawing of skin (middle panel) demonstrates sampling depth for SG
samples (upper line) and punch biopsy samples (lower line). Keratinocyte (KC) cultures were established from punch biopsy samples after enzymatic
dissociation, and isolated primary KC were cultured to the passage 1 (EKC samples) and to the passage 5/6 (LKC samples). c The spontaneously
immortalized model keratinocyte cell line, HaCaT, was used as a cell line model. Total RNA was isolated from each sample as outlined in Materials and
Methods
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predicted unchanged or downregulated by the gene-
based normalization (Fig. 2d). Moreover, the spike-in-
based normalization method provided more consistent
expression patterns in multiple samples with the qRT-
PCR measurements (Fig. 2e). In conclusion, the ob-
served variation in the polyA+ RNA content in 10 ng
total RNA led to a misinterpretation of the expression
pattern by the gene-based normalization method, but it
became more reliable by the spike-in based normalization.

Characterization of SGs, cultured KCs, and HaCaTs by
differentially expressed genes
When we assessed the transcriptome profiles in the dif-
ferent samples, we found 11,908 differentially expressed
genes (Additional file 7: Table S5). Among them, 40 out
of 58 cytokeratin genes were differentially expressed
(Fig. 3a), and many of them well known markers for the
KC differentiation status both in cell culture and in tis-
sue [1, 19, 20]. Hierarchical clustering confirmed signifi-
cant contrasts between three sample types: SG, cultured
KC and HaCaT. SGs contained several cytokeratin tran-
scripts corresponding to cells at differentiated or differen-
tiating epidermal layers (KRT1, 2, and 10), whereas the
KCs contained cytokeratins typical of cells that maintain
their proliferative capacity (KRT5 and 14) or that are acti-
vated by wound healing, hyperproliferative skin diseases
or in vitro culturing (KRT6, 16, and 17) [1, 20]. KRT8 and
KRT18 that are the developmentally first keratins absent
from normal skin and rather characterizing simple epithe-
lia are in our data expressed by both cultured KCs and
HaCaTs supporting their proliferative and undifferentiated
nature [20].
There were no significant differences between the early

(EKC) and late (LKC) passage KCs in the cytokeratin
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Fig. 2 Amounts of polyA+ RNA in cells and effect of normalization. a Relative human polyA+ RNA amounts in samples were estimated by
relating the human-specific sequence counts to the spike-in sequence counts. The amounts polyA+ RNA detected were EKC>LKC=HaCaT>SG.
The EKC samples contained approximately twice as much polyA+ RNA as the SG samples. The samples contained equal concentrations of
cellular RNA. b Comparison of gene expression between SG and EKCs of donor 10k by applying the gene-based normalization as implemented in
SAMseq. Gene expression levels are shown as light gray dots (left panel), levels of spike-in RNAs as asterisks, and three control genes with distinct
symbols. The spike-in RNAs appear twofold downregulated, although all samples contained equal amounts of spike-in RNAs. With the gene-based
normalization, the Q-Q plot (right panel) shows approximately similar numbers of up- and down-regulated genes, shown as deviations from the
diagonal. c The same comparison of gene expression between SG and EKCs by applying spike-in normalization as implemented in SAMstrt (left).
Spike-in RNA counts follow the diagonal, but many more polyA+ RNAs appear upregulated than downregulated as shown by the upward shift
of the gray cloud compared to (b). Q-Q plot (right) shows many more upregulated than downregulated genes, consistent with the increase of
relative polyA+ RNA amount as shown in (a). d To experimentally validate which normalization yields a more correct analysis, qRT-PCR assays were
performed on selected genes. Delta-Ct values indicate no change in spike-in RNA, approximately twofold upregulated RPL13A and RPLP0, and
8-fold upregulated GAPDH, consistent with the spike-in-normalized results. e Gene expression profiles for three sample types (SG, EKC, LKC) are similar
between SAMstrt-normalized and RT-PCR results, whereas the SAMseq-normalized profiles show mild U shapes for RPL13A and RPLP0, different from
the unchanged levels by RT-PCR and SAMstrt
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levels. In contrast, HaCaT was remarkably different from
both SGs, EKC and LKC expressing higher levels of
cytokeratins 4, 13, 15, 19 and 81 (KRT4, 13, 15, 19 and
81). Furthermore, several cytokeratins (KRT7, 8, 18, and
19) characterising HaCaT by the spike-in normalization
(Fig. 3a) were consistent with published protein expres-
sion patterns, low expression in skin, but high in HaCaT
[21]. This observation was only partially supported by the
gene-based normalization (Additional file 8: Figure S3) –
by that method KRT7 and 8 did not reach significant
difference, suggesting that the gene-based normalization
was less sensitive or less accurate than the spike-in
normalization.
To further confirm the sample classification by STRT

results, we compared the sample specific expression of
different collagen genes (Fig. 3b), which have previously
characterized expression profiles in different types of tis-
sues [22, 23]. 25 out of 44 collagen genes were differen-
tially expressed. SGs expressed mainly connective tissue
specific collagens (types I, V and VI), consistent with the
presense of thin connective tissue layer underlying the
epidermis, whereas cultured cells were characterized by
the basement membrane (types IV) and skin hemides-
mosome (type XVII) specific collagens again supporting
the proliferative nature typical for the KCs in basal layer
of epidermis.

