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Abstract

Background: As sequencing costs are being lowered continuously, RNA-seq has gradually been adopted as the first
choice for comparative transcriptome studies with bacteria. Unlike microarrays, RNA-seq can directly detect cDNA
derived from mRNA transcripts at a single nucleotide resolution. Not only does this allow researchers to determine the
absolute expression level of genes, but it also conveys information about transcript structure. Few automatic software
tools have yet been established to investigate large-scale RNA-seq data for bacterial transcript structure analysis.

Results: In this study, 54 directional RNA-seq libraries from Salmonella serovar Typhimurium (S. Typhimurium) 14028s
were examined for potential relationships between read mapping patterns and transcript structure. We developed an
empirical method, combined with statistical tests, to automatically detect key transcript features, including transcriptional
start sites (TSSs), transcriptional termination sites (TTSs) and operon organization. Using our method, we obtained 2,764
TSSs and 1,467 TTSs for 1331 and 844 different genes, respectively. Identification of TSSs facilitated further discrimination
of 215 putative sigma 38 regulons and 863 potential sigma 70 regulons. Combining the TSSs and TTSs with intergenic

14028s.

distance and co-expression information, we comprehensively annotated the operon organization in S. Typhimurium

Conclusions: Our results show that directional RNA-seq can be used to detect transcriptional borders at an acceptable
resolution of £10-20 nucleotides. Technical limitations of the RNA-seq procedure may prevent single nucleotide
resolution. The automatic transcript border detection methods, statistical models and operon organization pipeline
that we have described could be widely applied to RNA-seq studies in other bacteria. Furthermore, the TSSs, TTSs,
operons, promoters and unstranslated regions that we have defined for S. Typhimurium 14028s may constitute
valuable resources that can be used for comparative analyses with other Salmonella serotypes.

Background

Lowered sequencing costs combined with dramatic
increases in data output have greatly accelerated bacterial
RNA-seq based transcriptome studies. RNA-seq can not
only determine the absolute gene expression levels with
lower variation compared to microarray technology, but
can also be used to find new genes and resolve the structure
of transcripts [1,2]. There are many tools for read mapping,
gene expression normalization and comparison, most of
which were originally designed for eukaryotic organisms
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but also useful for bacteria, e.g., Bowtie, BWA, edgeR, etc.
[3-5]. For bacterial-specific transcript structure analysis
from RNA-seq data, such as transcriptional start site
(TSS) and transcriptional termination site (TTS) detection,
operon identification, and small RNA identification,
however, few studies have been performed to determine
the technical feasibility, and fewer software tools have
been developed [6,7].

Though most encoding genes and many non-coding
RNAs have been identified for a large variety of bacteria,
the gene structure and transcriptional unit organization
are not clear. Understanding bacterial transcript structure
is important for systems biology studies. The identification
of TSSs and TTSs can help to define the downstream
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or upstream untranslated regions (5'- or 3'-UTRs,
respectively), which often contain trans-acting regulatory
DNA elements. In addition, after a TSS is determined for
a transcriptional unit, the promoter can be delineated,
which gives clues about gene regulation [8,9]. Genes that
are transcribed in a single operon often have similar
or coordinated functions, and participate in related
pathways or biological processes [10,11]. Therefore,
operon organization analysis can aid in identifying the
function of unknown genes. Despite its importance,
the transcript structure has only been determined in
detail for a few bacterial strains [12,13], while for many
others, including Salmonella enterica, the transcript
organization has been resolved for only select groups of
genes [14]. Recent studies have also revealed dynamic TSS
and operon patterns in the same strains under different
growth conditions, demonstrating the increased complexity
of transcript structure analysis [15,16].

Traditionally, identification of TSSs and TTSs was
heavily based on experimental strategies, such as 5" or
3'-RACE (Rapid-Amplification of cDNA Ends), primer
extension, and S1 nuclease protection mapping assays
[17-20]. These methods are highly accurate, but their
efficiency is low and cannot keep pace with the urgent
need for a systems level understanding of bacterial gene
regulatory networks. Alternatively, there are a number of
machine-learning software tools established for TSS and
TTS prediction purely based on features of known TSSs
or TTSs [21-24]; however, the low prediction accuracy
and reliability of these tools represent a severe problem.
Moreover, most of the software tools were developed based
on the features of E. coli and other model microorganisms,
which may not reflect general properties for other bacterial
TSSs and TTSs. To identify operons, the intergenic
distances and co-expression coefficients are two major
factors. However, it can sometimes be difficult to determine
co-regulation between two adjacent genes in the same
operon or between two adjacent operons. It is also not
easy to identify alternative TSSs or TTSs within multiple-
gene operons that are known to generate alternative
transcripts [25].

