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Prediction accuracies for growth and wood
attributes of interior spruce in space using
genotyping-by-sequencing
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Abstract

Background: Genomic selection (GS) in forestry can substantially reduce the length of breeding cycle and increase
gain per unit time through early selection and greater selection intensity, particularly for traits of low heritability
and late expression. Affordable next-generation sequencing technologies made it possible to genotype large
numbers of trees at a reasonable cost.

Results: Genotyping-by-sequencing was used to genotype 1,126 Interior spruce trees representing 25 open-pollinated
families planted over three sites in British Columbia, Canada. Four imputation algorithms were compared (mean value
(MI), singular value decomposition (SVD), expectation maximization (EM), and a newly derived, family-based k-nearest
neighbor (kNN-Fam)). Trees were phenotyped for several yield and wood attributes. Single- and multi-site GS prediction
models were developed using the Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) and the Generalized
Ridge Regression (GRR) to test different assumption about trait architecture. Finally, using PCA, multi-trait GS prediction
models were developed. The EM and kNN-Fam imputation methods were superior for 30 and 60% missing data,
respectively. The RR-BLUP GS prediction model produced better accuracies than the GRR indicating that the genetic
architecture for these traits is complex. GS prediction accuracies for multi-site were high and better than those of
single-sites while multi-site predictability produced the lowest accuracies reflecting type-b genetic correlations and
deemed unreliable. The incorporation of genomic information in quantitative genetics analyses produced more realistic
heritability estimates as half-sib pedigree tended to inflate the additive genetic variance and subsequently both
heritability and gain estimates. Principle component scores as representatives of multi-trait GS prediction models
produced surprising results where negatively correlated traits could be concurrently selected for using PCA2 and PCA3.

Conclusions: The application of GS to open-pollinated family testing, the simplest form of tree improvement evaluation
methods, was proven to be effective. Prediction accuracies obtained for all traits greatly support the integration of GS in
tree breeding. While the within-site GS prediction accuracies were high, the results clearly indicate that single-site GS
models ability to predict other sites are unreliable supporting the utilization of multi-site approach. Principle component
scores provided an opportunity for the concurrent selection of traits with different phenotypic optima.
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Background
Tree improvement programs are long-term and resource
demanding endeavors requiring repeated cycles of selec-
tion, breeding and testing. Most of conventional tree
breeding programs face major challenges; including, long
breeding cycles, large field experiments planted over vast
territory, late expression of economic traits (e.g., wood
density), and low to medium heritability of traits [1].
The phenotypic selection approach coupled with long
testing phase often result in slow accumulation of gen-
etic gain per unit time and cost [2]. Plant breeders
adopted Marker-Assisted-Selection (MAS) to take ad-
vantage of the linkage disequilibrium (LD) between gen-
etic markers and Quantitative Trait Loci (QTLs) and
realized the method’s potential to increase breeding effi-
ciency [3,4]. Similarly, tree breeders perceived MAS as a
means to reduce the time required for phenotypic selec-
tion, increasing selection intensity, and improving selec-
tion precision particularly for low heritability and late
expressing traits as well as its ability to overcome major
conventional breeding obstacles such as the long and
costly breeding cycle [5,6]. However, MAS faced several
challenges; as most associations were limited to only
specific genetic background due to the rapidly decaying
LD in forest trees, the interaction of QTLs effects with
the genetic background, the genotype by environment
(GxE) interaction, and the fluctuation of the alleles fre-
quency over generations [7]. The complex nature of
quantitative traits [8] rendered MAS ineffective in both
animal and crop breeding and few successes mostly in-
volving traits with simple inheritance (e.g., disease re-
sistance) were reported [9,10].
Meuwissen et al. [11] introduced Genomic Selection

(GS) as a method that collectively uses the genome-wide
marker data in predicting the phenotype by estimating
the genomic breeding values for each individual. The
major advantage of GS is that it does not require the
identification of the QTLs or linked markers with target
traits as all marker effects are estimated simultaneously
and used to develop the prediction model for estimating
Genomic Estimated Breeding Values (GEBV) for each
individual. Thus, this method is suitable for selection of
traits with complex genetic architecture as it does not
rely on the identification of a single causal variant, ra-
ther it fits the genetic effects of all markers regardless of
their known functional relevance [11,12]. In forest tree
breeding context, GS has the ability to predict the
phenotype for selecting elite genotypes at early age and
developmental stage, thus substantially shortening the
breeding cycle and increasing the selection differential,
ultimately raising the genetic gain per unit time [13-16].
The time savings involve tree testing (for late expressing
traits in particular), which is not needed in the next few
generations with GS being implemented in the conifer
breeding program, thus providing 15–25 years antici-
pated savings [16].
The development of Next-Generation-Sequencing

(NGS) technologies and the implementation of genetic
markers from sequence data in quantitative genetics
related to GS, the Genomic Best Linear Unbiased Pre-
dictor (GBLUP) [17], and the unified single-step
evaluation approach (also known as HBLUP, single-
step combining pedigree and realized kinship informa-
tion) [18] have created novel opportunities for breeding,
including forest trees [2,19-21]. Genotyping-By-Sequencing
(GBS) [22], of the NGS technologies, offers a promising op-
portunity in studying non-model species including
those with large and complex genomes with no assem-
bled reference sequence such as conifers [23]. GBS uses
restriction enzymes to allow the sequencing of a re-
duced subset of the studied genome and the resulting
fragments are DNA barcoded to permit multiplexed se-
quencing. GBS has made genome-wide population stud-
ies possible due to the affordability of the method and
its capability of resolving tens of thousands of markers
scattered throughout the genome.
In this study, using GBS as a genotyping platform, we

developed GS prediction models in a dataset of 1,126 In-
terior spruce trees representing 25 open-pollinated fam-
ilies replicated over three sites in British Columbia (BC),
Canada. White and Interior spruce are one of the most
economically important forest tree species in BC. In-
terior spruce is a complex of white spruce (Picea
glauca (Moench) Voss), Engelmann spruce (Picea
engelmannii Parry), and their hybrids and, because of
their similar growing habitats and silvicultural require-
ments, they are often collectively treated as one com-
plex [24]. While white spruce shows transcontinental
distribution, the natural distribution of Engelmann
spruce is much more limited and scattered and in BC
province is confined to the northern part of central BC.
Hybridization occurs mainly at mid elevations, where
their distributions overlap. Recently, extensive genetic
and genomic resources became available for this species
(4.9 million scaffolds from the 20.8 giga base pairs draft
genome of Interior spruce individual PG29, Birol et al.
[25]; 21,840 spruce ESTs microarray employed in genet-
ical genomics of interior spruce progenies [26]). The ob-
jectives of the present study were to: 1) evaluate the
efficiency of GBS as a rapid genetic marker genotyping
platform for GS studies, 2) investigate different imput-
ation algorithms for GBS data on GS prediction accur-
acy, 3) compare two GS approaches (Ridge regression
best linear unbiased predictor (RR-BLUP) and general-
ized ridge regression (GRR)), 4) investigate the hetero-
geneous GxE effect on GS prediction accuracy in space,
and 5) use PCA in the comparisons of multi- vs. single-
trait GS prediction models.
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Results
Genotyping, missing data imputation, and selection of
imputation method
In this study, 1,126 38-year-old Interior spruce trees
(Picea glauca (Moench) Voss x Picea engelmannii Parry
ex Engelm.) originating from 25 open-pollinated families
selected for their superior growth traits were sampled
from the progeny test trial planted on three sites, (1)
Aleza Lake, (2) Prince George Tree Improvement Station
(PGTIS), and (3) Quesnel. A cost-effective NGS technol-
ogy, genotyping-by-sequencing (GBS), was employed for
genotyping a 20GB unassembled genome such as spruce.
After two 48-multiplexed sequencing passes, a total of
4,798,791,310 good barcoded reads was generated, and
the median of read depth per site was at 3.92 (averaged
4.58 ± 4.28). TASSEL UNEAK SNP calling pipeline was
used to determine SNP polymorphism for these 1,126
spruce trees, resulting in a large genotype table of
1,232,406 SNPs [23,27]. Typical to GBS, a low coverage
sequence platform, many markers tended to have miss-
ing data even after the repeated sequencing of all studied
trees (see Discussion, for more details). From the identi-
fied 1,232,406 SNPs, the applied imputation methods
and filtering (minimum minor allele frequency of 0.05)
used produced genotyping files ranged from 8,868 (MI-
30% and EM-30%) to 62,618 (kNN-Fam-60%) SNPs
(Table 1). Imputation accuracy ranges from 0.77 (SVD
10 iterations) to 0.82 (SVD with 2 iterations). On aver-
age, SVD with 2 iterations produced the best accuracy in
the four currently existing methods: MI, SVD, EM and
kNN. Using K’s (in K-nearest neighbors) from family ver-
sus non-family members, accuracy for kNN-Fam imput-
ation ranged from 0.77 to 0.85. In general, including more
family members resulted in higher accuracy (Additional
file 1); however, imputation accuracy remained unchanged
(and did not improve), when the number of non-family
members that was included was larger than the family
size. The best imputation accuracy gained was at K1 = 5
and K2 = 20, which represented the K values used in this
study for imputing the whole SNP table (Additional file 1).
Table 1 Imputation methods used for genotyping-by-
sequencing data