Characterization of SGs, EKCs, LKCs, and HaCaTs by
coregulated genes
We approached the question how comparable cultured
cells are as model systems for intact skin by elucidating
the gene expression differences between the samples.
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Fig. 3 Differential expression between the SGs, cultured KCs and HaCats. a The heat map panel to the left shows the expression of cytokeratins
in different samples. Annotations for cytokeratins in the panel to the right for the gene expression on different layers and tissue types (orange)
are based on Takahashi et al. [19], for the status in activation cycle (green) are based on Freedberg et al. [1], and for the protein expression in five
cell types (blue) are based on Human Protein Atlas, HPA [21]. According to HPA, white denotes no data, gray means not detected (primary cell types)
or with negative intensity (HaCaT), and red represents varying protein levels according to the intensity of the colour. SG, Split-thickness skin graft; EKC,
early passage keratinocyte; LKC, late passage keratinocyte; HCTP, HaCaT. b The heat map shows the expression of collagens in different samples
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We applied Principal Component Analysis (PCA; Fig. 4)
to decompose the differences into several dimensions
and to simplify the complexity of our dataset. PCA enabled
multiclass comparisons between samples and improved
the interpretation of expression profiles. The first principal
componene (PC), that depicts the largest variation between
samples, classified the SGs as a separate group compared
to the other samples. The second and third PCs separated
the early and late passages of KCs from HaCaTs, respect-
ively. In the following paragraphs, we interpret the mean-
ing of each PC axis with literature surveys to assess
appropriateness of the sample classifications based on
our expression profile, and to decode insights into the
differentiation and the growth control.
PC1 demonstrates the contrast between SGs and other
sample types
First, we extracted genes correlating with the PC1. In this
component, positively correlated genes referred to those
with higher expression in the SGs when compared to KCs
or HaCaTs, and negatively correlated genes acting oppos-
itely. Our data showed that 3,402 genes correlated posi-
tively with the PC1 and thus were expressed higher in SGs
(Table 1a and Additional file 9: Table S6), although the
total polyA+ content of SGs was lower than that of KCs
and HaCaTs. In contrast, 4,663 genes correlated negatively
(Table 1a and Additional file 9: Table S6). Nine out of ten
most upregulated genes in the SGs were previously associ-
ated with epidermal differentiation or with small organ-
elles in differentiating cells (Table 1a), and five of ten most
upregulated genes in KCs and HaCaTs were annotated as
localized in mitochondria (Table 1b), which are lost
from keratinocytes during epidermal differentiation
[24]. To conclude, the most correlated known genes con-
tributing to PC1 were thus consistent with the biological
phenotype of the contrasted cell types.
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Fig. 4 Sample classification by the principal component analysis. PCA scatt
demonstrates the contrast between SGs and other sample types, PC2 depic
between HaCaTs and LKCs. Percentages beside of the axis labels are the cont
donors in three technical replicas each. SG, Split-thickness skin graft; EKC, early
To further interpret the PC1 and to find the associa-
tions between genes and phenotypes contrasted on PC,
we performed gene set enrichment analysis amongst all
genes that correlated with that PC (PC-GSEA). Our re-
sults showed that 136 out of 7,801 gene sets correlated
positively, being upregulated in the SGs (q-value FDR <
1 %; Additional file 10: Table S7). The most significant
gene set (Table 2a) was target genes of p53 and p63,
which are known mediators of keratinocyte differentiation
[25]. Similarly, 1,340 gene sets showed negative correl-
ation (q-value FDR < 1 %; Additional file 10: Table S7).
The 2nd, 4th, 6th, 9th, and 10th of significant gene sets
(Table 2b) were related to mitochondria. Therefore, the
PC-GSEA extracted meaningful contrasts of the biological
functions and the phenotypes to interpret the PC1.
Since the PC scores representing the functions and

phenotypes were calculated by linear combination of
the expression profile and the loading coefficients, genes
with large loading coefficients on each PC would be the
key regulators for the functional contrast. For example, in
case of PC1, genes with high positive loading coefficients
contribute to the characteristic phenotypes and functions
of SGs, and conversely, genes with high negative loading
coefficients contribute to common characteristic phe-
notypes and functions of HaCaTs and KCs. When we
extracted genes contributing to PC1, 223 genes showed
positive loading and 104 genes showed negative loading
(three sigma; Additional file 11: Table S8). 12 of the 223
positively contributing genes that explain the functions
in SGs, and one of the 104 negative ones, characterizing
the cultured cells, were known transcription factors (Fig. 5a;
the definition of a transcription factor was based on [26]).
Six of the 12 transcription factors upregulated in SGs were
known regulators for skin maturation and differentiation
phenotypes (Table 3). As an example, POU2F3 (a.k.a.
Skn-1a/Oct11) is a known transactivator of the supraba-
sal layer marker KRT10 [27], which correlated positively
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Table 1 Ten most correlated genes with PC1. Tables a and b are subsets of significantly correlated genes with relevant functions in
skin lineage (for full data, see Additional file 9: Table S6). a Positively correlated genes, which were upregulated in SGs, and (b)
negatively correlated genes, which were upregulated in KCs and HaCaTs