Some groups have attempted to use RNA-seq to
analyze TSSs in bacteria [14,26-31]. RNA-seq based TSS
identification appeared more efficient than traditional
experimental strategies and more precise than strictly
bioinformatic methods. Most of these studies adopted
the differential RNA-seq (dRNA-seq) method that
enriches for primary mRNAs and degrades processing
mRNAs [14,26,27,29-31]. In these studies, a large
number of TSSs were identified, but the TTSs and operon
organization could not be determined. Moreover, the TSSs
were often identified manually or semi-automatically, the
standards were varied and subjective, and no statistical
reliability scores were given for the results.
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Most RNA-seq experiments are performed to achieve
the goal of comparative analysis of gene expression.
Strand-specific (or directional) RNA-seq is often employed
for these experiments and the resulting data represent an
untapped resource for bacterial transcript structure analysis.
However, several problems remain to be solved before this
information can be extracted. How are the mapped cDNA
reads distributed along bacterial transcripts? How can
transcript structure be resolved according to these mapping
patterns? How accurate and reliable are the results? If the
identification of structural features is not precise, are the
errors caused by the RNA-seq technique itself or by the
analytical methods employed? This study was designed to
address these questions. We sequenced multiple Salmonella
c¢DNA libraries, observed the distribution of mapped reads
along transcripts, proposed an empirical TSS and TTS
detection method along with appropriate statistical tests,
and compared the performance with a classical Poisson
distribution based method. The methods developed in
this research can be widely used to automatically detect
bacterial TSSs, TTSs and operon organization from
directional RNA-seq data. In addition, we provide com-
prehensive gene transcript structure annotation for the
14028s strain of Salmonella serovar Typhimurium, an
important human and animal pathogen.

Results
Extraction of TSSs and TTSs based on real read mapping
patterns
We developed an empirical method, based on the biased
distribution of reads at the 5" end of transcripts, to extract
transcript structure information from standard bacterial
RNA-seq data. Within our RNAseq dataset, we observed
that known transcriptional units, either generally or indi-
vidually, were enriched for their read coverage at 5’-ends as
well as upstream regions (Figure 1A and B). This agrees
with Raghavan et al. [32], who first reported an increased
distribution of ¢cDNA reads mapping to the upstream re-
gion of genes. A similar biased distribution of reads has also
been observed for eukaryotic mRNAs [33]. A biased distri-
bution is problematic because the existing methods for
extracting transcript information from bacterial RNAseq
data are based on Poisson distribution models, which
assume a hypothetically even distribution across an entire
transcript [7,29]. We reasoned that if cDNA reads are not
uniformly distributed across transcripts that it would limit
the effectiveness of Poisson distribution-based methods.
The new empirical method that we propose is based on the
actual read mapping patterns at gene borders and is
independent from any theoretical distribution model or the
hypothesis of ‘even distribution along the transcript’.

The criteria and TSS/TTS retrieving strategies for our
empirical method are outlined in Figures 1C and D. If
the borders between transcripts were clear or nearly
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Figure 1 Read distribution, mapping patterns, and TSS/TTS extraction strategies for S. Typhimurium 14028s RNAseq analysis. (A and B) Average
depth of mapped reads at different positions of encoding and flanking regions. Shaded regions in red and black indicated two theoretical peaks
of high read enrichment (A) versus the actual pattern of mapped reads in individual genes (B). The read-enriched region is indicated between
the two red vertical lines. The horizontal axis represents the position along a gene, with the first nucleotide of the start codon as ‘0" and the order
of upstream positions being negative. (C) Schematic of two adjacent genes displaying different read-mapping patterns observed in our RNAseq
experiment. (D) Description of Patterns 1, 2 and 3, sub-divided into Types 1-6. For each Type, the first number listed refers to the number of
reads mapped between the TTS of Gene 1 and the TSS of Gene 2 and the second number refers to the number of reads mapped to the Gene 2
transcript. The Signal to noise ratio refers to the second number divided by the first number.

clear (Figure 1C, Pattern 1 and Pattern 2), it was easy to  of biased read distribution, we detected TSSs in some of
distinguish the TSSs and TTSs. However, sometimes the these areas (Figure 1C and D, Pattern 3), factoring in the
borders were unclear and it was difficult to define the signal to noise ratio (i.e., # reads mapping to 5’ region of
transcript structure (Figure 1C, Pattern 3). These regions ~ Gene 2/# reads mapping to region downstream of Gene
could reflect sub-operons, where one gene or sequential  1). The TSSs and TTSs obtained from Patterns 1, 2 and
genes within a known long operon can be transcribed as 3 were further classified into 6 Types (Figure 1D). Type
independent transcriptional units. Based on the property 1 TSSs and TTSs had multiple (>2) read coverage at the
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TSSs/TTSs junctions and no reads upstream of the TSSs
or downstream of the TTSs. Type 2 was classified as a
situation with only single read coverage at the TSS/TTS
junction and no reads upstream of the TSSs or downstream
of the TTSs. Type 2 cases, therefore, were subject to more
noise and had a greater chance that this was due to random
sequence. Types 3, 4, and 5 belong to Pattern 2, but differed
based on noise strength: for Type 3, 4 and 5, there was
single, double, and 3-10 read coverage upstream of
the TSSs or downstream of the TTSs. For Type 6, the
read coverage was >10 at positions adjacent to the
TSS/TTS, which could represent part of other transcripts,
as described above.

In our preliminary analysis, the resolution of Type 1
TSSs/TTSs was strikingly different from that of Types
2-6; the number of Type 2, 3, 4, and 5 TSS/TTSs was
decreasing but still high, while that of Type 6 was quite
small, and therefore no additional types were defined.
We tested different combinations of minimal coverage
and signal-to-noise ratios (data not shown), but the final
parameters were selected based on the best sensitivity,
ensuring that most of the real TSSs and TTSs were
captured (Figure 1D).