Imputation
method1

Missing data
threshold

Imputation
algorithm

# of
SNPs

MI 30% Mean imputation (MI) 8,868

MI 60% Mean imputation (MI) 47,521

EM 30% Expectation-maximization (EM) 8,868

kNN-Fam 60% Family-based K-nearest
neighbor (kNN-Fam)

62,198

SVD 60% Singular Value
Decomposition (SVD)

55,618

1See main text for abbreviations.
As a result, we chose kNN-Fam over kNN of Troyanskaya
et al. [28] due to its slight superiority in accuracy. The SNP
table imputed with this method is referred to as kNN-Fam.
The selection of specific imputation methods for gen-

omic selection analyses were restricted to the method
with greater GS accuracies within the same percentage
of missing data class (i.e., 30% vs. 60%). For the 30%
missing data, the EM-30% produced greater accuracy
than MI-30%, similarly for the 60% missing data, the
kNN-Fam-60% and SVD-60% produced better accuracies
comparing to MI-60%; however, the kNN-Fam-60% was
superior to SVD-60% (see below). This comparison was
done based on GS prediction accuracies produced for
the two GS models and the seven studied traits for both
single- and multi-site scenarios (see below).

Trait heritabilities
Using genotypes resulting from the EM-30% algorithm
imputed data, the narrow-sense heritabilities of the traits
estimated from the pedigree (ABLUP, i.e. the conven-
tional BLUP model using the pedigree-based relationship
matrix) and genomic best linear unbiased predictors
(GBLUP using the genomic-based realized kinship
matrix) produced several broad generalizations that in-
clude: 1) single- and multi-site heritabilities were higher
for ABLUP than those from their GBLUP counterparts,
2) multi-site heritabilities were lower than that of a sin-
gle site for both ABLUP and GBLUP, 3) trait heritabil-
ities varied among sites for both ABLUP and GBLUP;
however, the differences were lower for the GBLUP than
that of the ABLUP, 4) the Quesnel site produced higher
heritabilities than PGTIS and Aleza Lake, yet they have
some overlapping ranges, and 5) standard error esti-
mates of heritabilities obtained from ABLUP were higher
than those from GBLUP for single- and multi-site
(Table 2). Lower GBLUP heritabilities were expected as
ABLUP tended to inflate the estimates as the pedigree
based analysis assumptions are often violated due to
mating pattern, relatedness built-up due to population
history, and inability to separate common environment
effect from genetics.
Prediction accuracy for different GS models and
imputation methods
The accuracy of GS models (RR-BLUP and GRR) in pre-
dicting the GEBV were evaluated for the seven studied
traits using all imputation methods (30% missing data:
MI and EM, and 60% missing data: MI, kNN-Fam, and
SVD) and over the four cross-validation scenarios: 1)
within each individual site, 2) cross-site (all possible
combinations), 3) within multi-site (the three sites com-
bined), and 4) the multi-site population in predicting in-
dividual site (see below).



Table 2 Multi- and single site heritability estimates and their standard errors using pedigree (ABLUP) and genomic
(GBLUP) best linear unbiased predictors

Trait ABLUP GBLUP (EM-30%)

Multi-site Single site Multi-site Single site

PGTIS Aleza L. Quesnel PGTIS Aleza L. Quesnel

HT 0.35 ± 0.14 0.64 ± 0.22 0.43 ± 0.19 0.98 ± 0.02 0.20 ± 0.06 0.50 ± 0.15 0.32 ± 0.14 0.56 ± 0.13

DBH 0.05 ± 0.08 0.39 ± 0.17 0.28 ± 0.15 0.55 ± 0.19 0.07 ± 0.06 0.37 ± 0.15 0.26 ± 0.13 0.53 ± 0.15

VOL 0.09 ± 0.10 0.45 ± 0.18 0.29 ± 0.15 0.76 ± 0.23 0.09 ± 0.06 0.42 ± 0.15 0.27 ± 0.13 0.60 ± 0.15

VDir 0.28 ± 0.12 0.31 ± 0.15 0.38 ± 0.17 0.78 ± 0.24 0.12 ± 0.06 0.17 ± 0.11 0.37 ± 0.15 0.49 ± 0.14

WDres 0.27 ± 0.12 0.59 ± 0.21 0.65 ± 0.22 0.42 ± 0.15 0.10 ± 0.06 0.49 ± 0.15 0.28 ± 0.13 0.42 ± 0.14

WDX-ray 0.38 ± 0.14 0.55 ± 0.20 0.48 ± 0.19 0.59 ± 0.20 0.18 ± 0.06 0.28 ± 0.13 0.39 ± 0.15 0.43 ± 0.13

MoEd 0.28 ± 0.12 0.31 ± 0.15 0.38 ± 0.17 0.78 ± 0.24 0.12 ± 0.06 0.17 ± 0.11 0.37 ± 0.15 0.49 ± 0.14

Traits are HT: height in m; DBH: diameter at breast height in cm; VOL: stem volume in m3; VDir: acoustic velocity in km/s; WDRes: resistance to drilling; WDX-ray:
wood density in kg/m3 using X-ray densitometry; MoEd: dynamic modulus of elasticity.
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Within site GS accuracies
Across all imputation methods (30% and 60% missing
data), the RR-BLUP produced higher within site GEBV
accuracies than the GRR (Tables 3 and 4, Figure 1,
Additional file 2). In general, the RR-BLUP produced
higher accuracies than the GRR (100 out of the possible
105 comparisons for both GS models) and this was also
mirrored by their standard error estimates (Tables 3 and
4). Within the 30% missing data imputation methods, the
EM-30% produced greater accuracy than MI-30% for all
Table 3 Within site (PGTIS, Aleza Lake (AL), and Quesnel) gen
errors for RR-BLUP and GRR models across 30% missing data

Trait GS model Imputation method

MI-30%

PGTIS AL

HT RR-BLUP 0.48 ± 0.0031 0.46 ± 0.002

GRR 0.44 ± 0.003 0.45 ± 0.010

DBH RR-BLUP 0.58 ± 0.002 0.55 ± 0.003

GRR 0.54 ± 0.003 0.47 ± 0.017

VOL RR-BLUP 0.56 ± 0.002 0.54 ± 0.003

GRR 0.52 ± 0.003 0.50 ± 0.004

VDir RR-BLUP 0.55 ± 0.002 0.54 ± 0.002

GRR 0.52 ± 0.003 0.48 ± 0.004

WDRes RR-BLUP 0.47 ± 0.003 0.37 ± 0.003

GRR 0.46 ± 0.005 0.34 ± 0.005

WDX-ray RR-BLUP 0.41 ± 0.003 0.49 ± 0.003

GRR 0.41 ± 0.004 0.25 ± 0.011

MoEd RR-BLUP 0.55 ± 0.003 0.55 ± 0.002

GRR 0.53 ± 0.004 0.51 ± 0.003

Ave. RR-BLUP 0.51 ± 0.062 0.50 ± 0.067

GRR 0.49 ± 0.051 0.43 ± 0.097

Traits are HT: height in m; DBH: diameter at breast height in cm; VOL: stem volume
wood density in kg/m3 using X-ray densitometry; MoEd: dynamic modulus of elastic
traits for RR-BLUP (traits averages were 0.51, 0.50, and
0.46 as opposed to 0.52, 0.51, and 0.46 for PGTIS, Aleza
Lake, and Quesnel sites, respectively) and GRR (averages
were 0.49, 0.43, and 0.41 vs. 0.49, 0.46, and 0.41 for
PGTIS, Aleza Lake, and Quesnel sites, respectively)
(Table 3). The 60% missing data imputation methods pro-
duced similar GS prediction and confirmed the superiority
of the RR-BLUP over GRR and additionally highlighting
the better accuracies for kNN-Fam-60% compared to MI-
60% and SVD-60% (Table 4).
omic selection prediction accuracies and their standard
imputation methods (MI-30% and EM-30%)

