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Abstract

Background: The Generation Scotland Scottish Family Health Study (GS:SFHS) includes 23,960 participants from
across Scotland with records for many health-related traits and environmental covariates. Genotypes at ~700 K
SNPs are currently available for 10,000 participants. The cohort was designed as a resource for genetic and health
related research and the study of complex traits. In this study we developed a suite of analyses to disentangle the
genomic differentiation within GS:SFHS individuals to describe and optimise the sample and methods for future
analyses.

Results: We combined the genotypic information of GS:SFHS with 1092 individuals from the 1000 Genomes project
and estimated their genomic relationships. Then, we performed Principal Component Analyses of the resulting
relationships to investigate the genomic origin of different groups. We characterised two groups of individuals:
those with a few sparse rare markers in the genome, and those with several large rare haplotypes which might
represent relatively recent exogenous ancestors. We identified some individuals with likely Italian ancestry and a
group with some potential African/Asian ancestry. An analysis of homozygosity in the GS:SFHS sample revealed a
very similar pattern to other European populations. We also identified an individual carrying a chromosome 1
uniparental disomy. We found evidence of local geographic stratification within the population having impact on
the genomic structure.

Conclusions: These findings illuminate the history of the Scottish population and have implications for further
analyses such as the study of the contributions of common and rare variants to trait heritabilities and the evaluation
of genomic and phenotypic prediction of disease.

Keywords: Generation Scotland, Principal component analysis, Genetic ancestry, Admixture, Rare variants,
Population structure
Background
The Generation Scotland Scottish Family Health Study
(GS:SFHS) is a family-based genetic epidemiology study
which includes 23,960 participants in ~7,000 family
groups from across Scotland. Participants were recruited
by letter of invitation from general practitioner lists to
provide a representative sampling of the population.
There was no selection on the basis of medical status or
history. All were interviewed and clinically assessed for a
wide range of health-related traits and environmental co-
variates, and linked also to routine health records [1, 2].
Ten thousand of these participants, of whom ~6,000 are
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not known to be directly related, also have genotypic in-
formation for ~700 K SNPs. The cohort was designed as a
resource for genetic and health-related research. So far,
projects based on this cohort are underway to study the
genetics of depression, the prediction of cardiovascular
disease risk, or the role of specific genes in asthma, bron-
chitis and emphysema, but the potential uses of GS:SFHS
are much wider (http://www.generationscotland.org/).
The GS:SFHS cohort is a family-based study, and a fair
proportion of individuals in the population will be related,
some unknowingly. This structure will allow the shared
variation between individuals within families to be disen-
tangled into its genetic and environmental components
and should facilitate accurate estimations of heritability. In
addition, genome-wide association studies to be carried
using the GS:SFHS cohort will need to adequately account
for population substructure. Without proper correction,
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false-positive results can arise as a consequence of stratifi-
cation differences, particularly between cases and controls,
because of allele frequency differences or differences in
LD patterns [3–5]. As genomic relationships are an inte-
gral part of the statistical methods used to unravel or util-
ise trait variation and affect their performance [5, 6] a
detailed genomic description of the structure of GS:SFHS
is a prerequisite to the application of these mapping and
prediction methods. Furthermore, such description will
shed some light on the demographic history, the exist-
ence and characterization of hidden ancestral structure
and the amount and origin of the variability in the
population.
Our aim was to provide an accurate genomic descrip-

tion of the GS:SFHS cohort, which could reflect as well
the history of Scottish population. For that purpose, we
developed several genomic approaches using the infor-
mation of ~700 K SNPs in the individuals of the cohort.
Our objectives were to: 1) place GS:SFHS in the context
of other human populations by exploring their genetic
variation and establish the ancestry of participants, 2)
identify the extent and the origin of rare haplotypes in
GS:SFHS individuals, 3) explore genetic differentiation
within GS:SFHS, 4) analyse homozygosity in the GS:SFHS
cohort, 5) identify the extent of geographic differentiation
within the sample, and 6) apply the knowledge gained
from these studies to identify a core set of samples to se-
lect the most appropriate for different future analyses.
These exhaustive analyses will not only reflect an ac-

curate picture of the demographic history of Scotland,
but also will have implications for our further studies
Table 1 Origin, location, number of individuals and given values fo
GS + 1 kG data set

Code Origin Location

GS:SFHS Europe Scotland

ASW Africa African a

CEU Europe Utah res

CHB Asia Han Chi

CHS Asia Han Chi

CLM America Colomb

FIN Europe Finnish i

GBR Europe British in

IBS Europe Iberian p

JPT Asia Japanese

LWK Africa Luhya in

MXL America Mexican

PUR America Puerto R

TSI Europe Tuscan i

YRI Africa Yoruba i

Total
using the GS:SFHS cohort in terms of the genomic dif-
ferentiation found among its individuals, (e.g., introgres-
sion detected, homozygosity, etc.) which will help select
the most appropriate groups of individuals for each fu-
ture analysis. These studies could include a detailed ana-
lysis of the contributions of common and rare variants
to trait heritabilities, haplotype mapping, and evaluation
of genomic and phenotypic prediction of disease.

Results
Placing Generation Scotland in a global genomic context
We performed a set of analyses to place GS:SFHS into
context of a sample of other global populations. First, we
merged GS:SFHS with the data of 1092 individuals from
the 1000 Genomes Project (Table 1), and we calculated a
Genomic Relationship Matrix (GRM) from the marker
data of the resulting data set (GS + 1 kG). Then, we per-
formed a Principal Component Analysis (PCA) of the
GRM. Results of the PCA of the GRM in the population
GS + 1 kG are presented in Fig. 1: Fig. 1a shows a plot of
the first two PCs (those with the largest eigenvalues);
Fig. 1b shows a detail of the same figure including only
the GS:SFHS individuals, Fig. 1c shows a plot of the third
and fourth PCs and Fig. 1d shows a plot of the fifth and
sixth PCs. Plots for PCs 7–20 are shown in Additional file 1:
Figure S1.
The first and second principal component separated

the African (different coloured squares), East Asian (dif-
ferent coloured rhomboids) and European (different
coloured circles) populations (Fig. 1a). American popula-
tions (different coloured triangles) spread over the plot
r latitude and longitude for the different populations in the
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Fig. 1 Results of the PCA in the GS + 1 kG data set. a Values for PC1 and PC2 in GS + 1 kG individuals; b Values for PC1 and PC2 only in GS:SFHS
individuals (open circles were defined as outliers); c Values for PC3 and PC4 in GS + 1 kG individuals; d Values for PC5 and PC6 in
GS + 1 kG individuals
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between the three main groups (Africans, East Asians
and Europeans). African ancestry individuals living in
the US (ASW, red squares) were more spread towards
the European populations than the two populations
from Africa (Luhya and Yoruba) which remained sepa-
rated in a more consistent group, owing to the history
of European contributions to ASW. The East Asian
populations formed a tight group clearly independent
of the rest. When looking at the plot of GS:SFHS within
this graph (Fig. 1b), it can be noticed that a very small
but obvious proportion of GS:SFHS individuals leaned
towards the African population, whereas a similarly
small but also obvious proportion were closer to the
East Asian populations. This analysis suggests that
some GS:SFHS participants have mixed ethnic back-
grounds. For example, 64 individuals have values for