Consistency of the TSSs and TTSs detected from
directional RNA-seq libraries

Since few TSSs/TTSs have been validated for most bacterial
strains, an alternative strategy for evaluating the reliability
of prediction results is to test the overlap of TSSs/TTSs
extracted from different RNAseq libraries. It is assumed
that the most reliable transcript features will be consistent
between libraries. The TSSs/TTSs of known encoding
genes of S. Typhimurium 14028s identified from a single
RNAseq library were summarized and then compared with
those from replicated libraries (Table 1). On average, from
a single library, TSSs were captured from ~17% of the
protein-encoding genes in the 14028s genome, with
Type 1, Type 2, Types 3-5 and Type 6 (Figure 1C)
representing 23%, 67%, 7% and 3% of the total, respect-
ively. The remaining ~83% of genes without captured TSSs
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were either lowly expressed or not expressed, expressed as
part of a long operon, or failed to satisfy the criteria for
TSS analysis, such as read coverage or signal to noise
ratio.

A large number of TSSs and TTSs could be identified
within two independent libraries when a certain level of
position difference was allowed (Table 1; Figure 2A-
B). Approximately 18% of the TSSs identified from
both libraries were exactly the same, and 61% or 82%
were within +10-nt or +50-nt difference, respectively
(Figure 2A-B). For TTSs, the consistency between libraries
was inferior to that of TSSs, with 8% being exactly the
same, and 35% and 61% within +10-nt and +50-nt limits,
respectively (Figure 2A-B). The lower consistency of TTS
identification could be attributed to lower read coverage
depth at TTSs.

Among the different types of TSSs and TTSs, Type 1,
3-5 and 6 were all highly consistent between different
libraries, with 28-44%, 76-90% and 89-97% within
0 nt, £10 nt and +50 nt for TSSs, and 16-50%, 50-94% and
70-96% within 0 nt, +10 nt and +50 nt for TTSs respectively
(Table 1; Figure 2C-F). Type 2 TSSs and TTSs were the
most abundant but showed the worst consistency between
libraries, with 11%, 53% and 78% within 0 nt, £10 nt
and +50 nt for TSSs, and 5%, 30% and 58% within
0 nt, £10 nt and +50 nt for TTSs respectively.

Taken together, the reliability of TSSs/TTSs detected
from a single directional RNA-seq library was low at a
single-nucleotide resolution, but moderate to high
for £10-50 nucleotide resolutions. If a single library
is used for detection of TSSs/TTSs, the Type 1 and
Types 3—-6 are more precise, but the accuracy for Type 2
is much lower; therefore, application of a +50 nt difference
is suggested as the resolution confidence limit (82% for
TSSs and 61% for TTSs).

Enrichment and statistical refinement of TSSs and TTSs
with multiple RNA-seq libraries

To increase the number of TSSs/TTSs identified from
directional RNA-seq libraries, a strategy of combining

Table 1 Summary of TSSs and TTSs identified from a single RNA-seq library

Type 1SS TTS
Number (%)’ Consistency® Number (%)’ Consistency?
Type 1 206+ 88 (229+44) 88.8 +8.6% 85+47 (106+28) 70.2 £164%
Type 2 610+ 323 (66.9 £ 3.6) 78.1 +86% 656+ 370 (81.0£3.6) 582+ 15.6%
Type 3-5 68+28 (72+24) 914 £10.5% 46+33 (57£1.5) 850+ 183%
Type 6 30+20 (3.0+24) 96.9 + 9.8% 24+30(28+19) 96.3% + 12.8%
Total 914+493 (172 +93)° 820+7.7% 812+470 (153 +88)° 61.3+144%

Note: 'The 95% confidence limits (mean + 1.96SD) of the number or percentages of TSSs/TTSs identified from a single library were represented. For Type 1, 2,
3-5, and 6, the percentages of respective type(s) from total number of TSSs/TTSs are given.

2The percentages of S. Typhimurium 140285 chromosome-encoding genes represented by the total identified TSSs/TTSs were given.

3The percentages of TSSs/TTSs (individual types or total) identified by both two independent libraries within +50 nt errors among the total number of TSSs/TTSs

identified by both libraries were given as 95% confidence limits.
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Figure 2 Consistency of TSSs and TTSs detected from repeated libraries. (A) The cumulative percentages of TSSs and TTSs consistently captured
by two libraries within different levels of resolution (allowing for position differences). (B) The actual percentages of TSSs and TTSs consistently
captured by repeated libraries with various position differences (0 = identical positions; 1-2 = 1-2 nucleotides apart; etc). The cumulative percentages

of library-consistent TSSs (C) and TTSs (E) of different types (as in Figure 1D) are plotted at different levels of resolution. The actual percentages of
library-consistent TSSs (D) and TTSs (F) of different types with various position differences are shown.

multiple libraries was adopted. Statistical models were
also developed to improve the reliability and precision of
TSSs/TTSs.

The total number of TSSs/TTSs identified increased
linearly as more libraries were sequenced (Figure 3A). The
number of genes whose TSSs/TTSs were detected was also
increased, but with a much smaller slope, indicating that
multiple TSSs/TTSs were identified for each gene. Most of
these are not alternative TSSs/TTSs but rather reflect the
difficulty of achieving single-nucleotide resolution; vari-
ability was decreased as we allowed more variance in the
starting nucleotide position (Figure 3B for TSSs; similar
curves were observed for TTSs (data not shown)).

Two different statistical models were developed to
calculate the probability that each TSS/TTS was reliable.
One method was based on the total read coverage and the

other method was based on repeated detection in replicate
RNAseq libraries (see description in Methods). With these
two tests, among the 24,516 TSSs and 30,118 TTSs with
single-nucleotide resolution detected from total 54 libraries,
only 2764 and 1467 were significantly reliable, representing
1331 and 844 different genes, respectively (Table 2). The
number of significantly reliable TSSs/TTSs and the non-
redundant genes that they represent was also increased
when more libraries were included (Figure 3C).