Gene Symbol Score Local FDR

(a)

RAB11FIP1 0.934 0.00044

KRT80 0.933 0.00045 Localization around desmosomal plaques in earlier stages of differentiation [PMID:20843789]

ID4 0.915 0.00052 Lack of the protein in parakeratotic cells at upper skin layer [PMID:21663940]

PPL 0.911 0.00053 A component of desmosomes and of the cornified envelope [PMID:9412476]

KRT1 0.911 0.00054 Specifically expressed in the spinous and granular layers [PMID:10511477]

BCL6 0.900 0.00058 Expression at the terminal differentiation stage [PMID:8912662]

ERBB3 0.897 0.00059 Skin biopsy expressed more than the cultured cells [PMID:11571634]

PLAC2 0.896 0.00059 lncRNA controlling terminal differentiation [PMID:23201690]

PKP1 0.896 0.00059 Localization around desmosomal plaques and nuclei [PMID:16632867]

KRT10 0.894 0.00060 Specifically expressed in the spinous and granular layers [PMID:10511477]

(b)

PRDX3 −0.922 0.00044 Mitochondrial [PMID:17893648]

SEC61G −0.914 0.00045

NDUFB3 −0.914 0.00052 Mitochondrial [PMID:12611891]

FXC1 −0.913 0.00053 Mitochondrial [PMID:14726512]

ATP5J −0.911 0.00054 Mitochondrial [PMID:12110673]

GNG10 −0.911 0.00058

TXNDC9 −0.911 0.00059

MRPS23 −0.910 0.00059 Mitochondrial ribosomal protein

ENY2 −0.910 0.00059

PSMB2 −0.909 0.00060
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with PC1 (Score = 0.89, local-FDR = 6.00 × 10−4), and is
also a known repressor for the basal layer marker
KRT14 [28], which correlated negatively with PC1
(Score = −0.68, local-FDR ~ 0). To conclude, differenti-
ation and the mitochondrial phenotypes are possible
interpretations of the PC1 and can be explained by the
fluctuation of transcription factors that were clearly as-
sociated to sample types.

PC2 depicts the contrast between EKCs and HaCaTs
PC2 captured the second largest variation which mostly
shows the contrast between HaCaTs and EKCs, with
intermediate LKCs (Fig. 4). Three thousand nine hundred
sixty nine genes correlated positively with PC2 and were
thus expressed at higher level in EKCs (Additional file 9:
Table S6), and six of the top 10 positively correlated genes
were polyA+ RNA binding proteins (Table 4). In contrast,
there were no negatively correlated genes that would ap-
pear upregulated in HaCaT, which may depend on the fact
that HaCaTs and LKCs had less polyA+ RNA than EKCs
(Fig. 2a). Accordingly, PC-GSEA towards PC2 revealed 23
positively correlating and only two negatively correlating
gene sets (Table 5 and Additional file 10: Table S7). When
we investigated associations in the correlating genes and
the gene sets as an interpretation of PC2, we found
that the PC2 explained the difference of G1/S-transition
between the EKCs and HaCaTs both through negative and
positive correlation. First, the genes that bear H3K27me3
in ES cells and have high-CpG-density promoter,
showed negative correlation (i.e. upregulation in HaCaTs;
MIKKELSEN_ES_HCP_WITH_H3K27ME3; q-value FDR~
0) [29]; the genes with H3K27me3 marks have actually
been shown to be transcribed at G1/S- and S-phases in
HaCaTs. Second, target genes of RB1, which is known
to be negative regulator of the S-phase entry, showed
positive correlation (i.e. upregulation in EKCs; EGUCHI_
CELL_CYCLE_RB1_TARGETS, q-value FDR = 4.76 ×
10−3) [30].
Then we proceeded to find genes that are the key

regulators for the functional contrast on PC2. 137 genes
showed high positive loading to PC2, and 111 genes
showed negative loading (three sigma; Additional file 11:
Table S8). Among them, five positive loading genes and
nine negative ones were transcription factors (Fig. 5a).