Amador et al. BMC Genomics  (2015) 16:437 Page 4 of 17
PC1 or PC2 more than 6 standard deviations away from
the mean. They are plotted as open blue circles in Fig. 1b.
If we look at further PCs, we observed, as shown in

Fig. 1, that the third and fourth PCs reflected some vari-
ation within the Mexican population from LA (MXL)
and African origin populations, respectively (Fig. 1c). For
both eigenvectors GS:SFHS individuals were located to-
gether with the 1 kG European populations.
The fifth PC separated the Italian population from

Tuscany from the rest of the populations (Fig. 1d). How-
ever, some individuals from GS:SFHS clustered with this
Italian group consistent with them having some similar
ancestry.
In the sixth PC of the GRM of GS + 1 kG, a different

pattern appears. For this PC the individuals from most
of the populations are separated in three clear clusters,
mostly detected in GS:SFHS because of its larger sample
size. The SNPs causing this clustering are located in
chromosome 8, in the 8p23.1 region. A known common
inversion polymorphism is located in this region [7, 8]
suggesting that it might be the cause of the clustering
pattern we observe.

Generation Scotland in a European genomic context
To place Generation Scotland into a European context
we performed a PCA of a random sample of 200 individ-
uals of GS:SFHS together with the European samples of
1 kG (CEU, GBR, FIN, IBS and TSI) and 150 Orcadian
individuals (ORK) and 150 Croatian individuals (KOR).
Fig. 2 Results of the PCA in the GS + European data set. Values for PC1 and
Results are shown in Fig. 2 for PC 1 and PC 2. The plot
shows a distribution of populations similar to a map of
Europe (note the axes are inverted) as in [9], where the
Italian (TSI), Iberian (IBE) and Croatian (KOR) popula-
tions are located at the bottom of the plot (south), the
Finnish (FIN) and Orcadian (ORK) populations in the
top (north) and the rest mostly in the centre. GS:SFHS
is located consistently between Orkney and the British
(GBP) population.
Genetic structure due to rare alleles
To thoroughly explore the ancestries of the individuals
in the GS:SFHS cohort and gain insight into the poten-
tial origins of the outliers we analysed the patterns of al-
lele sharing described by genomic relationship coefficients.
It is clear from the formulation of the standard estimator
(1, see Methods and Additional file 1: Figure S2) that
shared rare alleles can have a substantial influence on esti-
mates in the GRM. To measure the influence of the rare
alleles in the relationships between individuals of GS:SFHS
we used three scores: [1] an individual marker score that
measures how each marker contributes in an individual to
its relationships with the rest of the population; [2] a pair
marker score that measures how each marker affects the
relationship between a particular pair of individuals; and
[3] a rarity score to measure the overall amount of rare
variants that an individual has. The details of these calcu-
lations are provided in the Methods section.
PC2 in Generation Scotland and the other European samples
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Table 2 demonstrates the impact of the inclusion of
rare alleles in our data, by showing the values for the gen-
omic relationship coefficients truncating the SNP data at
different allele frequencies between selected extreme ex-
amples of pairs of individuals that are not related to each
other according to the pedigree (lying in the more ex-
treme positions towards African populations in Fig. 1b). A
comparison between the values of relationship coefficients
obtained when using different allele frequency thresholds
for the whole population are presented in Additional file 1:
Figure S3, indicating that only for a small minority of
relationships does the inclusion of rare alleles make a
difference. The genomic relationship coefficients obtained
using all the markers for the pairs of individuals in Table 2
show values between 0.17 and 0.45, which are around the
values expected for third and first degree relatives respect-
ively, and are unlikely to arise between unrelated individ-
uals. When we re-estimated the relationships between the
same pairs of individuals, excluding SNPs with rare alleles,
these relationships decreased to lower values (between
0.008 and 0.08) as expected between unrelated or distantly
related individuals. To explore the impact of rare alleles in
individual relationships across the genome we selected the
first pair of individuals in Table 2 to analyse further their
relationship. Results are plotted in Fig. 3. Figure 3a and b
Table 2 Genomic relationship coefficients between several pairs
of individuals using different thresholds for the computation of
the GRM

Ind. 1 Ind. 2 GRMALL GRM>1 % GRM>5 % GRM<1 % GRM<5 %

40280 11786 0.453 0.080 0.075 4.776 2.638

132098 30436 0.341 0.062 0.049 3.580 2.025

67527 30436 0.263 0.038 0.029 2.870 1.612

145349 30436 0.187 0.011 0.006 2.217 1.226

147185 30436 0.455 0.053 0.038 5.120 2.863

147185 132098 0.272 0.038 0.027 2.999 1.691

147185 67527 0.230 0.026 0.021 2.602 1.440

147185 145349 0.181 0.014 0.012 2.123 1.162

147185 34327 0.175 0.017 0.013 2.010 1.116

147185 9025 0.180 0.008 0.007 2.177 1.184

147185 118411 0.242 0.030 0.022 2.702 1.518

114918 30436 0.195 0.011 0.006 2.315 1.281

108361 147185 0.195 0.021 0.015 2.216 1.237

153784 30436 0.200 0.043 0.033 2.007 1.158

153784 145349 0.219 0.026 0.024 2.467 1.354

153784 147185 0.458 0.043 0.034 5.295 2.918

153784 108361 0.195 0.017 0.014 2.257 1.240

40280 30436 0.271 0.024 0.017 3.133 1.734

40280 147185 0.176 0.008 0.003 2.132 1.178

62626 147185 0.173 0.015 0.012 2.015 1.110
show the individual marker scores [1] of each individual re-
spectively. Figure 3c shows their pair marker score [2] and
Figure 3d shows the rarity scores for both individuals [3].
The peaks for the individual marker scores in each of

the graphs (Fig. 3a and b) represent areas where the in-
dividuals carry some rare alleles (p ≤ 0.005). The SNPs
causing the inflated relationship are represented by the
pair marker score in Fig. 3c. The rare alleles that both
individuals share are located in chromosomes 2, 4, 6 and
9 which demonstrate common peaks in Fig. 3a and b.
Figure 3d shows the rarity score of individual 40280
plotted as a cumulative score, where number and magni-
tude of changes in the slope, as well as the total rarity
score value, are greater than for individual 11786. The
remaining pairs in Table 2 showed a similar pattern of shar-
ing when plotting their individual and pair scores.
The same graphs are plotted in Additional file 1: Figure

