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Abstract

Background: By examining the genotype calls generated by the 1000 Genomes Project we discovered that the
human reference genome GRCh37 contains almost 20,000 loci in which the reference allele has never been observed
in healthy individuals and around 70,000 loci in which it has been observed only in the heterozygous state.

Results: We show that a large fraction of this rare reference allele (RRA) loci belongs to coding, functional and
regulatory elements of the genome and could be linked to rare Mendelian disorders as well as cancer. We also
demonstrate that classical germline and somatic variant calling tools are not capable to recognize the rare allele when
present in these loci. To overcome such limitations, we developed a novel tool, named RAREVATOR, that is able to
identify and call the rare allele in these genomic positions. By using a small cancer dataset we compared our tool with
two state-of-the-art callers and we found that RAREVATOR identified more than 1,500 germline and 22 somatic RRA
variants missed by the two methods and which belong to significantly mutated pathways.

Conclusions: These results show that, to date, the investigation of around 100,000 loci of the human genome has
been missed by re-sequencing experiments based on the GRCh37 assembly and that our tool can fill the gap left by
other methods. Moreover, the investigation of the latest version of the human reference genome, GRCh38, showed
that although the GRC corrected almost all insertions and a small part of SNVs and deletions, a large number of
functionally relevant RRAs still remain unchanged. For this reason, also future resequencing experiments, based on
GRCh38, will benefit from RAREVATOR analysis results. RAREVATOR is freely available at http://sourceforge.net/
projects/rarevator.

Background
Thanks to novel high-throughput sequencing (HTS) tech-
nologies [1-3], today a human genome can be sequenced
very quickly at affordable prices. The emergence of these
platforms, together with the development of powerful
computational tools, have transformed biological and
biomedical research over the past several years allow-
ing the achievement of large-scale population sequencing
projects, such as the 1000 Genomes Project (1000GP) [4]
and The Cancer Genome Atlas (www.cancergenome.nih.
gov), and opened a new era for personal genomics [5-
7]. Existing HTS technologies generate billions of short
sequences (reads of ∼ 100-450 base pairs), and although
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computational methodsmay permit routine use of de novo
assembly, sequencing a human genome typically allows
to relate sequence information to a reference haploid
genome: the so-called resequencing strategy.
In re-sequencing approach, the key first step is the align-

ment, or mapping, of all the reads to a reference genome
by using short read alignment tools [8,9]. Once the reads
have been properly mapped, genomic variants can be dis-
covered by identifying differences between the reference
genome and the aligned reads. By using this procedure,
it is possible to identify single nucleotide variants (SNVs)
[10,11], small insertions and deletions (InDels) [12] and
infer DNA copy number variants [13,14].
In diploid genomes, such as the human genome, vari-

ants can be found in one chromosome (heterozygous) or
in both chromosomes (homozygous). In the first case,
the variant can be responsible for dominant phenotypes,
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while in the latter for recessive phenotypes. The identi-
fication of homozygous and heterozygous variants have
a strong medical relevance since it is at the base of
the discovery of loss-of-function and gain-of-function
mutations. Loss-of-function variants in homozygous state
are the most common cause of autosomal recessive
Mendelian disorders, while gain-of-function variants that
change the gene product to a new and abnormal function
usually lead to dominant Mendelian disorders. More-
over, both loss-of-function and gain-of-function muta-
tions inherited in germline cells or acquired in somatic
cells are often the starting events of cancer evolution
and proliferation. Functionally relevant variants respon-
sible for mendelian disorders [15] and cancer [16] have
been successfully identified by using the re-sequencing
strategy [15,16].
The discovery of a functionally relevant variant requires