Table 2 Ten most significant gene sets enriched in PC1 correlating genes. Tables a and b are subsets of gene sets that were
significantly (FDR q-value < 1 %) enriched in PC1 correlating genes by PC-GSEA (for full data, see Additional file 10: Table S7). (a)
Gene sets in positively correlated genes, which were upregulated in SGs, and (b) gene sets in negatively correlated genes, which
were upregulated in KCs and HaCaTs. SIZE is number of genes belonging the gene set. NES is normalized enrichment score

Name SIZE NES FDR q-val

(a)

PEREZ_TP53_AND_TP63_TARGETS 198 2.967 0

SMID_BREAST_CANCER_NORMAL_LIKE_UP 449 2.908 0

BOQUEST_STEM_CELL_CULTURED_VS_FRESH_DN 31 2.774 0

KRAS.LUNG_UP.V1_DN 128 2.774 0

ABATES_COLORECTAL_ADENOMA_DN 248 2.760 0

WU_SILENCED_BY_METHYLATION_IN_BLADDER_CANCER 53 2.758 0

PEREZ_TP63_TARGETS 334 2.742 0

WINNEPENNINCKX_MELANOMA_METASTASIS_DN 46 2.735 0

KEGG_ASTHMA 23 2.689 0

KEGG_ALLOGRAFT_REJECTION 33 2.663 0

(b)

YAO_TEMPORAL_RESPONSE_TO_PROGESTERONE_CLUSTER_13 172 3.060 0

MOOTHA_VOXPHOS 86 3.038 0

WONG_EMBRYONIC_STEM_CELL_CORE 332 3.028 0

REACTOME_RESPIRATORY_ELECTRON_TRANSPORT_ATP_SYNTH
ESIS_BY_CHEMIOSMOTIC_COUPLING_AND_HEAT_PRODUCTION_
BY_UNCOUPLING_PROTEINS_

81 3.016 0

FOURNIER_ACINAR_DEVELOPMENT_LATE_2 276 3.005 0

KEGG_OXIDATIVE_PHOSPHORYLATION 111 2.954 0

PENG_LEUCINE_DEPRIVATION_DN 186 2.947 0

GSE22886_UNSTIM_VS_IL15_STIM_NKCELL_DN 199 2.947 0

WONG_MITOCHONDRIA_GENE_MODULE 216 2.943 0

REACTOME_RESPIRATORY_ELECTRON_TRANSPORT 65 2.924 0
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Interestingly, the positive loading genes APBB1 [31],
ESPL1 [32],TCF19 [33] and ZNF300 [34] were known cell
cycle regulators or contributors to cell proliferation.
Moreover, one of the 137 positive loading genes and seven
of the 111 negative ones were known lncRNAs (Fig. 5b).
UCA1 was a negatively loading lncRNA, known as
essential for bladder cancer cell proliferation via CREB-
dependent pathway [35]. Interestingly, Cyclin D1 expres-
sion in KCs is also under the CREB-dependent pathway
[36]. In conclusion, the difference of G1/S-transition be-
tween HaCaTs and EKCs is a possible interpretation for
PC2, and again the fluctuation of transcription factors was
highly associated to sample types.

PC3 shows the contrast between HaCaTs and LKCs
PC3 associated mostly with the variation between HaCaTs
and LKCs (Fig. 4). We could not detect positively cor-
related genes (upregulated in LKC) with PC3, although
these samples had equivalent polyA+ RNA contents
(Fig. 2a). In contrast, 2,992 correlated negatively refering
to upregulation in HaCaT (Additional file 9: Table S6),
and five of the top 10 negatively correlated genes codes
polyA+ RNA binding protein (Table 6). In PC-GSEA, only
30 gene sets correlated positively with PC3, whereas 241
correlated negatively (Additional file 10: Table S7). As the
interpretation of PC3, we found that it was associated with
senescense, in accordance of KC senescence that does
not apply to the continuously proliferating HaCaT
cells. One explaining component was the positive cor-
relation (upregulation in LKCs) of potassium channel
genes (Table 7a). Potassium channel activation inhibits
proliferation by activating a senescence program in breast
cancer [37], and the G0/G1-arrest is accompanied by this
activation. Consistently, not only the genes for G0 and
early G1 phases, but also the other cell cycle associated
genes were downregulated in LKCs (Table 7b). Further-
more, miR-192 and miR-34 target genes were upregulated
in HaCaTs (negative correlation with PC3; Table 7c).
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Fig. 5 Hierarchical clustering of expression profiles of high loading loci contributing to the sample classification for PC1, PC2 and PC3. Panel (a) shows
transcription factors (TFs) in the high loading features, and panel (b) known noncoding genes. The expression of different TFs separates SGs, KCs and
HaCaTs from each other whereas the expression of noncoding genes mainly separates HaCaTs from other samples. The contribution to the three first
PCs is shown to the right red denoting positively contributing genes and green denoting negatively contributing genes. SG, Split-thickness skin graft;
EKC, early passage keratinocyte; LKC, late passage keratinocyte; HCTP, HaCaT
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Those miRNAs are functionally associated with p53-
dependent cellular maintenance and aging (miR-34
[38, 39], and miR-192 [40, 41]).
We next attempted to find supporting genes for this

interpretation. A total of 117 genes showed high positive
loading to PC3, and 144 genes showed high negative
loading (three sigma; Additional file 11: Table S8). Among
them, six positive and 15 negative loading genes were
transcription factors (Fig. 5a). One negatively loading
(upregulated in HaCaTs) gene was RAD51, known to be