ME-30%

Quesnel PGTIS AL Quesnel

0.33 ± 0.003 0.50 ± 0.003 0.48 ± 0.003 0.35 ± 0.004

0.27 ± 0.007 0.46 ± 0.005 0.45 ± 0.005 0.29 ± 0.006

0.53 ± 0.004 0.58 ± 0.003 0.55 ± 0.002 0.53 ± 0.003

0.51 ± 0.006 0.53 ± 0.004 0.49 ± 0.006 0.51 ± 0.003

0.44 ± 0.003 0.55 ± 0.004 0.54 ± 0.002 0.45 ± 0.002

0.42 ± 0.006 0.53 ± 0.004 0.49 ± 0.004 0.41 ± 0.006

0.41 ± 0.004 0.55 ± 0.003 0.55 ± 0.002 0.41 ± 0.004

0.31 ± 0.006 0.52 ± 0.013 0.50 ± 0.005 0.33 ± 0.004

0.59 ± 0.003 0.49 ± 0.003 0.39 ± 0.004 0.59 ± 0.003

0.54 ± 0.005 0.44 ± 0.009 0.33 ± 0.007 0.54 ± 0.005

0.50 ± 0.002 0.43 ± 0.003 0.48 ± 0.003 0.50 ± 0.001

0.50 ± 0.004 0.42 ± 0.003 0.46 ± 0.020 0.50 ± 0.002

0.40 ± 0.004 0.55 ± 0.002 0.55 ± 0.002 0.39 ± 0.003

0.30 ± 0.006 0.55 ± 0.004 0.52 ± 0.005 0.29 ± 0.006

0.46 ± 0.088 0.52 ± 0.051 0.51 ± 0.060 0.46 ± 0.085

0.41 ± 0.113 0.49 ± 0.052 0.46 ± 0.063 0.41 ± 0.108

in m3; VDir: acoustic velocity in km/s; WDRes: resistance to drilling; WDX-ray:
ity.



Table 4 Within site (PGTIS, Aleza Lake (AL), and Quesnel) genomic selection prediction accuracies and their standard
errors for RR-BLUP and GRR models across 60% missing data imputation methods (MI-60%, kNN-Fam-60% and SVD-
60%)

Trait GS model Imputation method

MI-60% kNN-Fam-60% SVD-60%

PGTIS AL Quesnel PGTIS AL Quesnel PGTIS AL Quesnel

HT RR-BLUP 0.54 ± 0.002 0.51 ± 0.003 0.40 ± 0.002 0.55 ± 0.002 0.56 ± 0.002 0.42 ± 0.002 0.53 ± 0.003 0.50 ± 0.004 0.42 ± 0.003

GRR 0.51 ± 0.005 0.45 ± 0.011 0.34 ± 0.007 0.51 ± 0.005 0.51 ± 0.006 0.39 ± 0.005 0.51 ± 0.004 0.47 ± 0.006 0.37 ± 0.005

DBH RR-BLUP 0.62 ± 0.002 0.60 ± 0.002 0.56 ± 0.003 0.62 ± 0.001 0.63 ± 0.002 0.55 ± 0.002 0.60 ± 0.002 0.59 ± 0.003 0.54 ± 0.003

GRR 0.59 ± 0.009 0.58 ± 0.004 0.53 ± 0.006 0.59 ± 0.005 0.62 ± 0.004 0.53 ± 0.004 0.59 ± 0.002 0.57 ± 0.004 0.52 ± 0.004

VOL RR-BLUP 0.60 ± 0.002 0.58 ± 0.003 0.49 ± 0.003 0.61 ± 0.002 0.63 ± 0.001 0.47 ± 0.002 0.59 ± 0.002 0.57 ± 0.003 0.48 ± 0.003

GRR 0.58 ± 0.005 0.55 ± 0.006 0.44 ± 0.009 0.58 ± 0.003 0.59 ± 0.005 0.44 ± 0.005 0.58 ± 0.003 0.56 ± 0.004 0.45 ± 0.005

VDir RR-BLUP 0.62 ± 0.002 0.57 ± 0.002 0.46 ± 0.003 0.63 ± 0.002 0.61 ± 0.002 0.49 ± 0.002 0.58 ± 0.002 0.55 ± 0.002 0.46 ± 0.003

GRR 0.59 ± 0.005 0.51 ± 0.010 0.40 ± 0.006 0.60 ± 0.003 0.57 ± 0.005 0.46 ± 0.006 0.57 ± 0.004 0.53 ± 0.003 0.42 ± 0.004

WDRes RR-BLUP 0.53 ± 0.002 0.44 ± 0.002 0.62 ± 0.002 0.55 ± 0.002 0.49 ± 0.002 0.62 ± 0.002 0.56 ± 0.003 0.46 ± 0.004 0.58 ± 0.002

GRR 0.46 ± 0.007 0.36 ± 0.009 0.58 ± 0.004 0.47 ± 0.005 0.44 ± 0.007 0.59 ± 0.005 0.54 ± 0.003 0.43 ± 0.005 0.56 ± 0.003

WDX-ray RR-BLUP 0.49 ± 0.002 0.51 ± 0.002 0.53 ± 0.003 0.51 ± 0.002 0.53 ± 0.002 0.53 ± 0.002 0.50 ± 0.002 0.50 ± 0.002 0.50 ± 0.003

GRR 0.45 ± 0.006 0.47 ± 0.005 0.49 ± 0.009 0.48 ± 0.005 0.50 ± 0.006 0.48 ± 0.009 0.49 ± 0.005 0.49 ± 0.003 0.49 ± 0.004

MoEd RR-BLUP 0.62 ± 0.001 0.57 ± 0.002 0.45 ± 0.002 0.64 ± 0.001 0.61 ± 0.001 0.49 ± 0.002 0.59 ± 0.003 0.54 ± 0.004 0.45 ± 0.004

GRR 0.60 ± 0.003 0.52 ± 0.007 0.38 ± 0.007 0.61 ± 0.004 0.58 ± 0.004 0.45 ± 0.004 0.58 ± 0.002 0.52 ± 0.004 0.41 ± 0.005

Ave. RR-BLUP 0.57 ± 0.053 0.54 ± 0.056 0.50 ± 0.074 0.59 ± 0.050 0.58 ± 0.054 0.51 ± 0.064 0.56 ± 0.037 0.53 ± 0.045 0.49 ± 0.055