Even with the inclusion of statistical tests, there were
still multiple TSSs for 57.8% (769/1331) and TTSs for 43.1%
(364/844) of the represented genes. A small percentage of
the TSSs/T'TSs detected for single genes had relatively large
position differences and could possibly represent alternative
transcripts. However, the majority of TSSs (81.4%) and
TTSs (57.3%) only varied within +10 nt (Figure 4A-B for
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TSSs; Figure 4C-D for TTSs). Taken together, the addition
of statistical tests significantly increased the resolution
and precision for detecting TSSs and TTSs.

Recently, Kroger et al. performed a series of dRNA-seq
experiments to analyze the TSSs of S. Typhimurium
SL1344 [14]. Although there was no suggestion that
SL1344 and 14028s had the same TSSs, since these
strains are phylogenetically close and belong to the same

Table 2 Salmonella Typhimurium 14028s TSSs and TTSs
identified from 54 RNA-seq libraries

2

Transcript Feature' Gene
TSS
Total number 24516 2,888
Significant number® 2,764 1331
TTS
Total number 30,118 1,467
Significant number® 3,026 844

Total number of transcript features identified; for each gene, different TSSs or
TTSs could be identified from different RNA-seq libraries.

2The number of S. Typhimurium 14028s protein-encoding genes whose TSSs
or TTSs were identified.

3Binomial tests based on read-depth and reproducibility between libraries
were performed to find out the TSSs or TTSs that were statistically reliable.
The significance level was set as FDR < 0.05 for either test.

species and serovar, we reasoned that the TSSs could be
same for orthologous genes. Therefore, the TSSs identified
from 14028s in this research were compared with
those of SL1344. In total, 1075 protein-encoding
genes (1075/1110, 97%) from Kroger SL1344 TSS list
have orthologous counterparts in 14028s. Among
them, 678 (678/1075, 63%) were also identified with
TSSs in 14028s in this research (Additional file 1).
Nearly 70% (533/678) of the TSSs had only a +20 nt
difference between 14028s and SL1344 (Figure 4E;
Additional file 1). The high consistency between the
two sets of TSSs demonstrated the effectiveness of
our empirical method. It should be pointed out that
the TSSs detected in 14028s and SL1344 were seldom
detected at exactly the same position, with the major-
ity (~83%) of TSSs of SL1344 located upstream of 14028s
TSSs (Figure 4F). This indicated the possible technical
disadvantage of directional RNA-seq compared with
dRNA-seq to cover the 5'-ends of primary transcripts
(Figure 4 F).

The 3'-UTRs detected with our mapping pattern-
based empirical method were typically short, with
56%, 66% and 75% with length shorter than 50 nt, 75 nt,
and 100 nt, respectively (Figure 4G). A single-parameter
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(See figure on previous page.)

Figure 4 Accuracy of TSSs and TTSs detected from S. Typhimurium 14028s directional RNA-seq data. Our empirical method was combined with
statistical tests to yield (A) the actual and (B) cumulative distribution of position differences between TSSs detected for individual genes. This
data is matched with Figure 3C. The actual (C) and cumulative (D) distribution of position differences between TTSs detected for individual genes.
(E) The consistency of detected TSSs between S. Typhimurium 14028s and SL1344 strains. (F) Comparison of 5-UTR length of 14028s genes and
SL1344 genes based on the TSSs detected in this study and from Kroger data [14], respectively. ‘Shorter' or ‘longer’ meant that the 5-UTRs were shorter
or longer in 14028s than in SL1344, respectively. Any nucleotide position influences caused by inter-strain genetic differences were excluded from this
analysis. Comparison of 3“UTR length (G) and 5-UTR length (H) between the Poisson distribution model-based method and our empirical method.

Poisson distribution-based model, such as used in [7], was
also tested to extract the transcript borders from directional
RNA-seq data. The 3’-UTRs based on the Poisson
distribution-based model were shorter than those with our
empirical method (Figure 4G). For 5'-UTRs, ~60% identi-
fied with our empirical method were between 15 and
100 nt length while the average length calculated
from the distribution-based model also appeared shorter
(Figure 4H). Taken together, these results demonstrated
that the uneven distribution of mapped reads along a
transcript could make the model-based border ana-
lysis inaccurate, and for these cases, an empirical
strategy simply based on the mapping patterns could
be a better choice.

To further confirm the general applicability of our
empirical method on directional RNA-seq data of different
species, three E. coli strain K-12 libraries were analyzed
(see Methods). In total, 1387 non-redundant TSSs and
1399 TTSs were detected (Additional file 2). Among the
630 predicted TSSs that had been experimentally validated
(http://regulondb.ccg.unam.mx/), the median distance
between the predicted and validated ones was 49-nt, and
31% were with a distance within 10-nt (Additional file 2).
Considering that these E. coli datasets represent the
responses to three different stresses, and the potential for
many unknown and alternative TSSs due to dynamic
operon organization [6], the actual TSS prediction
performance could be better. We also re-implemented
McClure’s Poisson distribution-based method [7]. For
the 630 common TSSs, the median distance between the
predicted results and the validated TSSs was 75-nt, and
only 16% of them were with a distance within 10-nt
(Figure 5A). Since the number of libraries analyzed
was small, only read number based statistical tests could
be performed. 145 TSSs and 53 TTSs were statistically
significant without multiple testing correction (p < 0.05),
and only 85 TSSs and 22 TTSs were significant after
correction (FDR<0.05). 70 of the 145 significant TSSs
had been experimentally verified (http://regulondb.ccg.
unam.mx/); the median distance between the significant
TSSs and the validated ones was 0, and 70% were within a
distance of 10-nt (Figure 5B). Therefore, although our
empirical method loses sensitivity by taking the proposed
statistical tests, the precision of transcript border identifi-
cation is highly increased. Taken together, the results

demonstrated the applicability of our empirical method
for transcript border analysis on directional RNA-seq data
of various bacterial species, from different sequencing
platforms, and with more or few replicates. The method
also had improved performance when compared with a
Poisson distribution-based method.