S4 for two randomly selected GS:SFHS individuals. The
number of peaks is lower than in the previous plot, with a
few sparse high values, and no peaks in the pair score.
Both individuals’ rarity score are considerably smaller than
the previous shown in Fig. 3.
In the case of an individual carrying an exogenous al-

lele, it is expected that it will increase the rarity score
because it would be at low frequency (see Eq. 4 in
Methods). We analysed the origin of these low frequency
alleles by selecting markers in the population contribut-
ing to the rarity score with a value larger than 2,500 (i.e.,
pi ≤ 0.0004 or 8 or less rare alleles in total in the whole
GS:SFHS population) and plotting the frequencies for
those alleles in the African, East Asian and European
populations of the 1 kG data set. The results are shown
in Fig. 4. The analysis of the probable origin of the rare
alleles shows that while the frequency of these alleles is
nearly always close to zero in the European populations
their values in East Asian and particularly African popu-
lations are clearly higher, suggesting an African origin
for the majority of the cases.
Additional file 1: Figure S5 shows a histogram for the

rarity score values [3] for all the individuals in GS:SFHS.
The mean value for rarity scores was 1,071,738 ± 259,736.
Using the rarity scores in windows of 50 SNPs, we calcu-
lated the number of rare peaks in all the individuals (see
Genetic structure due to rare alleles in Methods). The
mean number of peaks per individual is 5.6 and the mean
total coverage of peaks is 3.3 Mb. Those individuals with a
total coverage of peaks larger than the mean plus three
times the standard deviation were considered outliers (74
individuals). Table 3 shows the mean, maximum and
minimum number of peaks in outliers and non-outliers.
Results show that individuals classified as non-outliers
have a mean of 5.3 rare peaks over their genome whereas
outliers have on average 46.5. In addition, the total cover-
age of the peaks is very different between both groups,



Fig. 3 Score values of individuals 40,280 and 11,786. a Individual marker score of individual 40,280; b Individual marker score of individual 11,786; c
Pair marker score of individuals 40,280 and 11,786; d Rarity scores of individual 40,280 and 11,786
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with the mean coverage in the non-outliers being 2.3 Mb
(0.07 % of the genome) and 136.7 Mb for the outliers (4 %
of the genome). Histograms showing the distribution
of the percentage of rare genome and the number of
peaks in the non-outliers and the outliers are shown
in Additional file 1: Figure S6.
These values can help characterise the two groups of

individuals. The non-outliers have a few sparse and
small peaks in their genome potentially reflecting a point
mutation (in most of the cases the window score is due
to one singlemarker at a low frequency). On the other hand,
the individuals defined as outliers can reflect a different
kind of ancestry: the size of the peaks suggests that these in-
dividuals have a more admixed background, due to having a
recent foreign ancestor.
We checked the self-reported origin of the 74 individ-

uals detected as outliers and although the amount of
non-disclosed information is slightly higher than in the
whole data set, the recorded origin of their grandparents
did not indicate that they came from outside the UK.

Individual ancestries using ADMIXTURE
To provide additional evidence of our results, we analysed
a subset of markers in approximate linkage equilibrium



Fig. 4 Origin of rare alleles in GS:SFHS. Frequencies for rare Generation Scotland alleles (p≤ 0.0004) in the a African, b Asian and c European
populations of the 1000 Genomes data set
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with the software ADMIXTURE [10] to estimate the pro-
portion of ancestral populations in GS + 1 kG individuals
assuming 3 ancestral populations, i.e., African, Asian and
European (K = 3). Additional file 1: Figure S7 shows the
proportion of each origin in the individuals of 1 kG and
GS:SFHS. The correlation between the estimated propor-
tion of African origin and the percentage of the genome
covered by peaks was 0.94 showing that our estimates cor-
respond well with percentage of African genes in the indi-
viduals (Additional file 1: Figure S8).

Areas of high linkage disequilibrium in Generation
Scotland
Areas in high linkage disequilibrium can drive a lot of
variation in the PCs, as we observed with the inversion
in chromosome 8 and MHC in chromosome 6, which is
responsible of the clustering observed for several PCs
[11, 12]. In order to detect other large regions in LD
which could represent inversions, conserved regions, etc.,
we performed a PCA per chromosome in the GS + 1 kG
Table 3 Distribution of the peaks detected using the rarity scores in
and non-outliers)

Non-Outliers

Number of peaks per individual

Mean 5.3

Max 118

Min 0

Outliers

Number of peaks per individual

Mean 46.5

Max 185

Min 11

Table shows mean, maximum and minimum number of peaks and total peak size p
population. The most extreme examples of clustering are
shown in Fig. 5 and the complete plots for PC 1 to 20 per
chromosome are shown in Additional file 1: Figure S8.
The plots of PC three and/or four showed a three-

cluster pattern for some of the chromosomes. In some
cases the three groups were clearly distinguishable
(chromosomes 4, 7, 8, 15), and in some others the pat-
tern was created by combining both eigenvectors to-
gether or it became less clear (chromosomes 6, 10, 11,
12, 19, 21, 22). Sometimes two different clustering pat-
terns could be seen in both the third and fourth PCs
(chromosome 8, 12, 15) (Additional file 1: Figure S9).
The SNPs responsible for the PCs clustering were

chromosome-wide for the first and second PCs for all
chromosomes, showing a very similar pattern (except for
chromosome 6 and 8) and to the clustering of individ-
uals obtained for the original genome-wide PCA
(Fig. 1b). This shows that the differences driven by the
first two eigenvectors between all the individuals of
GS:SFHS and the rest of the origins are genome-wide
windows of 50 SNPs in the two groups of individuals (outliers

Total coverage of peaks per individual (Mb)

2.3

50

0

Total coverage of peaks per individual (Mb)

136.7

800

51

er individual



Fig. 5 Selected results from chromosomal PCA. Location of GS:SFHS individuals (whole genome and different chromosomes analyses) for PC 1
and 2 (upper row) and several PCs showing a distinct pattern (lower row). The colours show the correspondence between the groups shown in
PC 5 and 6 when using the whole genome, and those obtained when analysing only chromosome 8 for PC 2 and 3
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and consistent between chromosomes, representing dif-
ferences across populations.
A summary of a literature review aiming to identify