Table 3 Transcription factors, positively contributing to PC1. Table shows a subset of significantly contributing loci with relevant
functions in skin lineage (for full data, see Additional file 11: Table S8)

Gene Symbol Loading Z-score

HLF 1.059 3.690 Inhibitor of cell death response [PMID:23415677]

ZBTB16 1.039 3.621

HOPX 1.022 3.558 Controlling differentiation-dependent genes [PMID:20226564]

EGR3 0.999 3.477

ID4 0.986 3.436 Lack of the protein in parakeratotic cells at upper skin layer [PMID:21663940]

MNDA 0.968 3.369

HCLS1 0.947 3.297

SOX5 0.947 3.295 Genes coding SOX5 binding sites at the promoters were PC1 positive correlation (V$SOX5_01; q-value FDR ~ 0)

SOX21 0.937 3.261 Master regulator of hair shaft cuticle differentiation [PMID:19470461]

ETV7 0.928 3.227

POU3F1 0.920 3.200 Transactivator for FLG (a.k.a. profilaggrin; PC1 positive correlation, Local- FDR = 7.34 × 10-4; [PMID:10809764])

POU2F3 0.906 3.151 10-4; [PMID:10809764] & [PMID:7682011]); repressor for KRT14 (PC1 negative correlation, Local-FDR ~ 0;
[PMID:11429405])
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involved in the homologous recombination and the
repair of DNA. Expression of RAD51 is regulated by
Lamin A (LMNA) [42], and expression of the LMNA
was consistently negatively correlated (Local-FDR = 8.99 ×
10−4). It’s well known that the mutations of LMNA lead to
Hutchinson–Gilford progeria syndrome characterized
by a premature aging [43]. Therefore, senescence and
cellular aging responces would be a possible interpret-
ation for PC3.

Conclusion
STRT RNA-seq method complemented with synthetic
RNAs revealed a variation of polyA+ RNA content per
total RNA in different cell types, SGs, EKCs, LKCs and
HaCaTs, reflecting the activity of the cell type. Even though
Table 4 Ten most positively correlated genes with PC2. Table is
a subset of positively correlated genes with PC2, and the thick
mark indicates if the gene codes polyA+ RNA binding protein
(for full data, see Additional file 10: Table S6)

Gene symbol Score Local FDR polyA + RNA binding
[PMID: 22658674]

HNRNPH1 0.855 0.00000 ✓

SCAF11 0.829 0.00002 ✓

HNRNPA3 0.823 0.00003 ✓

BCLAF1 0.802 0.00008 ✓

OXCT1 0.800 0.00008 ✓

ODF2L 0.798 0.00008 ✓

HNRNPAB 0.789 0.00010 ✓

PNN 0.788 0.00011 ✓

UBE2G2 0.787 0.00011 ✓

SPARC 0.787 0.00011 ✓
the STRT reads are concentrated towards the 5’end of the
polyA+ transcripts and the method has limited resolution
at 2nd and more downstream exons, the advantages of
the method include the small amount of starting material
needed for library preparation, early multiplexing of up to
92 samples reducing the cost and time of library prepar-
ation, and the inclusion of external spike-in RNAs as a
standard procedure. The spike-in normalization has been
shown to be a valuable tool when comparing samples with
fluctuating polyA+ RNA contents [14, 44]. We showed
that the use of spike-in-based normalization produced
consistent results with qPCR validations, and provided
us with deeper insights into KC biology. In contrary,
the traditional gene-based normalization method led to
inaccurate expression profiles. Moreover, our approach
would be applicable not only for the studies on KCs but
also for the other studies with fluctuation of polyA+
RNA content, for example those on single cells with
different types or sizes [45, 46].
We applied PCA to elucidate dissimilarity between the

samples, and also to decompose the differences. The three
first PCs represented differentiation and the mitochon-
drial phenotypes between SGs and cultured cells, G1/S-
transition between HaCaTs and EKCs, and senescence
and cellular aging responces between HaCaTs and LKCs.
All cultured cells differed from tissue samples and HaCaT
cells differed remarkably from other cultured cells based
on both PCA and the comparison of previously known
KC markers, cytokeratins. Our results thus suggest that
great caution should be payed when using cultured pri-
mary KCs and cell models like HaCaTs as models for skin,
especially when focusing on the pathways revealed by
PCA. The transcriptomes of cultured primary KCs and
HaCaTs resemble that of acivated skin rather than normal
skin as shown also by others [10, 11].