Inventory of S. Typhimurium 14028s operons
We used a combination of TSS and TTS information,
intergenic distance and co-expression coefficients between
neighboring genes to screen for all possible operons in the
S. Typhimurium 14028s genome. The operons were
classified into Type 1 (orphan), representing single genes
with long intergenic distances to neighboring genes,
Type 2 (orphan-like), representing single genes with
shorter distances to adjacent genes but having defined
TSSs and TTSs, and Type 3 (multiple-gene), consisting of
transcriptional units composed of multiple adjacent genes
(Figure 6A). The cutoffs for intergenic distance and the
co-expression coefficients are defined in the Methods.
The 5311 chromosome-encoding genes of S. Typhi-
murium 14028s were organized into 1082 orphan,
926 orphan-like and 986 multiple-gene operons
(Additional file 3; Figure 6B). 186 orphans, 900 orphan-
like operons and 284 multiple-gene operons were detected
with TSSs and/or TTSs, and 561 multiple-gene operons
were confirmed by high expression correlation coefficients
between constituent genes (Additional file 3; Figure 6B).
Based on the operon organization table, 694 hypothetical
genes with unknown function were categorized into
multiple-gene operons with validated co-expression with
adjacent genes (Additional file 3). The proteins encoded
by the genes within each of these operons should have
related or coordinated function, participate in the same or
related biological processes, or encode different functional
components of some molecular machines, cellular compo-
nents or functional complexes. The organization of these
hypothetical genes into operons represents a starting point
to investigate their cellular functions.

Sequence features of S. Typhimurium 14028s TSSs,

TTSs and promoter regions

We further analyzed the TSSs and TTSs to identify
any potential nucleotide compositional bias at adja-
cent chromosomal positions. Previous studies showed
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an apparent preference of A/T at TSSs [14]. However,
we did not observe any apparent nucleotide composition
bias for TSSs (Figure 7A). This discrepancy could be
attributed to incomplete mapping at the 5’ ends of many
primary transcripts due to the technical limitations of
directional RNA-seq. In contrast, for TTSs, the position 0
and 3 upstream neighboring positions (within-gene) all
had an apparent G/C enrichment (Figure 7B). This feature
was similar with Petersen and Krogh’s finding, indicating
the possible importance of Rho-dependent transcriptional
termination in S. Typhimurium 14028s [23].

Sigma 70 (RpoD) and sigma 38 (RpoS) are two principal
RNA polymerase sigma factors in Salmonella. Sigma 70
plays a primary role during exponential growth, regulating
the expression of a large number of genes that are essential
for normal growth. In contrast, sigma 38 is highly expressed
during stationary phase and is the central regulator of the
general stress response [34]. Both sigma factors bind
promoter regions of their corresponding regulons with
similar but distinct sequence preferences [35,36]. According
to respective binding patterns, the promoter regions of S.

Typhimurium 14028s chromosomal genes, defined by their
identified TSSs, were screened for possible sigma 70 and
sigma 38 binding motifs. In total, 215 putative sigma 38
binding motifs (Figure 7C; Additional file 4) and 863 sigma
70 binding motifs (-10 box) were detected between the
-35 to -1 positions (Figure 7D; Additional file 4). The
detection of such a large number of putative sigma factor
motifs further demonstrated the reliability of the TSSs
detected in this research, given the acceptable reso-
lution. The *-35 box’ of sigma 70 binding sites was
often significantly degenerate, and therefore difficult to
detect [14]. However, 172 genes were still discerned
to contain both -35 and -10 sigma 70 binding boxes
(Figure 7D; Additional file 4).

Discussion

An apparent advantage of RNA-seq-based versus
microarray-based transcriptome analysis is that RNA-seq
can provide transcript structure information. However,
until now, no direct analysis has been performed to exam-
ine whether directional RNA-seq data can be used for
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transcriptional border identification. It remains to be
clarified what is the best resolution possible for bacterial
TSSs and TTSs identified from directional RNA-seq data.
In this research, we tried to answer this question.
Currently, there are two main methods applied for
transcript border analysis from bacterial RNA-seq
data - manual annotation and distribution model
based methods [7,14]. For well-presented patterns (e.g.,
TEX-treated RNA-seq data, see later in this paragraph) or
particularly interesting genes, a manual strategy can
generate the most accurate and useful results. However,
manual analysis of thousands of transcripts per library is
an unwieldy process that is not suitable for large-scale
analysis. On the other hand, the use of distribution-based
models to analyze standard, non-TEX-treated RNA-seq
data is also difficult. Since the transcript borders are not
clear, the inclusion of any subjective or inconsistent
criteria would lead to unreliable results. This is precisely
what we observed for a Poisson distribution-based
model, which makes the assumption that reads are
evenly distributed along the transcript. In contrast, we
observed a biased distribution of reads along a transcript.
Non-uniform read distribution has also been found in
eukaryotic RNA-seq data, and could be related with the
sampling preference of secondary sequencing technologies