plausible causes of the other observed three-cluster pat-
terns in the different PCs can be found in Additional file 2:
Table S1, including genes located in the identified re-
gions. These areas appear to be regions of high linkage
disequilibrium, so that individuals inherited long haplo-
types and that caused the clustering pattern observed.
This linkage disequilibrium could be due to different
reasons, such as selection, including past selective sweeps
around new alleles/mutations, or long inversions, or
chance. In chromosome 2, the SNPs causing the observed
clustering for PC3 (Additional file 1: Figure S9) is likely
due to the Lactase gene which has been shown to display
clines of variation due to selection [11]. In addition, the
SNPs in the region 8p23.1 (chromosome 8 inversion)
caused the pattern in PC 2 and 3 of chromosome 8; and
in chromosome 6 the MHC was identified as the cause
the clustering in PCs 1 to 6. This area has previously been
suggested to display selection pressure associated vari-
ation [11]. MHC associated SNPs showed a lot of influ-
ence in the whole genome PCA, accounting for the
variation explained by several PCs. Some centromeric
areas were also detected as responsible for the variance
explained in several PCs. With respect of the other three
group patterns detected, we found several genes lo-
cated in the areas involved (Additional file 2: Table
S1) that could be responsible for the clustering. In
the case of chromosome 15 PC3, only one gene is lo-
cated in the responsible area, ALDH1A2 (Aldehyde de-
hydrogenase 1 family, member A2).
Runs of homozygosity in Generation Scotland
In order to explore the patterns of homozygosity in
GS:SFHS, we estimated the length and location of
homozygous segments in each individual of the cohort
(Additional file 1: Figure S10). Additional file 1: Figure
S10a shows the distribution of the number of segments
per individual and Additional file 1: Figure S10b the dis-
tribution of the total length of the homozygous segments
per individual. Additional file 1: Figure S10c shows the
number of ROHs compared to the total length of ROHs
and Additional file 1: Figure S10d the proportion of indi-
viduals with one or more ROHs of a given length. The
distribution of the homozygous segments in GS:SFHS is
similar to those described in other studies in European
populations [13, 14]. When comparing the results with
those obtained for the controls of the Scottish Colon
Cancer Study (SOCCS, 984 subjects from Scotland not
known to have colon cancer) we observed that the per-
centage of large ROHs described in GS:SFHS is slightly
higher than that found in SOCCS, which is also a main-
land Scottish population [13].
The analysis also revealed that one female individual

carried a completely homozygous chromosome 1 sug-
gesting an instance of uniparental disomy. Genomic
information from other related individuals pointed out
that she had inherited two copies of the paternal
chromosome 1.
To evaluate the possible association between ROH and

the rarity score in the GS:SFHS individuals, we per-
formed a linear regression between the total length of
homozygous segments or the number of runs per indi-
vidual and the values for the rarity score. The rarity score



Table 4 Areas in Scotland, number of individuals in the cohort
born in each of the areas, number of individuals with the four
grandparents coming from that area, and values of latitude and
longitude used for each of the areas in the regression analyses

Area N ind. N 4GPs Lat. Lon.

1 Aberdeen City 470 78 57.15 -2.09

2 Aberdeenshire 100 85 57.16 -2.72

3 Angus 290 66 56.80 -2.92

4 Argyll & Bute 48 6 56.37 -5.03

5 Clackmannanshire 0 0 56.12 -3.55

6 Dumfries & Galloway 44 7 54.99 -3.86

7 Dundee City 1016 202 56.46 -2.97

8 East Ayrshire 23 5 55.46 -4.33

9 East Dunbartonshire 80 4 55.96 -4.20

10 East Lothian 11 1 55.95 -2.77

11 Edinburgh City 189 21 55.95 -3.19

12 Western Isles 18 8 57.76 -7.02

13 Falkirk 34 4 56.00 -3.78

14 Fife 184 26 56.21 -3.15

15 Glasgow City 1644 414 55.86 -4.25

16 Highland 77 29 57.36 -5.10

17 Inverclyde 28 6 55.91 -4.74

18 Midlothian 14 0 55.83 -3.13

19 Moray 36 7 57.51 -3.25

20 North Ayrshire 60 8 55.71 -4.73

21 North Lanarkshire 117 24 55.83 -3.92

22 Orkney Islands 8 5 58.94 -2.74

23 Perth & Kinross 512 49 56.59 -3.86

24 Renfrewshire 167 12 55.83 -4.54

25 Scottish Borders 22 4 55.54 -2.79

26 Shetland Islands 8 3 60.35 -1.24

27 South Ayrshire 31 7 55.27 -4.65

28 South Lanarkshire 110 20 55.52 -3.70

29 Stirling 67 5 56.12 -3.94

30 West Dunbartonshire 66 7 55.96 -4.50

31 West Lothian 1 0 55.91 -3.55

- Not disclosed 1338 - NA NA
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showed a negative correlation with both total length and
number of ROH (Additional file 1: Figure S11) suggesting
that more homozygous individuals would have less rare
haplotypes.

Population structure within Generation Scotland
To unravel any possible link between the genomic dif-
ferentiation and geographic stratification in the sample
we created a pruned subset of SNPs in approximate
linkage equilibrium with each other in order to capture
the structure that reflects geographic origin. We re-
moved all the markers from chromosome 6 (to remove
the effect of the Major Histocompatibility Complex,
MHC) and markers in chromosome 8 located in the re-
gion 8 p23.1, since both areas have been proven to have
a big impact on the PCA [9, 11, 12]. Also, to remove
familiar structure, we removed related individuals from
the data set (i.e., one individual in each pair with a gen-
omic relationship coefficient larger than 0.025), individ-
uals detected as having Italian origin, and those with
mixed ethnic backgrounds. The resulting data set con-
sisted in 6739 unrelated individuals. Results are pre-
sented in Additional file 1: Figure S12 for PC one to
twenty. In order to evaluate the impact of origin within
Scotland on the PCs of the GS:SFHS participants, we
assigned a value for latitude and longitude according to
their birthplaces and calculated the regression of the ei-
genvectors on the geographic coordinates (see Table 4).
The results are shown in Table 5. Most of the PCs (ex-
cept for 4, 6, 9, 12 and 15) showed a significant associ-
ation with geographic origin. In all of these cases the
longitude was significant, and the latitude was signifi-
cant for some PCs. Longitude explained 11 % of the
variance within PC 1, and both latitude and longitude
jointly explained 16 % and 9 % of PC 2 and PC 3 re-
spectively. The significant models for the rest of PCs (4
to 20) explained a very small proportion of the variance
(R2 ≤ 0.01). This shows that geography has an impact
on the genomic variation of GS:SFHS, especially on that
contributing to principal components 1 to 3. To further
investigate this influence we used the recorded origin
of grandparents, in order to obtain a more accurate pic-
ture of the individual’s “genetic origin”, so we selected a
subset of individuals consisting in those with four
grandparents coming from the same area (e.g., four
grandparents from Aberdeen, or four from Dundee).
We used this new subset (consisting on 1113 individ-
uals) to calculate a new regression of the principal com-
ponents on the geographic coordinates. The results are
shown in Table 6. Most of the PCs were significant but
in this case latitude and longitude explained 21 %, 31 %
and 21 % of PCs 1, 2 and 3 respectively. A plot of the
first three principal components is shown in Additional
file 1: Figure S13. We used the values of the principal
components to predict the “genomic” latitude and longi-
tude of each individual, i.e., to predict where a given
individual comes from “genomically”. Figure 6 shows
the results of the predicted values. Figure 6a shows
the observed latitude and longitude of “genetic origin” of
the individuals according to their grandparents’ origin.
The size of the points in Fig. 6a reflects the number of
individuals with origin from a given region. Figure 6b
shows the results of the predicted values of latitude and
longitude using PCs 1 to 20. The colours show the