GRR 0.54 ± 0.065 0.49 ± 0.073 0.45 ± 0.086 0.55 ± 0.060 0.54 ± 0.063 0.48 ± 0.065 0.55 ± 0.039 0.51 ± 0.050 0.46 ± 0.067

Traits are HT: height in m; DBH: diameter at breast height in cm; VOL: stem volume in m3; VDir: acoustic velocity in km/s; WDRes: resistance to drilling; WDX-ray:
wood density in kg/m3 using X-ray densitometry; MoEd: dynamic modulus of elasticity.
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Multi-sites GS accuracies
Unlike within site cross-validation, testing the applic-
ability of a GS model for a specific site to predict the
GEBV of other sites generally produced lower accur-
acies for both models (RR-BLUP and GRR) (Figure 1,
Additional files 2 and 3). This is expected due to the
GxE interaction even when the three sites are located
within one breeding zone (Prince George Seed Planning
Zone (http://www.for.gov.bc.ca/hfd/pubs/docs/mr/an-
nual/ar_1995-96/pspzm.htm)). For simplicity, in this
section we will restrict the cross-sites comparisons to the
imputation method with the highest number of SNPs (i.e.,
kNN-Fam-60% (62,198 SNPs)), and the GS model with
highest accuracies (i.e., RR-BLUP (Additional file 2)). Over
the seven studied traits, the RR-BLUP model produced
cross-site validation accuracies ranging from 0.16 and 0.23
when PGTIS was used to predict the GEBV of Aleza Lake
(1→2), 0.13 and 0.24 for 2→1, 0.01 and 0.32 for PGTIS to
predict Quesnel (1→3), 0.0 and 0.38 for 3→1, 0.06 and
0.36 for 2→3, and 0.03 and 0.39 for 3→2 (Additional files
2 and 3). The estimated type-b genetic correlations be-
tween sites mimicked the trend observed for cross sites
GS accuracy with their Pearson-product-moment correla-
tions ranging between 0.94 and 0.99 (P < 0.05) over the
seven studied traits for the kNN-Fam-60% imputation
method (Figure 2).
Within multi-site GS accuracies
Similar to within site assessment, the within multi-site
cross-validation produced higher GEBV accuracies for
RR-BLUP as compared to GRR and this increase in ac-
curacy persisted across all 30% and 60% missing data
imputation methods (Table 5). Comparisons between
imputation methods revealed that EM-30% and kNN-
Fam-60% produced better accuracies (Table 5, Figure 1,
Additional file 2). Again, we will restrict the GEBV ac-
curacy comparisons to the kNN-Fam-60% imputation
method as it uses the largest number of SNPs (62,198
SNPs). On average and across the seven studied traits,
GS accuracies ranged between 0.62 and 0.77 for both
RR-BLUB and GRR (Table 5). The span of this range is
far greater than the one observed within sites and cross-
sites validation (Tables 2, 3 and 4). These estimates
represent the most realistic accuracies as they accommo-
dated the GxE interaction and, furthermore, were pro-
duced with a large training population size (90% of the
total N = 1,126).

Single- vs. multi-site accuracies
When the meta-population was used to predict the
GEBV for each individual site, the observed accuracies
were high with Aleza Lake producing the highest accur-
acies (average over the 7 traits of 0.49 for RR-BLUP and

http://www.for.gov.bc.ca/hfd/pubs/docs/mr/annual/ar_1995-96/pspzm.htm
http://www.for.gov.bc.ca/hfd/pubs/docs/mr/annual/ar_1995-96/pspzm.htm


Figure 1 Genomic selection prediction accuracies for each of the seven studied traits using the RR-BLUP model (within single site (three), cross-sites
(six), within multi-site (one), and for multi-site to single site (three)), along with narrow-sense heritabilities (h2) from single- and multi-site GBLUP
analyses. Sites are Prince George Tree Improvement Station (PGTIS), Quesnel, Aleza lake, and multi-site (ALL). Traits are HT: height in m; DBH: diameter
at breast height in cm; VOL: stem volume in m3; VDir: acoustic velocity in km/s; WDRes: resistance to drilling; WDX-ray: wood density in kg/m3 using X-ray
densitometry; MoEd: dynamic modulus of elasticity.
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GRR) followed by Quesnel (averages of 0.46 and 0.45 for
RR-BLUP and GRR, respectively) and PGTIS which pro-
duced the lowest accuracies (average of 0.42 for both
RR-BLUP and GRR) (Table 6). These accuracies are
higher than those observed for the cross-site validation
(Table 6, Figure 1, Additional file 2).

Multi-trait GS prediction models
The first three principle components, PCA1-3, collect-
ively accounted for 86% of the total phenotypic variation
and individually accounted for 44, 25, and 17%, respect-
ively. PCA1 produced significant (P < 0.002 - 0.0001)
loading for all the studied traits and was positive for
height (HT) (0.69), diameter at breast height (DBH)
(0.80), and acoustic velocity (VDir) (0.09) and negative
for wood density using X-ray densitometry (WDX-ray)
(−0.71) and wood density using resistance to drilling
(WDRes) (−0.75). PCA2 produced interesting results with
significant (P < 0.0001) and positive loadings for HT
(0.39), VDir (0.92), and WDX-ray (0.49). Similarly, PCA3
produced significant (P < 0.0001) and positive loadings
for HT (0.46), DBH (0.38), WDX-ray (0.19) and WDRes

(0.64). The fact that growth and wood quality traits pro-
duced significant and positive loadings, even if it is for
PCA2 and PCA3, is interesting as it creates concurrent
selection opportunities for yield and wood quality traits
that are commonly known to be negatively correlated.
The two GS models produced high prediction accuracies
for PCA1 with 0.72 ± 0.001 and 0.71 ± 0.001 for RR-
BLUP and GRR, respectively. Similar results were ob-
served for PCA 2 (RR-BLUP: 0.65 ± 0.001 and GRR:
0.64 ± 0.001) and PCA3 (RR-BLUP: 0.57 ± 0.001 and
GRR: 0.55 ± 0.002) using the multi-site GS model.

ABLUP vs. GBLUP elite genotype selection comparison
Expectedly, across all the range of genetic gain penalties,
the selection of 40 elite individuals yielded ABLUP gen-
etic gain higher than that of the GBLUP with percentage



Figure 2 Accuracy of cross-population GS prediction models (indicating their respective correlations (Y-axis)) for seven growth and wood quality
traits for interior spruce. Sites are Prince George Tree Improvement Station (PGTIS), Quesnel, and Aleza lake. Traits are HT: height in m; DBH: diameter at
breast height in cm; VOL: stem volume in m3; VDir: acoustic velocity in km/s; WDRes: resistance to drilling; WDX-ray: wood density in kg/m3 using X-ray
densitometry; MoEd: dynamic modulus of elasticity. Dash and solid lines represent Type B correlation and prediction accuracy, respectively.
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Table 5 Multi-site genomic selection prediction accuracies and their standard errors for RR-BLUP and GRR models for
the studied five imputation methods

Trait GS model Imputation method

MI-30% EM-30% MI-60% kNN-Fam-60% SVD-60%

HT RR-BLUP 0.56 ± 0.0013 0.58 ± 0.001 0.60 ± 0.001 0.63 ± 0.001 0.61 ± 0.001

GRR 0.50 ± 0.002 0.48 ± 0.004 0.57 ± 0.003 0.62 ± 0.002 0.58 ± 0.002

DBH RR-BLUP 0.71 ± 0.001 0.72 ± 0.001 0.75 ± 0.001 0.77 ± 0.001 0.76 ± 0.001

GRR 0.71 ± 0.001 0.73 ± 0.001 0.74 ± 0.001 0.77 ± 0.001 0.75 ± 0.001

VOL RR-BLUP 0.67 ± 0.001 0.68 ± 0.001 0.71 ± 0.001 0.73 ± 0.001 0.72 ± 0.001

GRR 0.67 ± 0.001 0.68 ± 0.001 0.70 ± 0.001 0.72 ± 0.001 0.71 ± 0.001

VDir RR-BLUP 0.59 ± 0.001 0.61 ± 0.001 0.63 ± 0.001 0.67 ± 0.001 0.65 ± 0.001

GRR 0.52 ± 0.004 0.50 ± 0.003 0.62 ± 0.002 0.66 ± 0.001 0.62 ± 0.006

WDRes RR-BLUP 0.56 ± 0.001 0.58 ± 0.001 0.62 ± 0.001 0.64 ± 0.001 0.63 ± 0.001

GRR 0.48 ± 0.002 0.47 ± 0.003 0.59 ± 0.003 0.64 ± 0.002 0.60 ± 0.003

WDX-ray RR-BLUP 0.55 ± 0.001 0.56 ± 0.001 0.59 ± 0.001 0.62 ± 0.001 0.61 ± 0.001

GRR 0.54 ± 0.002 0.55 ± 0.001 0.59 ± 0.002 0.62 ± 0.001 0.60 ± 0.002

MoEd RR-BLUP 0.50 ± 0.001 0.61 ± 0.001 0.63 ± 0.001 0.67 ± 0.001 0.65 ± 0.001

GRR 0.50 ± 0.013 0.56 ± 0.002 0.63 ± 0.002 0.66 ± 0.001 0.64 ± 0.002

Ave. RR-BLUP 0.59 ± 0.073 0.62 ± 0.059 0.65 ± 0.060 0.68 ± 0.055 0.66 ± 0.057

GRR 0.56 ± 0.091 0.57 ± 0.101 0.63 ± 0.063 0.67 ± 0.056 0.64 ± 0.063

Traits are HT: height in m; DBH: diameter at breast height in cm; VOL: stem volume in m3; VDir: acoustic velocity in km/s; WDRes: resistance to drilling; WDX-ray:
wood density in kg/m3 using X-ray densitometry; MoEd: dynamic modulus of elasticity.