Table 5 Most significant gene sets enriched in PC2 correlating
genes. (a) Table is a subset of gene sets (ten out of 23)
significantly (FDR q-value < 1 %) enriched in PC2 positively
correlating genes, which were upregulated in EKCs, by PC-GSEA
(for full data, see Additional file 10: Table S7). (b) Table is gene
sets significantly enriched in PC2 negatively correlating genes,
which were upregulated in HaCaTs. SIZE is number of genes
belonging the gene set. NES is normalized enrichment score

Name SIZE NES FDR q-val

(a)

PUJANA_BRCA_CENTERED_NETWORK 117 1.909 0.00492

ZHANG_TLX_TARGETS_UP 89 1.875 0.00885

BURTON_ADIPOGENESIS_PEAK_AT_16H 40 1.873 0.00590

PUJANA_XPRSS_INT_NETWORK 168 1.869 0.00467

ZHANG_TLX_TARGETS_36HR_DN 185 1.868 0.00394

EGUCHI_CELL_CYCLE_RB1_TARGETS 23 1.856 0.00476

REACTOME_TRANSPORT_OF_MATURE_
TRANSCRIPT_TO_CYTOPLASM

52 1.846 0.00436

ABRAMSON_INTERACT_WITH_AIRE 44 1.845 0.00394

GOLUB_ALL_VS_AML_UP 24 1.841 0.00383

ZHANG_TLX_TARGETS_60HR_DN 275 1.839 0.00374

(b)

MIKKELSEN_ES_HCP_WITH_H3K27ME3 35 2.441 0.00000

REACTOME_XENOBIOTICS 15 2.345 0.00851
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In this study, we present an approach to compare
highly varying cell types by applying synthetic RNA
based normalization. For further studies or applications
of other biological events, the key is to find the hidden
associations between genes and phenotypes which are
contrasted on PCs. We also note that there are still
many poorly annotated genes in the genome that might
Table 6 Ten most negatively correlated genes with PC3. Table
is a subset of negatively correlated genes with PC3, and the
thick mark indicates if the gene codes polyA+ RNA binding
protein (for full data, see Additional file 9: Table S6)

Gene symbol Score Local FDR polyA + RNA binding
[PMID: 22658674]

PRPF8 −0.885 0.00006 ✓

APOL6 −0.826 0.00018

CCDC15 −0.826 0.00018

TTF1 −0.823 0.00019

ZC3H11A −0.813 0.00021 ✓

NUCKS1 −0.809 0.00021 ✓

PCBP2 −0.808 0.00021 ✓

H2AFV −0.804 0.00022

RBBP7 −0.500 0.00023

HMGN2 −0.798 0.00023 ✓
be revealed by our approach. Moreover, PCA without
sample pre-classification might be applied in studying
gene expression in complex disorders using a large enough
cohort.

Methods
Sample collection, cell culture, RNA extraction, and STRT
RNA-seq
All subjects involved in this study provided written in-
formed consent under a protocol adherent to the Helsinki
Guidelines and approved by the Institutional Review
Board of the Helsinki University Central Hospital.
Split-thickness skin grafts (SGs) were harvested as out-

lined previously [47]. Briefly, SG samples were obtained
using a compressed air-driven dermatome (Zimmer®,
Warsaw, IN) with a fixed thickness setting of 2/1000
in. to obtain a representative sample of epidermis to
its full thickness with minimal dermis involvement from
the donor site skin. In order to initiate keratinocyte cul-
tures, full thickness skin samples (3-mm diameter punch
biopsies) were collected (Additional file 1: Table S1). The
quality of SG samples was examined from HE-stained
paraffin sections. The SGs were immediately immersed
in RNAlater to ensure the least possible manipulation
and gene expression changes.
Epidermal cells were isolated from the full thickness skin

with dispase digestion followed by trypsinization to enable
collection of all primary cell types and phenotypes of
the epidermis in the initial harvest. Human primary ker-
atinocytes were cultured in Keratinocyte Growth Medium 2
(PromoCell # C-20011) with calcium (0.06 mM) and Pro-
moCell supplements (#C-39016). Cell culture dishes were
coated with collagen I (Gibco Rat tail, A-10483-01). Cells
were routinely passaged, and samples were collected from
early (passage 1; EKC) and late passages (passage 5 or 6;
LKC). The human immortalized keratinocyte HaCaT cell
line was grown in low glucose DMEM (Lonza) supple-
mented with 5 % FBS, 2 mM L-glutamine, 1 mM sodium
pyruvate solution, 0.1 mM non-essential amino acids,
100 U/ml penicillin and 100 μg/ml streptomycin at 37 °C
and 5 % CO2. HaCaT cells were collected at passage 43
for RNA isolation.
Total RNA was extracted by miRNeasy kit (Qiagen) from

both tissue samples and cells. RNA concentrations
were measured by Nanodrop and Qubit and the quality
was controlled by Bioanalyzer (RIN for all samples >8;
Additional file 2: Table S2).