Table 5 Results of the multiple linear regressions between the
PC and the values of latitude and longitude in 6739 unrelated
individuals of GS:SFHS

Analysis R2 p-value Latitude Longitude

PC1 0.1092 4.20E-139 *** *** ***

PC2 0.1632 6.81E-214 *** *** ***

PC3 0.0936 2.47E-118 *** *** ***

PC4 0.0010 6.26E-02 *

PC5 0.0070 4.21E-09 *** *** ***

PC6 0.0003 3.88E-01

PC7 0.0077 6.13E-10 *** ***

PC8 0.0035 6.51E-05 *** ***

PC9 0.0002 5.15E-01

PC10 0.0144 4.35E-18 *** ** ***

PC11 0.0024 1.39E-03 ** *

PC12 0.0008 1.09E-01

PC13 0.0093 6.74E-12 *** ** ***

PC14 0.0016 1.09E-02 * * **

PC15 0.0001 8.28E-01

PC16 0.0033 1.04E-04 *** ***

PC17 0.0023 1.91E-03 ** *** *

PC18 0.0018 7.54E-03 ** *

PC19 0.0033 1.01E-04 *** ***

PC20 0.0046 3.35E-06 *** ***

Signif: ***p ≤ 0.001, ** p ≤ 0.01, *p ≤ 0.05

Table 6 Results of the multiple linear regressions between the
PC and the values of latitude and longitude of the grandparents
in 1113 individuals of GS:SFHS

Analysis R2 p-value Latitude Longitude

PC1 0.2077 7.42E-57 *** ** ***

PC2 0.3085 1.24E-89 *** *** **

PC3 0.2056 3.26E-56 *** *** *

PC4 0.0100 3.68E-03 ** ***

PC5 0.0301 4.34E-08 *** *** ***

PC6 0.0100 3.85E-03 ** ** **

PC7 0.0247 9.27E-07 *** ***

PC8 0.0085 9.00E-03 ** **

PC9 0.0076 1.47E-02 * **

PC10 0.0552 2.06E-14 *** *** ***

PC11 0.0037 1.26E-01

PC12 0.0055 4.65E-02 * *

PC13 0.0082 1.06E-02 * **

PC14 0.0057 4.30E-02 * * *

PC15 0.0017 3.93E-01

PC16 0.0147 2.73E-04 *** ***

PC17 0.0148 2.62E-04 *** *** ***

PC18 0.0047 7.29E-02

PC19 0.0045 8.16E-02

PC20 0.0102 3.44E-03 ** **

Signif: ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05
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observed origin using the same coding as Fig. 6a. The re-
sults show that the prediction of latitude and longitude
corresponds well with the observed origin. The correl-
ation between the real and predicted latitude was 0.67
and the correlation between the real and predicted longi-
tude was 0.62.

Impact of population structure and geographic location
on health-related traits
To explore the impact of the region of “genomic” origin
(defined using predicted longitude and latitude) and the
area of residence of the individuals in a variety of health-
related traits, we used two different mixed linear models.
We explored the variance explained by a similarity
matrix constructed using the values of predicted latitude
and longitude (i.e., the values in the matrix represent
“genomic” proximity between individuals). We fitted a
mixed linear model as in [15] including a GRM and the
similarity matrix (Geo), estimated using GCTA [16] the
proportion of the phenotypic variance captured by each
of these matrices, and compared them when including
or not the current area of residence as a fixed effect.
The results of the analysis are shown in Additional file 1:
Table S3 for body mass index (BMI), fat, waist-to-hip
ratio (WHR) and high density lipoprotein (HDL). In all
scenarios, the matrix Geo explained a small but signifi-
cant amount of the trait variance and this remained the
case when current area of residence was included in the
model.
We also explored the effects of sex, age, age2, pre-

dicted latitude and longitude (as covariates) and the
current area of residence when fitted in a mixed linear
model with a GRM. Results are shown in Additional file 1:
Table S4 for the four traits. The results show that longi-
tude is significant for fat and WHR with the effect being
reduced values further east in both traits. Some of the
areas of residence show also significant effects.
Discussion
Historic and demographic events leave their signatures
in the genomes of populations. These genomic marks
allow us to track relationships, reconstruct introgression
events and find different patterns in the populations that
can be linked with structural variation or reflect areas in
high linkage disequilibrium. This study provides a de-
tailed picture of the genetic structure within the GS:SFHS
cohort and some historic demographic events that have
shaped the genomes of its individuals.



Fig. 6 Locations and predictions within Scotland. a Real location of the 31 different origins of the GS:SFHS individuals. b Predicted
latitude and longitude of the individuals using the genomic principal components
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Our analyses showed some expected patterns together
with some valuable information regarding GS:SFHS indi-
viduals. The first and second principal components of
the genomic relationship matrix in the GS + 1 kG popu-
lation separated the European from the African and East
Asian populations respectively. They also showed that a
few individuals from the Scottish population have a vari-
able pattern of genes from different ancestries, with part
of this group of individuals having more than a 4 % of
non-European origin according to the rare allele ana-
lysis. These non-European regions are too large to be ex-
plained as random mutations or genotyping errors. It is
widely accepted that the Eurasian populations were orig-
inated from a single “out of Africa” event [17], and that
the African populations are genetically more diverse than
European and Asian samples because of this bottleneck
[18]. This means that rare alleles in Europe may be com-
mon in Africa. Gabriel et al. [19] estimated that half of the
human genome exists in blocks of 44 kb or larger in Euro-
pean populations with a maximum of 173 kb blocks. Even
considering that the blocks in GS:SFHS could be larger, the
length of the regions described by Gabriel et al. [19] still
suggests that the “out of Africa” bottleneck cannot explain
haplotypes of up to 7 Mb with rare variants, indicating that
the outliers have a relatively recent ancestor likely coming
from an African population. Also, Wall and Pritchard [20]
reviewed several studies of haplotype blocks in human pop-
ulations and showed the correlation between the recombin-
ation rate and the length of the regions. We checked the
recombination rate in some of the regions that we detected
and it was close or larger to the 1.2 cM/Mb expectation
[21], which indicates that the long non-European regions
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we uncover are not the result of regions of low recombin-
ation. These individuals should probably be removed from
the data set for subsequent analyses, such as common and
rare variants contribution to heritability, haplotype map-
ping, genomic prediction of disease, etc., otherwise allele
frequencies differences could bias results.
The rest of the population appears to be more homo-

geneous when analysing the results of the PCA and the
rare allele analysis. They show an average proportion of
peaks of 0.07 % and a more compact clustering pattern.
This 0.07 % of peaks is likely to reflect, at least partially,
point mutations that occurred in recent generations.
Some of these mutations could also be genotyping er-
rors, but we cannot differentiate them.
The pattern of rare alleles detected is highly influenced

by the SNPs genotyped so it is likely that the ascertain-
ment bias of the chip has an impact on our results.
Whereas with a different chip different variants might
have been detected as coming from other populations,
we do not expect spurious results arising because of this
in the rare allele analysis.
The correlation between the estimated proportion of