[33]. Alternatively, a large amount of immature mRNAs
could also lead to the 5'-biased read number [32]. Based
on this finding we proposed a new empirical method,
which is independent of the theoretical distribution of
reads along transcripts. A direct comparison of our
empirical method with distribution model-based
methods confirmed that our model achieved more accurate
results. We determined that the best resolution of
transcript borders retrieved from RNA-seq data was
within +10-20 nt difference from experimentally deter-
mined borders. The difficulty in reaching single-nucleotide
resolution was due to limitations in the directional
RNA-seq technique itself and not because of limitations
with our method. Several groups have reported difficulty
in capturing 5" ends of the primary mRNAs with standard
library preparations and directional sequencing strategies
[14,27]. A terminator 5’-phosphate-dependent exonucle-
ase (TEX)-treated library-generating strategy has been
frequently adopted to enrich for primary mRNAs.
Although the TEX method has resulted in accurately
defining a large number of TSSs in many bacterial species,
it is much more expensive than normal library prepara-
tions and it does not enrich for the 3" ends of transcripts.
Moreover, TEX has only been used for a limited number of
studies in comparison to standard RNA-seq analysis, which
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has been used for numerous bacterial species. Therefore,
the automatic TSS and TTS detection method that
we have described in this research should have wide
application for bacterial transcriptome studies. A resolution
of +10-20 nt is predicted to be sufficient for transcript unit
recognition, promoter definition, motif finding, and the
identification of new genes.

The resolution of TSSs and TTSs was improved as
sequencing depth increased or more libraries were
included in the analysis. For example, with 54 directional
RNA-seq libraries, each averaging 20 M 75 bp reads
with ~90% ribosome RNAs and transfer RNAs, we
identified 2764 TSSs and 1467 TTSs for 1331 and
844 genes in S. typhimurium 14028s, respectively.
The resolution appeared to reach a maximum thresh-
old of +10-nt when compared to TEX-generated TSSs
[14]. Within this maximal resolution limit, there will
always be a trade-off between sensitivity of TSS/TTS
detection and resolution when the size and number
of libraries are fixed. For example, using a single library of
20 M total reads with ~90% rRNAs/tRNAs, we could
detect the TSSs for ~900 genes and TTSs for ~800 genes
at an average resolution of +50 nt. In general, there was a
positive linear correlation between the number of
TSSs/TTSs detected and the mRNA sequencing depth
and/or the number of biological replicate libraries
analyzed. Based on our observations, we suggest that
statistical tests and the maximal resolution should be
applied for TSS detection when >5 libraries are being
analyzed, consisting of at least 10 M mRNA-mapping
reads. When the number of libraries is smaller than 5
or the total number of mRNA-mapping reads is
smaller than 10 M, we suggest that TSSs be detected
with highest sensitivity, focusing on genes that have
clear read-mapping borders (Figure 1C, Pattern 1). For
TTSs, we suggest that the same criteria apply except with
the high-resolution cutoff being 10 libraries and 20 M
total mRNA-mapping reads. As noted above, both the
sequencing depth and gene expression level can influence
transcript border identification. To improve accuracy, in
the default settings of our method, the genes with <70%
whole coding region coverage were filtered out. Although
transcript borders can still be identified with only a few
libraries or low general sequencing depth (e.g., the E. coli
TSSs and TTSs identified in Additional file 2), integration
of more RNA-seq libraries under different stresses is still
recommended, which will increase both the prediction
resolution and the number of borders identified.

For S. Typhimurium 14028s, in addition to the 54
RNAseq libraries that we analyzed here, we are in the
process of analyzing 12 other cDNA libraries. Together
with the efforts being made by other research groups,
we anticipate that more TSSs and TTSs will be delineated
in the near future. As mentioned above, it will likely not
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be possible to reach a single-nucleotide resolution, but
that should not influence the analysis of transcription unit
organization, promoters, and even dynamic transcription
structure under different conditions or stresses. The TSSs,
TTSs and operons identified in this study represent the first
version of a transcript structure profile in S. Typhimurium
14028s. As more and more directional RNA-seq data (or
even TEX-treated RNA-seq data) are available, the tran-
scription structure information will be updated by simply
re-implementing the methods, pipelines and statistical
models developed in this study. The methods can also be
applied to RNAseq datasets obtained from other bacteria.

We did not identify any nucleotide preference at TSSs
or adjacent positions, but did observe C/G enrichment at
the TTS as well as the 3—4 adjacent positions upstream.
The inconsistency of nucleotide composition bias at TSS
between our results and previous observations [14] was
most likely due to unmapped 5" ends of primary mRNAs
in our experiments. For C/G preference at TTS, it is
consistent with previous observation on Rho-dependent
transcription termination sites [23], implicating potential
involvement of the Rho factor in transcription termination
in S. Typhimurium. There remains a need to determine
whether the 5-10 nt downstream of TTSs also showed
an apparent nucleotide composition bias as shown in [23],
and to further understand the contribution of Rho-
dependent and Rho-independent transcription termination
in Salmonella.