Table 6 Single site GS prediction accuracies and their standard errors resulting from using the multi-sites as training
population for RR-BLUP and GRR models for kNN-Fam-60% imputation method

Traits GS model Cross-validation

Multi-sites PGTIS Aleza Lake Quesnel

HT RR-BLUP 0.63 ± 0.001 0.37 ± 0.001 0.53 ± 0.002 0.45 ± 0.001

GRR 0.62 ± 0.002 0.36 ± 0.003 0.52 ± 0.003 0.45 ± 0.002

DBH RR-BLUP 0.77 ± 0.001 0.37 ± 0.001 0.50 ± 0.001 0.40 ± 0.001

GRR 0.77 ± 0.001 0.37 ± 0.002 0.50 ± 0.001 0.40 ± 0.001

VOL RR-BLUP 0.73 ± 0.001 0.34 ± 0.001 0.50 ± 0.001 0.41 ± 0.001

GRR 0.72 ± 0.001 0.34 ± 0.002 0.50 ± 0.002 0.40 ± 0.002

VDir RR-BLUP 0.67 ± 0.001 0.50 ± 0.001 0.47 ± 0.001 0.49 ± 0.001

GRR 0.66 ± 0.001 0.49 ± 0.001 0.47 ± 0.001 0.48 ± 0.002

WDRes RR-BLUP 0.64 ± 0.001 0.41 ± 0.001 0.48 ± 0.001 0.46 ± 0.001

GRR 0.64 ± 0.002 0.41 ± 0.002 0.48 ± 0.002 0.45 ± 0.003

WDX-ray RR-BLUP 0.62 ± 0.001 0.46 ± 0.001 0.49 ± 0.002 0.50 ± 0.001

GRR 0.62 ± 0.001 0.46 ± 0.002 0.49 ± 0.002 0.50 ± 0.002

MoEd RR-BLUP 0.67 ± 0.001 0.50 ± 0.001 0.46 ± 0.001 0.48 ± 0.001

GRR 0.66 ± 0.001 0.49 ± 0.002 0.45 ± 0.002 0.47 ± 0.002

Ave. RR-BLUP 0.68 ± 0.055 0.42 ± 0.066 0.49 ± 0.023 0.46 ± 0.039

GRR 0.67 ± 0.056 0.42 ± 0.063 0.49 ± 0.023 0.45 ± 0.038

Traits are HT: height in m; DBH: diameter at breast height in cm; VOL: stem volume in m3; VDir: acoustic velocity in km/s; WDRes: resistance to drilling; WDX-ray:
wood density in kg/m3 using X-ray densitometry; MoEd: dynamic modulus of elasticity.
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increase between 9.2 and 14.6% for 100 and 1,000 pen-
alty classes, respectively (Figure 3). Naturally, any in-
crease in co-ancestry is associated with increase in
genetic gain; however, the GBLUP offers greater flexibil-
ity for elite genotype selection than the ABLUP as the
effective number of genomic equivalent provides a con-
tinuum for selection as opposed to the pedigree-based
status number which offers only two options of related-
ness (unrelated or half-sibs).

Discussion
GBS and imputation methods
The utilization of NGS technology, and GBS in particu-
lar, provides a low cost opportunity for genomic studies
for non-model species [23]. In the present study, GBS
produced exceedingly large number of SNPs (1,232,406);
however, the low coverage nature of the technique has
substantially reduced the available SNPs for analyses due
to missing data. Missing data could also result from either
the absence of the restriction site in the genomic sequence
or due to technical issues associated with DNA digestion
or PCR amplification [29,30]. Out of the five imputation
methods used, the expectation maximization (EM-30%:
[31]) and the newly developed half-sib family-based k-
nearest neighbor (kNN-Fam-60%) method resulted in
8,868 and 62,198 SNPs, respectively, and produced the
greatest accuracies (Figure 1, for kNN-Fam-60%). We used
the EM-30% imputation method in estimating the trait
heritabilities employing the GBLUP approach [17], while
all described imputation methods were used to evaluate
the GS models across all described scenarios. We believe
that the higher GEBV accuracies attained from the kNN-
Fam imputation method are attributable to the method’s
capacity of recovering resemblance among individuals
Figure 3 The relationship between height genetic gain and genetic
diversity for ABLUP (status number (Ns)) and GBLUP (number of founder
genome equivalent (NGE)) across a range of co-ancestry penalties.
within families. In addition, kNN-Fam method propor-
tionately weights family structure and the underlying LD
of SNPs, which is also likely contributing to the slightly
higher predictability due to its strength of simultaneously
capturing identical-by-state with the variants in LD with
the causal genes [32].

Heritability estimates
Treating the offspring from open-pollinated families as
half-sibs is often associated with inflated heritability esti-
mates, resulting in an exaggeration of the expected genetic
gain [33-35]. In the present study, heritability estimates
obtained from the ABLUP were higher than those from
the GBLUP (Table 2), highlighting the advantages of in-
corporating genomic information in standard quantitative
genetic analyses [17] to obtain realistic estimates of breed-
ing values and genetic gain (see ABLUP vs. GBLUP elite
genotype selection comparison below).
Our results are similar to those reported for another

open-pollinated white spruce progeny trial in Québec,
Canada [16].While heritability estimates were population-
specific, slight differences in GBLUP-based heritability
estimates for wood density (WDX-ray) and height (36- vs.
22-year-old height) were observed between the two studies
(wood density: 0.18 vs. 0.24 and height: 0.20 vs. 0.16) [16].
Additionally, our results suggest that the trait heritability
has only limited effect on the prediction accuracy (PA) as
diameter at breast height (DBH) and stem volume (VOL)
showed high multi-site RR-BLUP predictability despite
their low heritability estimates (DBH: h2 = 0.07 and PA =
0.77; VOL: h2 = 0.09 and PA = 0.73), results consistent
with those reported for loblolly pine (Pinus taeda) [15,36].

GS models
GS models suffer from the “large p, small n” problem,
where the number of predictor effects p exceeds by far
the number of observations n (p> > n). A variety of stat-
istical methods were proposed to handle this issue and
they can be classified into three major categories: shrink-
age models, Bayesian methods (including variable selec-
tion), and semi- or non-parametric methods such as
support vector regression and random forest regression.
Those methods are different in their assumptions regard-
ing the genetic architecture of the tested traits [1,37]. RR-
BLUP, the most common shrinkage model, assumes that
the trait is controlled by many genes each with small ef-
fects, thus is suitable for traits following the infinitesimal
model [8]. RR-BLUP assumes that all marker effects are
random, normally, and identically distributed and have a
common variance, thus all the effects will be equally
shrunken toward zero [1,37,38]. This approach was de-
scribed previously by Meuwissen et al. [11] and termed
SNP-BLUP. In GS and genome wide association studies
(GWAS), it is not realistic to use common shrinkage
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effects for all fitted SNPs across the genome as not all
markers will be linked to functional genes and not all gene
effects are normally distributed [11]. To overcome this as-
sumption, the Bayesian methods were developed to pro-
vide more flexibility in modeling oligogenic traits (i.e.,
traits that are controlled by few genes each with large ef-
fects) [37]; however, these methods are computationally
demanding [39]. A new, fast, deterministic, and flexible
Ridge regression method was suggested by Shen et al. [38]
known as the generalized Ridge regression (GRR). The
main difference between RR-BLUP and GRR is that a
SNP-specific shrinkage will be used instead of the com-
mon shrinkage effect [38], which is more realistic and
more suitable to model oligogenic traits and represents a
viable alternative to Bayesian models [28].
Our results showed that GRR produced either similar

or even lower prediction accuracies as compared to RR-
BLUP, which indicates that marker selection by giving
different degree of penalization through the application of
different shrinkage effects is inadequate for the tested
traits. This provides evidence that the tested traits (growth
and wood quality) follow the infinitesimal model. More-
over, experimental results in both plants and animals sug-
gested that RR-BLUP provides the best adjustment/
compromise between the computational effort and the
prediction efficiency [37]. This supports the notion that
most of the economically important traits are complex
and quantitative in nature (i.e., follow the infinitesimal
model). For example, in loblolly pine, Resende et al. [14]
evaluated RR-BLUP and three Bayesian models across 17
traits related to growth, development, and fusiform rust
resistance and the resulting prediction accuracies were
marginally different across the four models, except for rust
resistance, an oligogenic trait, where the Bayes A and C
models resulted in moderately larger performance than
RR-BLUP.