STRT RNA-seq
Qualified total RNA samples (10 ng of each replicate,
three replicates for each sample) were used for RNA se-
quencing library preparation according to the STRT
protocol [16], which was adjusted for 10 ng samples
by decreasing the number of cycles to 10 during the



Table 7 Significant gene sets enriched in PC3 correlating genes.
Tables a, b and c are subsets of gene sets significantly (FDR
q-value < 1 %) enriched in PC3 correlating genes by PC-GSEA (for
full data, see Additional file 10: Table S7). (a) Table is a subset of
the ten (out of 30) gene sets most significantly enriched in the
positively correlating genes, which were upregulated in LKCs.
(b) Table is cell cycle associated gene sets significantly enriched in
the negatively correlating genes, which were upregulated in
HaCaTs. (c) Table is miRNA-target gene sets significantly enriched
in PC3 negatively correlating genes. SIZE is number of genes
belonging the gene set. NES is normalized enrichment score

Name SIZE NES FDR
q-val

(a)

REACTOME_OLFACTORY_SIGNALING_PATHWAY 36 2.967 0

DAZARD_UV_RESPONSE_CLUSTER_G28 20 2.908 0

DAZARD_UV_RESPONSE_CLUSTER_G24 27 2.774 0

PID_CONE_PATHWAY 16 2.774 0

MAHADEVAN_RESPONSE_TO_MP470_DN 19 2.760 0

WANG_TNF_TARGETS 23 2.758 0

BURTON_ADIPOGENESIS_1 33 2.742 0

AMIT_EGF_RESPONSE_60_MCF10A 38 2.735 0

VOLTAGE_GATED_POTASSIUM_CHANNEL_COMPLEX 29 2.689 0

RORIE_TARGETS_OF_EWSR1_FLI1_FUSION_UP 30 2.663 0

(b)

REACTOME_G2_M_CHECKPOINTS 41 1.865 0.00029

REACTOME_MITOTIC_PROMETAPHASE 85 1.822 0.00064

REACTOME_MITOTIC_M_M_G1_PHASES 167 1.783 0.00114

REACTOME_G0_AND_EARLY_G1 23 1.732 0.00241

REACTOME_CELL_CYCLE 392 1.710 0.00314

REACTOME_CELL_CYCLE_CHECKPOINTS 111 1.690 0.00428

REACTOME_S_PHASE 106 1.660 0.00596

REACTOME_M_G1_TRANSITION 78 1.646 0.00706

REACTOME_REGULATION_OF_MITOTIC_CELL_CYCLE 77 1.621 0.00908

(c)

GEORGES_CELL_CYCLE_MIR192_TARGETS 62 1.726 0.00272

TOYOTA_TARGETS_OF_MIR34B_AND_MIR34C 449 1.675 0.00501
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first PCR amplification. The libraries (Additional file 3:
Table S3) were sequenced using an Illumina HiSeq 2000
instrument. Preprocessing of STRT reads, alignments and
per-gene quantitation were performed by an established
analysis pipeline [16]. Differential expression analysis was
performed by SAMstrt [14], and also by SAMseq [48] for
an example of the gene-based normalization. Differentially
expressed genes by the four sample types were extracted
by multiclass response test; threshold of the significantly
regulated genes is Local-FDR < 1 %. Gene type (e.g. pro-
tein coding, pseudo, noncoding), genes of glycolysis/
gluconeogenesis and transcription factors were classified
based on Entrez Gene, KEGG pathway [KEGG:hsa00010]
and Ravasi et al. [26], respectively. For cytokeratin expres-
sion analysis, we selected the gene symbols that begin
“KRT” followed by number. We performed PCA with the
scaling but non-centering preprocess steps. Correlation of
gene expression with PC was estimated by SAMstrt quan-
titative response test. Scores of samples on a PC were
given as the quantitative values, and threshold of the sig-
nificantly correlated gene is Local-FDR < 1 %. PC-GSEA,
which tests correlation of gene set with PC, was by GSEA
[49] preranked test towards c1, c2, c3, c5, c6 and c7 of
MSigDB version 4. The ranked lists contain the gene cor-
relation scores estimated by SAMstrt as descrived above;
threshold of the significantly correlated gene set is q-value
FDR < 1 %.

qRT-PCR
The qualified total RNA samples 10kD, 10k1 and 10k6,
which were used for sequencing with STRT method, were
subjected to cDNA synthesis. Equal amount of the SPIKE-
in RNA mix (ArrayControl RNA, AM1780M, Ambion)
was added to each cDNA synthesis reaction according to
the STRT-library preparation protocol described above.
cDNA synthesis was carried out using oligo dT-primers
and SuperScript III First-Strand synthesis system for
RT-PCR (18080–151, Invitrogen) according to manufac-
turer’s instructions. 5 ng of cDNA was applied to each
qPCR assay and each sample was run in three technical
replicates. qPCR was carried out using an ABI PRISM
7500 Fast Real-Time PCR System with Fast SYBR® Green
Master mix (4385617, both from Applied Biosystems)
according to manufacturer’s instructions. The primer
sequences are shown in Additional file 12: Table S9.

Availability of supporting data
The processed STRT reads supporting the results of this
article are available in the European Nucleotide Archive
(http://www.ebi.ac.uk/ena/data/view/PRJEB8997).

Additional files

Additional file 1: Table S1. Patients and the prepared samples.

Additional file 2: Table S2. The prepared samples and the total RNA
qualities.