African origin using ADMIXTURE and the percentage
of the genome covered by peaks was high (0.94) showing
that our estimates correspond well with percentage of
African genes in the individuals (Additional file 1: Figure
S8). Our estimates of Asian ancestry seem to be under-
estimated when compared to the ADMIXTURE results.
Despite the homogeneity of the majority of the popu-

lation (i.e., excluding the outliers), it would probably still
be useful to correct for some subjacent population struc-
ture in further analyses by including the eigenvectors as
covariates in the models in future association studies or
heritability estimations [5].
Regarding the homozygosity patterns, the distribution

of the number of homozygous segments and their length
in GS:SFHS was similar to that described in previous
studies in other European populations (Figure S10) [13,
14]. However, the proportion of individuals carrying
large ROHs was slightly higher than found previously in
the SOCCS population [13], particularly for those ROH
between 2.5 and 5 Mb (frequency in GS:SFHS 50 %, fre-
quency in SOCCS <30 %). Rarity scores showed a nega-
tive correlation with the number and total length of
ROH as expected, since the more admixed individuals
are in general less homozygous.
We identified a group of individuals with Italian ances-

try in GS:SFHS through their similarity with the Tuscan
individuals in the 1000 Genomes populations (Fig. 1d).
This is consistent with a large influx of Italian immigra-
tion to Scotland at the end of XIX century and begin-
ning of XX century (1880–1920 Scotland’s Census). The
Italians in GS:SFHS appear as a distinct group from the
rest of the population in the PCA, but they do not seem
to differ much when analysing their rare alleles. The
values of their rarity scores do not appear as outliers in the
population. This implies that there are not big differences
in their allele frequencies when comparing to the rest of
GS:SFHS (consistently with the fact that they are also a
European population). As the architecture of allelic fre-
quencies is the same, we can assume that the underlying
architecture of complex traits will be very similar as well.
We consider that these individuals could be included for
most of the future analyses if the population structure is
accounted for using whole genome marker information.
Regarding the rest of the European populations, GS:SFHS
individuals are located between Britain and Orcadian popu-
lations as expected and further away from more southern
populations.
The genome-wide information in GS:SFHS allowed

us to discover some other variation. The inversion in
chromosome 8 is one of the largest polymorphic in-
versions found in humans (~4.5 Mb) with a frequency
of ~20–50 % in European populations, ~59 % in the
Yoruba and ~12–27 % in Asians [7, 8]. It can be pre-
dicted from genotypes [7, 22] and it was previously
identified via principal components by Zou et al. [12].
This information suggests that selection against cross-
overs in the region maintains the linkage disequilib-
rium pattern [12]. Previous studies that detected this
inversion, were capable of detecting a smaller (900
Kb) inversion in chromosome 17 (17q21) with a 20 %
frequency in Europeans [12, 22, 23]. We did not find
any signal for any of the SNPs in any of the principal
components in chromosome 17 pointing at that area.
The chromosome 8 inversion proves that a linkage

disequilibrium region can be detected using genotypes
and principal component analysis. The similar clustering
patterns in the rest of the chromosomes discovered
through the chromosomal PCA suggest regions of be-
tween 260 Kb (15q21.3) and ~7.5 Mb (6p22.3-p21.32) in
high linkage disequilibrium. This long haplotype pat-
terns could be informative of selective sweeps in the past
that have not been broken down by recombination. For
some of these areas expected results pointed out the
variation due to selection of the lactase gene (chromo-
some 2) or the Major Histocompatibility Complex in
chromosome 6 [11]. The other areas identified contain
several genes, and it is difficult to pinpoint more accur-
ately the specific gene or region that causes the observed
clustering pattern, which could suggest some selective
pressure over it.
As others, we have shown that the geographic differ-

entiation between populations from different origins
(Africa, East Asia, and Europe) is detected in the PCA
but we have also found that the geographic origin
within Scotland has a significant impact on the princi-
pal components. We were able to predict with relative high
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accuracy the origin of the individuals from their genomic
data. The small number of samples from the islands
(Western Isles, Orkney and Shetland), and hence their
limited influence in the PCA, made that prediction of the
origin of these individuals was somehow poorer than that
of individuals from regions with more genotyped partici-
pants. Most of the families participating in the study were
recruited in big cities (which usually gather people from
different origins creating a non-homogeneous sample)
and the information from the grandparents’ origin is often
not complete. This could affect the results obtained from
our origin prediction analysis, for which prediction was
more efficient at separating individuals from the South-
West from those of the North-East of Scotland (separating
mostly Glasgow, Dundee and Aberdeen).
When we explored the impact of predicted location

based on information from the regions of origin of the
individual’s grandparents (i.e., “genomic” origin) and
current place of residence on four health-related traits
(BMI, fat, WHR and HDL), we observed that genomic
origin had an impact on these traits. In the four cases,
the similarity matrix based on geographic proximity sig-
nificantly captured some phenotypic variance, irrespect-
ive of including current region of residence in the
model. Also, when examining the effects of predicted
latitude and predicted longitude we observed that longi-
tude had a significant effect for fat and WHR but lati-
tude did not, when both variables were jointly fitted. It
has to be noticed that the distribution of the samples
over Scotland makes latitude and longitude correlated to
each other (r = 0.63). After adding to the model the
current region of residence of the individuals, the pre-
dicted longitude of genomic origin was still significant,
and similar results were obtained when we replaced
current region of residence with region of birth (results
not shown). Although these associations with genomic
origin as predicted by grandparental birthplace and are
not removed by adjustment for either an individual’s
place of birth or current place of residence, it is possible
that they are the result of undetected stratification in the
sample. This could include, for example, persistence of
cultural transmission of lifestyle or dietary habits associ-
ated with grandparental origins.
Conclusions
All these results will have an important impact over fu-
ture studies that use the GS:SFHS cohort and corres-
pond well with known Scottish demographic history. We
have performed a thorough analysis of genomic data in
GS:SFHS, applying standard methods such as the use of
PCA, but also inspecting the results of such analyses in
depth We have discovered some individuals with mixed
ancestries that should be removed for future studies
(e.g., GWAS) and we have characterised some other that
can remain in the cohort.
Methods
Data set
The data were obtained from the Generation Scotland:
Scottish Family Health Study (GS:SFHS) [1]. Ethical ap-
proval for the study was given by the NHS Tayside
committee on research ethics (reference 05/s1401/89).
Governance of the study, including public engagement,
protocol development and access arrangements, was over-
seen by an independent advisory board, established by the
Scottish government. Research participants gave consent
to allow both academic and commercial research.
Individuals were genotyped with the Illumina OMNIEx-