Cross-validation
The multi-site cross-validation produced higher predic-
tion accuracies as compared to single-sites (Tables 3, 4
and 5, Figure 1) as the multi-site training population is
three times larger than any of the single-site models,
resulting in more accurate estimation of marker effects
and this is consequently reflected in higher prediction
accuracy and precision [1,37]. Previous GS studies con-
ducted on plant and animal populations clearly demon-
strated the role of training population size on prediction
accuracy and illustrated the importance of the training
population size as compared to the number of markers
used in the models, thus supporting the present study re-
sults [40-42]. In forestry context, our results are also con-
sistent with prediction accuracies obtained for growth and
wood quality attributes in loblolly pine and Eucalyptus
[13,15,43]. However, comparing the prediction accuracies
between our study and those from the Québec white
spruce open-pollinated progeny trial is of interest as the
experimental settings were somewhat similar [16]. Height,
wood density, and dynamic modulus of elasticity were
common traits between the two studies; however, their
prediction accuracies were lower than in the present study
(height: 0.17 vs. 0.63, wood density: 0.33 vs. 0.64, dynamic
modulus of elasticity: 0.21 vs. 0.67). In general, the lower
prediction accuracies in the Québec study across all the
traits compared to our and other tree species studies, is
mainly due to the considerably larger number of tested
families (214 vs. 25 families) which resulted in higher Ne

(effective population size). It is also worth mentioning that
we used the EBV as opposed to the raw phenotype in
training our GS models; this could have also contributed
to the observed differences.

Cross-site validation
The economic and ecological importance of interior
spruce to British Columbia promoted thorough under-
standing of the various ecological regions of the species
and subsequently 6 unique Seed Planning Zones (SPZs)
were identified (Bukley Valley, East Kootenay, Nelson,
Prince George, Peace River, and Thompson Okanagan).
To date, most forestry GS studies were conducted within
the confines of a single “environment model” similar to
those GS studies conducted in animal breeding programs
where the assumption of a common environment was in-
voked. The assumption of “common environment” is not
suitable in forestry as estimates of GxE, even within a sin-
gle breeding zone, are high [44] and this motivated
breeders to evaluate the performance of a specific geno-
type or family across different environments to identify
generalists for their inclusion in seed production popula-
tions [45]. For the successful implementation of GS in tree
breeding, it is essential that GS models remain accurate
across sites, at least within the dedicated breeding zone.
Only two out of the published four GS studies in forest
tree tested GxE interaction, these include loblolly pine
[14] and white spruce [16]. In the present study, we used
data from three sites within the Prince George breeding
zone and the observed prediction accuracies of a single
site to predict another site were generally low (Additional
file 2, Figure 1). The observed reduced prediction accur-
acies across sites were lower than those obtained from the
white spruce and loblolly pine studies. Thus, it is import-
ant to pay considerable attention to the structure of the
training population; hence the developed models reflect
the underpinning forces affecting trait expression and
their response to sites heterogeneities.

Multi-trait GS prediction models
GS models are trait-specific and do not lend themselves
to multi-trait selection as does index selection method
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which maximizes the correlation between the index
score of an individual and its breeding value [46]. Yet,
selection indices require prior knowledge about the eco-
nomic value of the traits for proper scaling before
optimum phenotypic weights can be estimated. The use
of Principle Component Analysis offered an opportunity
to handle a set of correlated variables by reducing the di-
mensionality to a set of uncorrelated ones (i.e., principal
components). Negative genetic correlations between
yield and wood quality traits are commonly observed
[47] and the results from PC1 which accounts for 44%
of the total variation confirmed these observations.
However, while yield and wood quality are known to act
in antagonizing fashion, the results based on PC2 and
PC3, albeit collectively accounting for 42% of the total
variation, created interesting opportunities for the con-
current selection for both traits without any adverse ef-
fect associated with the known negative correlations. It
seems that PC2 and PC3 accessed different combina-
tions of SNPs (i.e., causal genes) that work in the same
direction. While we did not consider any prior economic
knowledge for weighing in constructing the PCs, the re-
sults from PC2-3 clearly demonstrated that it is (to a
certain extent) also possible to artificially co-select such
attributes that are commonly known to be negatively
correlated in the same positive direction. Considering
economic weights for traits during constructing selec-
tion indices can result in changing the magnitude of
genetic correlation among these traits as a consequence
of selection. This change in genetic correlation is ex-
pected to change SNP effects and thus frequent training
is required for GS model to be effective over genera-
tions. Finally, our objective of using PCA is to offer a
simple method that accounts for the inter-relation (gen-
etic correlation) between the studied traits and provide
an opportunity for further expansions that consider eco-
nomic weights.

ABLUP vs. GBLUP elite genotype selection comparison
The observed genetic gain differences between the
ABLUP and GBLUP across all co-ancestry penalties were
not surprising as heritability, breeding value of an indi-
vidual, and genetic gain estimates are expected to be
higher in open-pollinated populations due to the ABLUP
inability to ascertain the true genetic relationship among
offspring [33-35]. On the other hand, GBLUP relies on
estimating the realized kinship which provides a more
accurate ascertainment of the genealogical relationships
among members of an open-pollinated family and thus,
resulting in more realistic gain estimates due to adjust-
ment for Mendelian sampling term [48]. Our results are
similar to those reported in the Québec white spruce
study as they consistently produced higher gains from
pedigree- vs. marker-based methods [16].
It should be pointed out that the Bulmer effect (i.e., re-
duction in response to selection) would be similar for
ABLUP and GBLUP and thus the response to selection
for both methods will be similarly affected irrespective
of the breeding values estimation method used [49]. If
genomic selection effectively reduces generation interval,
then in the forestry context, a relatively smaller refer-
ence (training) population size is needed to attain the
same response to selection from larger traditional popu-
lation (i.e., ABLUP). Conversely, if generation turnover
is not possible, then larger training population size is re-
quired, therefore defeating GS goals. Bastiaansen et al.
[50] found similar response to selection for GBLUP and
ABLUP but the former accumulated lower level of in-
breeding and consequently higher genetic variance than
the latter.