Additional file 3: Table S3. STRT library designs, sample notation and
the sequencing summary. The sample name consists of 5 characters. The
former 4 characters represent the sample type whether HaCaT cell line
(HCTP) or the other primary samples as defined by patient and type
identifiers in Additional file 2: Table S2. The last one character either a, b
or c represent the technical replicas.

Additional file 4: Table S4. Similarity between technical replicates. The
similarity was estimated by Pearson correlation coefficients of raw read
counts.

Additional file 5: Figure S1. Variation of relative polyA+ transcript
counts. There are three replicas (a, b and c from dark to bright filling
colors) in each sample. The relative polyA+ transcript count was estimated by
mapped read count per spike-in read count; we added the same amount of

http://www.ebi.ac.uk/ena/data/view/PRJEB8997
http://www.biomedcentral.com/content/supplementary/s12864-015-1671-5-s1.xlsx
http://www.biomedcentral.com/content/supplementary/s12864-015-1671-5-s2.xlsx
http://www.biomedcentral.com/content/supplementary/s12864-015-1671-5-s3.xlsx
http://www.biomedcentral.com/content/supplementary/s12864-015-1671-5-s4.xlsx
http://www.biomedcentral.com/content/supplementary/s12864-015-1671-5-s5.pdf
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polyA+ tailed spike-in RNAs into all 10 ng total RNA samples before the library
synthesis. The ratio of the mapped reads on the reference human genome to
the spike-in reads is a relative concentration of endogenous polyA+ RNAs in
the 10 ng total RNA, which can be compared with the other samples. One
outlier, 10k1b, was excluded for the further analysis as described in Additional
file 6: Figure S2.

Additional file 6: Figure S2. Unexpected overexpression of some
abundantly expressed genes in 10k1b. Scatter plots show comparisons of
per-gene raw read counts between the technical replicas. (a) Comparisons
in 07kD SGs as a reference. These replicas had the worst correlation
coefficients (see also Additional file 4: Table S4). (b) Comparisons in
10k1 EKCs. The comparisons with the replica b, especially between the
replicas a and b, had broader scatter than one of replicas a vs. c and
the 07kD replicas. The 10k1b is the only outlier in the replicas. Heat
maps and the hierarchical clustering of significantly expressed cytokeratins
(c) and glycolysis-gluconeogenesis (d) genes including the 10k1b replica.
Some genes of the 10k1b were overrepresented, although the trends were
similar.

Additional file 7: Table S5. Differentially expressed genes between the
multiple classes. There are 11,908 unique genes in 12,246 (of 20,500)
differentially expressed features. The columns from G to L are the
statistical values estimated by SAMstrt. Local Gene ID is usually identical
with Gene Symbol except for multicopy genes, which have suffix “_loc”
with numbers, and for repetitive elements, which have prefix “r_”. Entrez
Gene ID and Gene Type are based on Entrez Gene. Glycolysis genes and
Transcription Factors are denoted “GL” and “TF” at the columns E and F.
Contrasts are the standardized mean difference of the gene expression
between the four classes. Positive contrast means overexpression, and
negative contrast the opposite.

Additional file 8: Figure S3. Hierarchical clustering of cytokeratin
expression profiles with gene-based normalization. In the 11,689 differentially
expressed genes by the gene-based normalization, 38 were known
cytokeratin genes shown in this figure. The heat map panel to the left
shows the expression of cytokeratins in different samples. Annotations
for cytokeratins in the panel to the right for the gene expression on
different layers and tissue types (orange) are based on Takahashi et al.
[19], for the status in activation cycle (green) are based on Freedberg
et al. [1], and for the protein expression in five cell types (blue) are
based on Human Protein Atlas, HPA [21]. According to HPA, white
denotes no data, gray means not detected (primary cell types) or with
negative intensity (HaCaT), and red represents varying protein levels
according to the intensity of the colour.

Additional file 9: Table S6. PC correlating loci. Sheet name indicates PC
number and direction of the correlation. Each sheet contains significantly
correlated loci (Local-FDR < 1 % by SAMstrt quantitative response test towards
the score of samples on the PC; the columns C and D are the statistical
values). Local Gene ID is usually identical with Gene Symbol except for
multicopy genes, which have suffix “_loc” and the copy number. There
were no negatively correlating genes with PC2 and no positively
correlating genes with PC3.

Additional file 10: Table S7. PC correlating gene sets. Sheet name
indicates PC number and direction of the correlation. Each sheet contains
significantly correlating gene sets (q-value FDR < 1 % by GSEA [49] with a
gene list preranked by SAMstrt quantitative response test towards the
score of samples on PC).

Additional file 11: Table S8. PC contributing features. Sheet name
indicates PC number and direction of the contribution. Each sheet contains
significantly high contributing loci (three sigma). Local Gene ID is usually
identical with Gene Symbol except for multicopy genes, which have suffix
“_loc” and the copy number.

Additional file 12: Table S9. qRT-PCR primers.
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