press chip (706,786 SNPs). We used GenABEL version
1.7-6 [24] and PLINK version 1.07 [25] to exclude SNPs
that had a missingness >2 % and a Hardy-Weinberg Equi-
librium test P < 10−6. Duplicate samples, individuals with
gender discrepancies and those with more than 2 % miss-
ing genotypes were also removed. After this quality con-
trol, the data set consisted in 9889 individuals (4085 males
and 5804 females) with multiple degrees of kinship
(~6000 non related), genotyped for 646,127 SNP spread
over the 22 autosomes. The recorded information about
the locations of origin of these individuals is shown in
Additional file 1: Figure S14.
In order to investigate ancestry, the GS:SFHS data set

was merged to the data of 1092 individuals of different
origins (Table 1) from the 1000 Genomes Project (1 kG)
[26]. The resulting data set (GS + 1 kG) had 10,981 indi-
viduals genotyped for 635,190 markers common to all
populations spread over the 22 autosomes.
To further investigate the relationships of GS:SFHS with

other European populations, another data set was created.
200 individuals (randomly selected) from Generation
Scotland and the samples with European origin in the
1 kG Project (CEU, FIN, GBR, IBS and TSI, see Table 1)
were merged with two new populations. 150 individuals
from a Croatian population from the Dalmatian island of
Korcula (KOR) [27] and 150 individuals from another
Scottish population from the Orkney Islands (ORK) [13].
Korcula received ethical approval from the Ethics Commit-
tee of the Medical School, University of Split and the NHS
Lothian (South East Scotland Research Ethics Committee).
The ORCADES study (referred as ORK), received ethical
approval from the NHS Orkney Research Ethics Commit-
tee and North of Scotland Research Ethics Committee. All
participants signed informed consent prior to participation.
This data set (GS + EU) consisted in 879 individuals

genotyped for 97,648 markers in approximate linkage
equilibrium and with minor allele frequencies (MAF)
larger than 0.01.
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Genomic relationship matrix
Relationships were estimated from the genotyped SNP
data and summarised into a genomic relationship matrix
(GRM) using GCTA version 1.13 [16]. In the first instance,
we used all autosomal SNP data that had passed quality
control (regardless of MAF). In order to investigate the ef-
fect of the allele frequency spectrum of the SNPs used to
compute the GRM on relationship estimation, we com-
puted five extra GRMs with different SNP MAF thresh-
olds in the merged population GS + 1 kG. The number of
markers corresponding to the thresholds applied is shown
in Additional file 1: Table S2. We also computed a new
GRM in the GS:SFHS population, after removing areas in
high linkage disequilibrium (LD). To do this, we removed
all SNPs from chromosome 6 (to remove the influence of
Major Histocompatibility Complex) and those located in
area 8p23.1 (to remove the influence of a large poly-
morphic inversion). Then, we generated a pruned subset
of markers in approximate linkage equilibrium by using
the default indep-pairwise command in PLINK [25]. We
also excluded related individuals using the grm-cutoff
command in GCTA [16] with a value of 0.025 (i.e., remov-
ing iteratively one of a pair of individuals with a relation-
ship coefficient larger than 0.025). An extra GRM was also
computed in the GS + EU population. These GRMs were
used as input for the Principal Component Analyses de-
scribed in the following section that aim to assign ances-
tral origins to GS:SFHS participants, and to establish the
nature of information on relatedness conveyed by markers
of different allele frequencies. In addition, to establish the
contribution of each chromosome to the observed struc-
ture, twenty two extra GRMs (chromosomal GRMs) were
calculated i.e., one for each autosome, using only the
markers in one chromosome (from 1 to 22) without ex-
cluding any marker that had passed quality control irre-
spective of its frequency in the GS + 1 kG merged
population.

Principal component analyses
Principal component analysis (PCA) is a widely used
method to convert a set of observations for different
(and possible related) variables into values of linearly un-
correlated variables called principal components or ei-
genvectors. If we apply it to the GRM, we can use it to
determine, control and correct for population structure,
as usually done in genome-wide association studies.
Resulting clusters will reflect individuals that group to-
gether because of higher genomic similarities [5]. We
carried out an eigenanalysis of the GRM of the GS:SFHS
population. In order to put into context the variation
observed in GS:SFHS (and any potential outliers in the
population, as per [28]), we used the populations in the
1 kG data as outgroups, and carried out a PCA of the
GS + 1 kG population (of the GRM computed using all
markers), and a PCA of the GS + EU population. In
addition we performed 22 eigenanalysis using the 22
chromosomal GRM. All analyses were conducted in
ACTA version 0.9 [29]. We calculated and used in fur-
ther analyses the first 20 eigenvectors or principal com-
ponents (PCs) per analysis.
For some of the analyses, to locate the specific areas of

the genome causing the different clustering patterns in
the different PCs, genome-wide association analyses of
the principal components were performed. We tested
for association and estimated the effect of each SNP on
the values observed for the eigenvectors of interest. In
each analysis, the values of each principal component
were analysed as a phenotype in a linear model fitting
each SNP in turn and including sex, age and age2 as co-
variates using the linear function in PLINK v1.07 [17].

Genetic structure due to rare alleles
The values in the GRM provide an estimation of the
genomic relationships between individuals irrespective
of their pedigree relationships. GCTA uses a formula
which measures the allele sharing between each pair of
individuals, weighted by the frequency of the markers.
We have observed that this method obtains accurate re-
lationships due to common alleles, but it inflates some
relationships due to rare allele sharing. The GRM ele-
ments represent identity by descent between two differ-
ent individuals j and k calculated as:

1
N

X
i

xij−2pi
� �

xik−2pið Þ
2pi 1−pið Þ ; j≠k ð1Þ

[15]
Where N is the total number of markers, xij is the

genotype of individual j at marker i (coded as 0, 1 or 2,
representing the number of copies of the less frequent
allele) and pi is the minor allele frequency (MAF) of
marker i in the population.
The formula weights the allele sharing by the allele fre-

quency in the population. This means that some pairs of
individuals sharing rare alleles can show an unrealistic in-
flated value of their genomic relationship coefficient. This
happens frequently in individuals known to be closely re-
lated according to pedigree records (such as siblings or
parent–child relationships) because it is more likely in
these relationships to share rare alleles, but it sometimes
happens with individuals that are totally unrelated accord-
ing to the pedigree, but may share alleles due to a com-
mon ethnic ancestral origin. We intended to explore
further these relationships by selecting those unrelated
pairs of individuals with a genomic relationship coefficient
larger than expected. We picked those pairs of individuals
with an estimated large genomic relationship coefficient
(0.17-0.50) when using all available markers but a very low
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(suggesting “unrelated”) coefficient (0–0.08) when markers
with a rare allele were removed and only markers with
common alleles used to estimate relationships. For those
individuals, we calculated an individual marker score as
the individual contribution to the GRM formula per
marker as:

xij−2pi
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pi 1−pið Þp ð2Þ

And for each pair of individuals j and k, their pair
marker score, as the relationship per marker between
them as (i.e., the pair marker score is the multiplication
of both individual marker scores):

xij−2pi
� �

xik−2pið Þ
2pi 1−pið Þ ð3Þ

In addition, to measure the overall amount of rare var-
iants in all individuals of the cohort, a rarity score per
individual was calculated. For those markers with at least
one rare allele (i.e., xij ≠ 0) we summed the inverse of the
allele doses multiplied by the allele frequency as:

XN

i¼1

1
xijpi

ð4Þ

This makes markers with a low MAF in GS:SFHS
(smaller values of pi) contribute to a greater extent to the
rarity score. The rarest allele of those markers with low
MAF in GS:SFHS are more likely to have come from a dif-
ferent population, and we hypothesise that they have come
(“been introgressed”) into the Scottish population from
another, distinct, population. To further analyse the struc-
ture of rare areas in the genome of GS:SFHS individuals,
we estimated the number of rare peaks per individual as
follows: we divided each chromosome in non-overlapping
windows of 50 SNPs and we calculated the mean rarity
score in the window as the mean of all the rarity score
values of the all the markers in a window. We defined as
rare peaks those windows with a mean rarity score larger
than 50 (e.g., those where the harmonic mean allele fre-
quency across the 50 loci in the window is less than ap-
proximately 0.02). We assumed that windows with a mean
rarity score larger than 50 separated by less than 10 other
windows (i.e., less than 500 SNP) belonged to the same
rare peak that also included all the in-between windows.
We tested several window lengths and thresholds and ob-
tained similar results for all the analyses.

Estimation of individual ancestries using ADMIXTURE
We used the software ADMIXTURE [10] to estimate the
proportion of ancestral populations in GS + 1 kG individ-
uals. We reduced the number of markers in the GS + 1 kG
dataset to remove linkage disequilibrium. A subset of
markers (81,981 SNPs) was generated by using the default
indep-pairwise command in PLINK. Then, we estimated
the proportion African, Asian and European origin (K = 3)
in all individuals of GS + 1 kG.

Runs of homozygosity
To analyse the pattern of homozygosity in the GS:SFHS
cohort, a screen for runs of homozygosity (ROH) was
performed using PLINK v1.07 [25] with the same param-
eters as in McQuillan et al. [13]. The program slides a
moving a window of 5,000 Kb (with a minimum of 50
SNPs) and locates and estimates the length of stretches
of homozygous genotypes across the genome. The ana-
lysis allows one heterozygote genotype (allowing for ex-
ample for genotyping errors) and 5 missing genotypes
per window for the region to still be considered homo-
zygous. The maximum gap between consecutive SNPs to
be considered in the same ROH was 100 Kb.

Influence of the geographic origin in the genomics of
GS:SFHS
To evaluate the correlation between geographic origin of
the individuals and the principal components in the ana-
lyses performed, we calculated the regression between the
different values of the PCs and the values of latitude and
longitude assigned to the origin of the individuals. We used
the first 20 whole-genome PCs to develop two different
sets of analyses. Individuals were given a value of latitude
and longitude according to their birth place, as shown in
Table 4, and the multiple regressions of each PCs over both
values were calculated. We also extracted a subset of indi-
viduals with four grandparents having the same origin
(1113 individuals). Fig. 6a shows the distribution of the ori-
gins over a map of Scotland. The size of the points repre-
sents the number of individuals with four grandparents
from each area. We then performed a multiple linear re-
gression between the values of the first 20 PCs in the 1113
individuals and the latitude and longitude of the grandpar-
ents’ origins. For these analyses the individuals detected as
having Italian origin and those with mixed ethnic back-
grounds detected in the GS + 1 kG PCA were removed in
order to avoid bias in the geographic component. We also
used the values of the PCs to predict latitude and longitude
in these individuals by fitting a linear model regressing lati-
tude or longitude against the values of the PCs for each in-
dividual. All regression analyses were performed using R
version 3.0.1. [30].

Impact of population structure and geographic location
on health related traits
We also explored the impact of the predicted genomic ori-
gin of the individuals and their area of residence on four
health-related traits: body mass index (BMI), fat, waist-to-
hip ratio (WHR) and high density lipoprotein (HDL). We
used the values of the PCs to predict latitude and
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longitude of genomic origin in the unrelated individuals
subset using the model detailed in the previous section
(Influence of the geographic origin in the genomics of
GS:SFHS). Then, for each trait, we used GCTA [16] to fit
two different mixed linear models.
Model 1:

y ¼ Xβþ gþ ε;

where y is a vector of observed phenotypes, β is an vec-
tor of fixed effects and X its design matrix, g is a vector
of additive genetic effects with assumed distribution: g ~
N (0, GRMσg

2). GRM is a genomic relationship matrix
calculated using all autosomal SNPs with a MAF > 0.05.
We estimated the effects of the covariates: sex, age, age2,

predicted latitude, predicted longitude and current area of
residence (based on the different Postal Codes, see regions
in Additional file 1: Table S4) and explored if the origin of
the individuals estimated from their genomic data (i.e., the
predicted geographic coordinates, that represent an aver-
age of the origin of the four grandparents) has an impact
on the traits.
In Model 2:

y ¼ Xβþ gþ sgeo þ ε;

we also included sgeo with assumed distribution: sgeo ~N
(0, GEOσs

2). GEO is a similarity matrix based derived
from the predicted latitude and predicted longitude. It
contains values between 0 and 1 reflecting (geographic)
proximity between individuals according to their “gen-
omic” origin. All values in the diagonal are equal to 1.
In this model we fitted sex, age, age2 as covariates and

compared the estimates of σg
2 (V(GRM)) and σs

2 (V(GEO))
with those obtained fitting the same covariates and includ-
ing also current place of residence in order to explore if
there is a change in the variance explained by those
models.

Additional files

Additional file 1: Additional Figures S1-S14 and Additional Tables S2-S4.

Additional file 2: Table S1. Results for regions responsible of the
PCs forming three-cluster patterns detected in the GWAS analysis:
Chromosome, number of the PC showing the pattern, length of the
area (in base pairs), chromosomal region where it is located and genes
located in them (including complete name and known functions).
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