Genomic selection in forestry
Open-pollinated family testing is a formidable and eco-
nomically viable option for screening a larger number of
candidate parents without the development of “struc-
tured pedigree” that represents the backbone of most
conventional tree breeding methods. The simplicity of
the method made it an attractive first step before start-
ing a full-blown tree improvement program. Indeed, this
was the case for the New Zealand radiata pine (Pinus
radiata) breeding program as open-pollinated testing
provided a quick and inexpensive screening method [51]
and subsequently the selected parents were included in a
full pedigree-based breeding program [52]. However, the
commonly used assumption of treating open-pollinated
offspring as half-sib family is by far the greatest draw-
back of this method as most genetic parameters (e.g.,
breeding values, trait heritabilities, and gain estimates)
are upwardly biased and this was clearly demonstrated in
many studies including the present one [16]. The intro-
duction of genomic data (e.g., SNP markers) has provided
the means to overcome this drawback and the genea-
logical relationship among open-pollinated family mem-
bers is clearly and accurately ascertained. At present,
many open-pollinated family testing trials have reached an
advanced age and are often abandoned, though they could
provide badly needed information for late expressed traits
that could not be obtained from younger conventional tri-
als. The present study and that of Beaulieu at al. [16] pro-
vided examples of producing yield and wood quality
attributes data with unprecedented accuracy and this be-
came possible through the integration of genomic infor-
mation in the quantitative genetic analyses (e.g., ABLUP
vs. GBLUP).
In the present study, the accuracy of predicting breed-

ing values varied across the different studied population
scales with within multi-site being the highest and cross
sites being the lowest (Figure 1). The high within multi-
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site GS prediction accuracies offer an opportunity to ob-
tain reliable results for difficult traits such as wood
density and yield and points towards considering “old”
open-pollinated tests as a valuable source for informa-
tion. The developed prediction models could be used for
selecting elite genotypes with unprecedented selection
intensity for their inclusion in future seed production
populations, and this can be accomplished without the
creation of a single cross.
In the present study, GBS successfully provided the in-

formation for genomic-based quantitative genetics ana-
lyses at reasonable cost. To our knowledge, this study
represents the first large-scale use of GBS in a forest tree
species known to a have complex genome and for which
no reference sequence has been assembled yet (N = 1,126
trees). It is noteworthy to mention that this study was ini-
tiated before the release of Norway and white spruce gen-
ome sequences [53,25]. However, as the assemblies of the
two spruce genomes are not anchored and ordered along
the chromosomes, there is little advantage over de novo
SNP markers.

Conclusions
The results reported here suggest that GBS can be used as
a genotyping platform for the application of GS in forestry.
The utilization of proper imputation algorithms is needed
to overcome the commonly observed problem of missing
data with GBS. Greater GS prediction accuracies were ob-
tained for RR-BLUP as compared to GRR indicating that
the studied traits follow the infinitesimal model. Greater
accuracies were obtained for multi-site GS model and
points to the inherent lack of reliability for cross-site pre-
diction. The utilization of principle component analysis as
a multi-trait GS approach was proven effective in dealing
with negatively correlated traits.

Methods
Experimental population and DNA sampling
For this study, 1,126 38-year-old Interior spruce trees
(Picea glauca (Moench) Voss x Picea engelmannii Parry
ex Engelm.) were sampled from a progeny test trial
established by the Ministry of Forests, Lands and Nat-
ural Resource Operations of British Columbia Canada,
and planted on three sites [Aleza Lake (Lat. 54° 03′
15.7″ N, Long. 122° 06′ 35.4″ W, Elev. 700 mas), Prince
George Tree Improvement Station (PGTIS) (Lat. 53° 46′
17.9″ N, Long. 122° 43′ 07.6″W, Elev. 610 mas), and
Quesnel (Lat. 52° 59′ 27.2″ N, Long. 122° 12′ 30.6″ W,
Elev. 915 mas)]. The sites were established in 1972/73
and consisted of 181 open-pollinated families using 3-
year-old seedlings planted at 2.5×2.5 m spacing in a
complete randomized block design with five or ten
blocks and ten or fifteen tree-row-plots, respectively.
Twenty-five families were selected based on their
superior growth traits and four trees per family from
four blocks per site were randomly sampled (maximum
of 32 trees per family). Evidence of similar genetic diver-
sity between selected and unselected populations have
been reported for spruces, including white spruce
[54,55]. The differences across all the three sites in the
relationship between overall X-ray density and growth
traits (see below) indicated that the Quesnel site is most
favorable while PGTIS least favorable for growing inter-
ior spruce (YA El-Kassaby, pers. obs.).

Genotyping and SNP selection
DNA extraction was performed on dormant vegetative
buds of the sampled trees using a CTAB procedure modi-
fied after Doyle and Doyle [56]. To generate a high-
density SNP profile for the 1,126 spruce DNA extracts, we
conducted a multiplexed, high-throughput Genotyping-
by-Sequencing (GBS) following Elshire et al. [22] and
Chen et al. [23]. A 48-plex GBS library comprising of 47
DNA samples and a negative control (without DNA) was
prepared and each of the 47 spruce DNA extracts was bar-
coded. In brief, each DNA extract (500 ng) was digested
with restriction enzyme ApeKI for 2 hours. The details of
oligonucleotide sequences for the ApeKI barcode adapters
and temperature cycles are provided in Chen et al. [23].
Ligation products from each DNA extract were pooled
and purified using QIAquick PCR purification kit (Qia-
gen). The amplified 48-plex libraries were diluted and se-
quenced (single-end reads only) twice on the Illumina
HiSeq 2000 at the Cornell University Genomics Core La-
boratory to achieve the sequencing coverage equivalent to
24-plex. Raw DNA short-read sequences were analyzed
with a pipeline, the Universal Network Enabled Analysis
Kit (UNEAK), tailored to species lacking reference gen-
ome information [27]. This SNP detection pipeline is
available in TASSEL v5.0 [57]. To reduce sequencing error
in genotype determination, we set the error tolerance rate
to 0.03 (to pass the expected Illumina sequencing error
rate at 0.4%). The resulting SNP table was further filtered
using minimum value of inbreeding coefficient (mnF =
0.05) and minimum minor allele frequency (mnMAF =
0.05), and finally, SNPs that are present in less than 40%
of the samples were eliminated from further analysis.

Missing data imputation
To interpret missing values present in the filtered SNP set,
five different imputation algorithms were employed: (1)
mean imputation (MI), (2) singular value decomposition
imputation (SVD:[28]), (3) traditional k nearest neighbor
(kNN:[28]), (4) expectation maximization imputation
(EM:[31]), and (5) k-nearest neighbor imputation but
newly derived for half-sib family structure (kNN-Fam).
For SVD, the original SNP matrix was used to obtain a

set of the k most significant eigenvectors of the SNP
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markers. The k eigenvectors were then used as predic-
tors for linear regression estimation of the missing data.
SVD was implemented in R [58] using the “bcv” pakage
[59]. The resultant numerical SNP values (x) were fur-
ther classified into three separate genotype classes, −1, 0,
and 1. The classification algorithm was taken as a modi-
fied k-means algorithm [60], with the centroids set at −1
(k1), 0 (k2), and 1 (k3). The assignment of genotypes was
done by satisfying:

argmin SSð Þ ¼
Xk
i¼1

X
x∈Si

x−ki ð1Þ

where (1) defines the minimum distance for the SNP
value from the centroids.
For traditional kNN, the missing values were replaced

with the weighted average of SNP values at the k closest
SNP markers. The distances between all possible pairs of
markers were computed by Euclidean distance. We se-
lected five families (6, 11, 17, 21, and 47) to test the im-
putation accuracy, as well as the efficiency of iterations
for convergence (2, 3, 5 and 10 iterations for SVD; for
EM, we tested the distance between the new estimate
and the previous values less than 0.01). K = 10 and 30
were selected for accuracy estimates for kNN imput-
ation. All iterations reached convergence criteria that
were used in [61], however they resulted in different ac-
curacies (shown in Additional file 4).
The kNN-Fam algorithm is derived from the kNN

method of Troyanskaya et al. [28]. Missing values in the
SNP table were first replaced with the mean of the locus
by MI. A standardized genomic similarity matrix for all
samples was calculated based on VanRaden [17] and the
Euclidean distance between SNP markers was defined
following Rutkoski et al. [61]. Instead of the classic k-
nearest neighbor method, where

ŷ ¼ 1
K

� �
sigma yð Þ ð2Þ

the missing SNP values were replaced with:

ŷ ¼ mode
1

K1þ K2
y

� �
ð3Þ

where K1 is the number of neighbors within the half-sib
family based on the genomic similarity, K2 is the num-
ber of neighbors from outside the family based on the
Euclidean distance, and y is the original locus mean. We
conducted exhaustive search for the optimal values of
K1 and K2, by permutating K1 through 1 to 30 (the
nearest neighbor set as 1, and then 2, 5, 10, 15, 20 to the
maximum family size of 30), and K2 from 1 to 250, as
the total sample size of the panel is 1,126. The accuracy
of kNN-Fam imputation was conducted for each
permutation by randomly masking one million known
data points from the filtered SNP table of the 5 selected
families, and calculating the percentages of markers be-
ing imputed back to the correct SNP values.