Finally, we detected putative sigma 38 binding motifs in
the —10 region of promoters from 215S. Typhimurium
14028 genes. Considering the slightly shorter 5'-UTRs
defined by the TSSs identified in this research, we
searched the —10 motifs within 0-35 bp upstream of TSSs.
Many of the 215 putative sigma 38—dependent genes were
known to be part of the sigma 38 regulon, e.g., osmC,
frdA, cfa, dps, galP, ldcC, proB, yohF, blc, yjgB, ygall, etc.
[37]. Therefore, it is possible that any newly identified
genes in this subset encode proteins that play active roles
in Salmonella survival during stationary phase or stress
responses. In addition to sigma 38 regulons, we also
identified 863 possible sigma 70 regulons. The promoter re-
gions for 172 of these genes had clear —35 and -10 motifs.
For the remainder of genes, the —35 motifs were not identi-
fied, most likely because of significant degeneration at this
site [14]. These putative sigma 70-dependent genes are
likely important for normal S. Typhimurium growth.

Conclusions

We have developed an empirical method to detect
bacterial TSSs and TTSs from directional RNA-seq
data, demonstrating that this type of data can be used
to identify transcriptional borders in bacteria. The
method proved to be more accurate than other simi-
lar applications and achieved a maximum resolution
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of +10-20 nt. We used our method to identify numer-
ous TSSs and TTSs within the S. Typhimurium 14028s
genome and generated a curated inventory of 14028s
operons and sigma factor regulons. These databases will
benefit the Salmonella research community. The methods
and observations that we have described can also be
applied to directional RNA-seq data obtained from
diverse bacterial species to detect transcript structure
automatically and, in general, to enhance the study of
bacterial transcriptomes.

Availability

The software tools as well as the manuals can be freely
downloaded with the link: http://www.vido.org/bactran
scriptstructure (Username: BMC Genomics).

Methods

RNA-seq datasets

c¢DNA libraries were generated from mRNA pools purified
from S. Typhimurium 14028s. The total of 54 libraries
consisted of: 12 libraries prepared from 14028s planktonic
cells, isolated at four different growth phases; 9 libraries
prepared from 14028s multicellular biofilm aggregates at
three different growth phases; 12 libraries prepared from
planktonic cells of a biofilm-deficient mutant (AcsgD;[38])
at four growth phases; and 21 libraries (12 from planktonic
cells, 9 from multicellular aggregates) prepared from a
S. Typhimurium 14028s reporter strain containing a
¢sgD promoter:luxCDABE fusion plasmid [38]. The
specific details about the RNA extraction and library
preparation protocols is described elsewhere [39]. All
sequencing was performed on the Illumina HiSeq
2000. The raw reads from each library were mapped
to S. Typhimurium 14028s genome with Geneious v. 5.6.5
(www.biomatters.com).

Three E. coli GAII unpaired-end RNA-seq libraries were
downloaded from http://bioinfolab.uncc.edu/TruHmm_
package/raw_data/Ecoli_raw_reads/ (‘LB.GAIlfastq.gz,
‘HS15min_r3.GAIllfastq.gz’ and ‘M-P4h_r3.GAIlLfastq.
gz’) [6]. The details about sample processing, RNA
isolation, purification, amplification and sequencing
are described in the original report [6]. The raw reads
were mapped to the E. coli K-12 genome with the
similar parameter settings as for the S. Typhimurium
RNA-seq analysis stated above.

Empirical and model-based methods for identification of
TSSs and TTSs

To calculate the read coverage for each annotated protein-
encoding gene, the depth at each genomic position was
counted. Genes were excluded from empirical TSS and
TTS detection based on the following three criteria:
(1) <70% whole coding region coverage, (2) average
per-site read depth<3 along the coding regions, or
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(3) <10% coverage at 5° ends (for TSSs) or 3’ ends
(for TTSs). Remaining genes were analyzed with a
single-nucleotide extension strategy beginning from
the start codon and moving upstream for TSS or
from the stop codon and moving downstream for
TTS. For each nucleotide extension, the read depths at
that position and the neighboring position (upstream for
TSS and downstream for TTS) were compared using the
identification standards shown in Figure 1, until the
borders were identified or not found after 200 iterations.
The Poisson distribution-based model (McClure method)
was implemented according to [7] and compared with our
empirical method. The McClure method makes the as-
sumption that reads are randomly sampled within a gene
region, including the untranslated regions for a protein-
encoding gene [7]. Identifying the TSS and TTS of a gene is
identical to determining the boundaries at which the gene
starts to be transcribed while the distantly adjacent
genomic regions are not transcribed or transcribed within
neighbor genes. Repeated single nucleotide extension
to a prior gene region is performed to determine the
boundaries. Assume a protein-encoding gene, and the
coding region G represents the prior gene region.
The probability of the read number sampled within
the region G can be fit with a Poisson distribution,

Pr(k|G) = o ,‘(‘”{A , where k represents the number of reads
and the parameter 1 can be easily estimated according to
the distribution of reads within G. Similarly, for a back-
ground (B) read distribution, the probability Pr(k|B) can
also be calculated with the similar formula of Pr(k|G) but
the A should be replaced with the average background
read number. The antisense-strand regions throughout
the whole genome could be considered as the background.
A G-adjacent position s (e.g., 5'-side) could either belong
to G (G|s) or a non-transcribed region N (N|s). The only
information for boundary discrimination is read num-
ber so that the probability of Pr(G|s) and Pr(N|s) are
transformed to Pr(G|x) and Pr(N|x), respectively,
where x represents the read number at position s. Based on
Bayes’ theorem, Pr(G|x) and Pr(N|x) can be calculated as:

Pr(C|x) :%P;;xlc), where C represents G or B.