Phenotypic data
The studied trees were phenotyped for (a) two growth
traits (height in m (HT) and diameter at breast height in
cm (DBH) which were subsequently used to estimate
stem volume in m3 (VOL) following Millman’s formula)
(Millman M. Metric Volume and V-Bar Tables Derived
from the British Columbia Forest Service Whole Stem
Cubic Meter Volume Equations. Vancouver BC, 1976.
Unpublished) and (b) three wood quality attributes
(wood density in kg/m3 using X-ray densitometry (WDX-

ray), resistance to drilling (WDRes), and acoustic velocity
in km/s (VDir)) [62]. Furthermore, WDX-ray and VDir

were used to derive the dynamic modulus of elasticity
(MoEd) [63]. WDX-ray is commonly used to estimate
wood density using increment cores extracted from the
sampled trees, while WDRes and VDir represent indirect
(i.e., non-invasive) methods that rely on wood density
for either creating resistance during drilling or the speed
of transmitting sound though the wood, respectively
[62].

Estimated breeding values (EBV)
The breeding value for each tree was estimated using
ASReml v.3 using two different mixed linear models
[64]. The first used the pooled populations to estimate
multi-site breeding values (MSEBV), while the second
was used to estimate single-site breeding values (SSEBV)
as follows:
Multi-site model:

y ¼ Xβþ Z1aþ Z2sβþ Z3saþ e ð4Þ
where y is the phenotypic measurement of the analyzed
trait, β is a vector of fixed effect (i.e., the overall mean
and the site effect), a is a vector of random additive ef-
fect of individual trees ~ N(0, Aσ2a), sb is a vector of the
random effect of block within site ~ N(0, Iσ2sb), sa is a
vector of random site x genotype interaction ~ N(0,
Iσ2 sa), e is a vector of random residual effect ~ N(0, Iσ2e),
and X and Z1-Z3 are incidence matrices assigning fixed
and random effects to each observation and I and A are
the identity and average numerator relationship matrices,
respectively. Narrow-sense heritability was calculated as
h2 = σa

2/(σa
2 + σsa

2 + σe
2) for the multi-site model.

Single-site model:

y ¼ Xβþ Z1βþ Z2aþ e ð5Þ
This model is identical to the multi-site mixed linear

model but without all terms related to site (site, block
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nested within site, and site x genotype interaction).
Narrow-sense heritability was calculated as h2 = σa

2/
(σa

2 + σe
2). Additionally, Genomic Best Linear Un-

biased Predictor (GBLUP) [17] was used to estimate
the narrow-sense heritabilities of the traits for single
and multi-site using genotypes from imputed data pro-
duced by the EM algorithm with 30% missing data.
This analysis was performed by substituting average
numerator relationship matrix with marker-based rela-
tionship matrix [17] using observed allele frequencies.

Genomic selection analyses
The SNP effects were estimated on the basis of two differ-
ent methods: 1) Ridge Regression Best Linear Unbiased
Predictor (RR-BLUP) implemented in R package rrBLUP
[65] and 2) Generalized Ridge Regression (GRR) imple-
mented in R package bigRR [38]. In both cases the follow-
ing mixed linear models were fitted:

y ¼ Xβ þ Zbþ e ð6Þ

where y is the vector of EBV, β is the vector of fixed ef-
fect which is the overall mean, b is the vector of random
SNP effects, X and Z are incidence matrices for β and b,
respectively, X is a vector of 1 while Z was built from
(-1, 0, 1) for aa, Aa and AA, respectively. The codes for
Z were standardized according to the allele frequency
using VanRaden’s method [17]. β and b are estimated
simultaneously using Henderson’s mixed model equation
(MME) [66]:

X
0
X X 0Z

Z
0
X Z

0
Z þ λI

� �
β
b

� �
¼ X

0
y

Z0y

� �
ð7Þ

where λ ¼ σ̂ 2
e=σ̂

2
b is the shrinkage parameter for the ran-

dom SNP effects, so all the SNPs will have the same
shrinkage magnitude, in other words, all are penalized to
the same degree. In GRR, the SNPs with small effects
are more penalized. The first step in GRR is an ordinary
RR, then it again uses MME to fit the heteroscedastic
model:

X
0
X X 0Z

Z
0
X Z

0
Z þ diag λð Þ

� �
β
b

� �
¼ X

0
y

Z0y

� �
ð8Þ

where diag ( λ ) is the diagonal matrix of SNP specific
shrinkage parameters estimated as λj ¼ σ̂ 2

e=σ̂
2
bj , where

σ̂ 2
bj is variance attributed to jth SNP and is estimated as:

σ̂ 2
bj ¼

b̂2j
1−hjj

ð9Þ

where, bj is the SNP effect, and hjj is the (n + j)th diag-
onal element of the matrix H = T (T’T)−1T’, where
T ¼ X Z
0 diag λð Þ

� �
ð10Þ

σ̂ 2
bj is needed as it represents the form of implemented

variable selection.

Cross-validation, predictive accuracy and type-b genetic
correlation
The predictive accuracy was estimated using a 10-fold
cross-validation approach with 20 replications. In each rep-
lication, the data were randomly divided into 10 subsets
(folds) and each one was used as validation population
(representing 10% of the data set), while the remaining 9-
folds were used as the training population (90% of the data
set) to fit the GS model. This process was repeated 20 times
with random assignment of the data to the 10 folds [67-69].
One advantage of this scheme is that it provides the degree
of uncertainty (i.e., standard error) around these point esti-
mates. In all the replicates, the models were fitted to the
training data set and used to predict the GEBV of the valid-
ation data set by multiplying the vector of the marker effect
estimated from the training population with the incidence
matrix Z of the individuals in the validation population and
summing over the estimated general mean:

ŷj ¼ û þ
X
i

Zijm̂i ð11Þ

where u is intercept, Z is genotype at the ith locus of the jth

individual and m is the marker effect. The accuracy of GS
to predict the breeding value (BV) was estimated as the
correlation of the vector of GEBV for all individuals (pre-
dicted from the validation step) with their estimated BV
(MSEBV or SSEBV according to the validation scenario).
As we used 20 replicates, we obtained 20 estimates for pre-
diction accuracy and we estimated means and standard er-
rors for these estimates. The developed models were
validated under the following four scenarios, namely, (1)
within site, (2) in all 6 possible combinations for cross-
validation comparisons across sites, (3) as a multi-site
population, where training and validation populations were
derived from the combined population for cross-validation
and (4) again as a multi-site population, but where the en-
tire multi-site population was used as training population
and the individual site as validation population.
Moreover, we estimated the type-b genetic correlation

across sites, which is the additive genetic correlation be-
tween the traits measured on different individuals from
the same genetic group but present in different environ-
ments, using a method described by Burdon [44].

Multi-trait GS model
We applied Principle Component Analysis (PCA) to dis-
til the correlated variables (EBV) into a set of linearly in-
dependent variables (i.e., the principal components
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(PCs)). We used HT, DBH, VDir, WDRes, and WDX-ray

EBVs as variables to determine the PCs that best express
these phenotypes and used their score as a new phenotype
in subsequent RR-BLUP GS model for the multi-site sce-
nario using the kNN-Fam imputation.

ABLUP vs. GBLUP elite genotype selection comparison
Notwithstanding the relatively small number of 25
open-pollinated families under investigation, to illus-
trate the benefits of incorporating genomic informa-
tion in selection, we conducted a selection exercise of
40 elite genotypes for inclusion into a hypothetical
production population (seed orchard) following the
group merit selection scheme of Lindgren and Mullin
[70]. Group merit selection is founded on penalizing
the average BV of a selected subset by increasing the
weight on the entire group co-ancestry (measured by
co-ancestry coefficient) to reach a desired “status num-
ber (Ns)” [71] which is an approximation of the effect-
ive number of parents (Ne) (i.e., measure of diversity).
In this method, the co-ancestry coefficients are esti-
mated from the pedigree values of the selected individ-
uals (ABLUP) while in the GBLUP case, we used the
marker-based relationship matrix [17] to approximate
the co-ancestry of the selected individuals and their
diversity was estimated by the number of founder
genome equivalents (Nge: [72]).
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