According to Bayesian classification criteria and the as-
sumed equal Pr(C) for transcribed gene region or back-
ground non-transcribed region, the class (G or B) with the
maximal likelihood Pr(x|C) should also have the maximal
posteriori probability and therefore have the maximal
probability to be true. The G region is extended by this
way, and the A value for G is also updated recursively.

Read-based and library-based statistical models

A binomial distribution B,(n, p,) was modeled for testing
the significance of the read depth at the border site rather
than the adjacent position, where n, is the total number of
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reads mapped to the TSSs/TTSs border and adjacent sites
for the target gene, and p; is %, representing the probability
of a random distribution. Another binomial distribution
Bi(n;, py) was also modeled to calculate the random prob-
ability of repeat of the same TSSs/TTSs detected among
different libraries. Let n, represent the number of possible
TSSs or TTSs detected for a target gene. In this distribution
model, nj represents the number of libraries, while p; is the
inversion of (ng + 1). The p values obtained with the models
were further corrected by the False Discovery Rate (FDR),
with significance level set as FDR < 0.05.

Analysis of operon organization

The pipeline for operon organization analysis was shown
in Figure 6A, and is described here briefly. The inter-
genic length was calculated for each pair of annotated
genes in S. typhimurium 14028s. A cutoff of an inter-
genic distance of 200 bp between adjacent genes was set
to discern orphan operons. For the single genes with a
<200 bp intergenic length at one or two ends, if both
TSS and TTS were defined (or with a 2200 bp intergenic
length at one end and a defined transcription border at
the other end which showed a <200 bp intergenic
length), orphan-like operons were defined. For potential
multiple-gene operons, the expression correlation
coefficients (Pearson Correlation Coefficients, PCCs) were
calculated. If the neighbor genes were highly expressed
under some conditions, and PCC > 0.5, they were consid-
ered to belong to a unique operon with co-expression val-
idation; if the neighbor genes were highly expressed under
some conditions, but PCC < 0.5, they were considered to
belong to two neighboring operons; if one or both of the
neighbor genes was not or lowly expressed under any
condition, the genes were still considered within a unique
operon inferred by intergenic distance. The multiple op-
erons were obtained based on the relationship between
two neighbor genes and a process of iterative extensions.
Some single genes separated from the multiple-gene op-
erons by co-expression analysis were re-classified into the
orphan-like category. For co-expression analysis, the read
number for each gene in each library was normalized, and
then a logarithmic transformation was performed.

Detection of sigma factor binding motifs in promoter

For each gene with a TSS identified, the 35 bp DNA
sequence upstream of the TSS was extracted. For a gene
that had more than one TSS identified (e.g., from other
libraries), only the TSS furthest away from the start codon
was used for analysis. A pattern ‘CTA[CT][ATG][CTA]T’
was searched in the 35 bp sequences for putative sigma 38
binding sites, and ‘[ATG]TA[AGCT][ACTG][CGTA]T" was
searched for —10 sigma 70 binding sites. A space between
10-25 nucleotides was allowed between two motifs that
were used to detect the putative -35 sigma 70 binding
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motifs. The captured patterns were further shown for the
nucleotide composition at each position with WebLogo [40].

Availability of supporting data
RNA-seq data analyzed and used to develop the
methods described are available in the SRA database

(study #SRP056892; accession numbers: SRX976427,
SRX976344, SRX976443, SRX976341, SRX976337,
SRX976336, SRX976335, SRX974437, SRX976482,
SRX976480, SRX976478, SRX976476, SRX976475,
SRX976474, SRX976473, SRX976471, SRX976470,

SRX976469, SRX976468).

Additional files

Additional file 1: Transcriptional start sites and termination sites
identified for chromosomally-encoded genes of S. Typhimurium
14028s. Description of data: A complete list of all TSS/TTS in the S.
Typhimurium 14028s genome as determined from analysis of RNAseq
transcriptome data, with FDR corrected p values <0.05. Gene names and
nucleotide positions are listed as annotated in the S. Typhimurium
14028s genome ([41]; NC_016856). TSS_Region: Ingenic - the predicted
site lies within the coding region of an annotated gene; Intergenic - the
predicted site lies between the coding sequences of two adjacent genes.

Additional file 2: TSSs and TTSs predicted from E. coli GAIl RNA-seq
data. Description of data: Worksheet 1 (E.Coli_GAII-TSS) — All TSSs
identified from E. coli GAIl datasets with the empirical method. Worksheet
2 (EColi_GAII-TSS) — All TTSs identified from E. coli GAll datasets with the
empirical method. Worksheet 3 (Predicted vs. confirmed TSSs) — Distance
between all predicted TSSs and known TSSs. Worksheet 4 (Sig_Pred vs.
confirmed TSSs)) — Distance between significant predicted TSSs, with
read number based statistical tests, and known TSSs.

Additional file 3: Operon list for chromosomally-encoded genes of S.
Typhimurium 14028s. Description of data: Operon Start-End: nucleotide
positions as listed in the S. Typhimurium 14028s genome (NC_016856).
Gene(s): Gene names as listed in the annotated genome record. Operon-
type: Listed as described in Figure 6. Annotation: Description of how the
operons were defined - as described in the Results section of the main text.

Additional file 4: List of S. Typhimurium 14028s genes with
promoter regions containing sigma 38 or sigma 70 binding motifs.
Description of data: Worksheet 1 — genes where the —10 promoter
region has a sigma 38 binding motif. Worksheet 2 — genes where the
—10 promoter region has a sigma 70 binding motif. Worksheet 3 — genes
where the —35 promoter region has a sigma 70 binding motif.
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