to identify differences between aligned reads and the
sequence of the haploid reference genome. The sequence
of the human reference genome [17] was obtained from
a collection of DNAs from anonymous individuals with
primarily European origins and assembled into a mosaic
haploid genome. The clinical and phenotypic informa-
tion of the participants is unknown. Although they were
likely to be healthy at the time of study, some of them
might be carriers of disease risk alleles. The human refer-
ence genome is maintained and updated by the Genome
Reference Consortium (GRC) which is responsible to cor-
rect the small number of regions in the reference that
are currently misrepresented, to close as many remain-
ing gaps as possible and to produce alternative assemblies
of structurally variant loci when necessary. Since 2009,
the major assembly release for human genome has been
GRCh37 that is present in various genome browsers and
databases including Ensembl, NCBI and UCSC Genome
Browser. In December 2013, the GRC announced the pub-
lic release of GRCh38, the latest version of the human ref-
erence genome assembly. This represents the first major
assembly update since 2009, and introduces changes to
chromosome coordinates.
Large scale population re-sequencing projects, such

as the 1000GP and the Exome Sequencing Project
(ESP), allowed to create a large and detailed cata-
logue of human genetic variations and improved our
knowledge of the human genetic variation. Recently,
the 1000GP Consortium, by combining low-coverage
whole-genome sequencing (WGS) and high-coverage
whole-exome sequencing (WES) of 1092 individuals
from 14 populations, identified around 38 million single
nucleotide polymorphic positions and 1.4 million short
insertions and deletions [18].
In this work, we re-analyzed the complete set of these

variant calls, and we found that more than 96000 loci of
the GRCh37 assembly have a reference allele frequency

smaller than 1% (here called Rare Reference Alleles,
RRAs). Moreover, we also discovered that for the great
majority of these loci the reference allele has never been
observed in homozygous state and for a significant part
neither in heterozygous state. These findings suggest that
for many of these loci the reference allele could have func-
tional consequences or even being a loss/gain-of-function
variant. To evaluate the biological relevance and the dele-
teriousness of finding the reference allele in these loci
we studied them by using several annotation databases
and measures of functional impact. We found that a large
fraction of these loci belong to genomic features identi-
fied by GENCODE [19] or regulatory elements discovered
by the ENCODE project [20], and a significant fraction
has functional consequences on genes that are linked to
Mendelian disorders, complex diseases and cancer. We
also demonstrated that currently available computational
approaches for the detection of germline and somatic
SNVs and InDels fail to call variants in RRA loci when one
of the alleles is the reference allele. To complement the
variant calls from currently available tools we developed
a novel software package for the detection and annota-
tion of germline and somatic variants in RRA loci that we
named RAREVATOR (RAre REference VAriant annota-
TOR). As a proof of principle, we applied RAREVATOR to
the analysis of a publicly available whole-exome sequenc-
ing cancer dataset and we compared these results with
those obtained by two state-of-the-art variant callers,
VarScan2 [21] and Mutect [22]. Our tool was able to
identify around 1500 germline and 22 somatic RRA vari-
ants that were missed by the other two tools. We further
searched for significantly mutated genes and pathways
and showed that some of these RRA variants belong to
signicantly mutated pathways and can thus have a role in
human development and tumorigenesis.

Results
Variant analysis
We downloaded the complete set of variant calls pro-
duced by the 1000GP Consortium from ftp://ftp-trace.
ncbi.nih.gov/1000genomes/ftp/release/20110521 and we
estimated the allele frequency of all the SNVs and small
InDels across the 1092 individuals (see Methods for more
details). We found that 85,111 SNV loci and 11,162 small
InDel loci (6,700 Insertions and 4,462 Deletions) have a
reference allele frequency (AF) smaller than 0.01, reveal-
ing that almost 100,000 loci of the GRCh37 assembly are
RRA loci (Table 1).
To evaluate the reliability of these results, we com-

pared the allele frequencies estimated by the 1000GP
Consortium with those calculated by the NHLBI GO
Exome Sequencing Project (ESP) on the same loci (http://
evs.gs.washington.edu/EVS). Since the ESP sequencing
experiments have been performed for coding regions

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521
http://evs.gs.washington.edu/EVS
http://evs.gs.washington.edu/EVS


Magi et al. BMC Genomics  (2015) 16:340 Page 3 of 16

Table 1 Summary statistics of the RRA loci

Variants Total number Class A Class B Class C Total ESP ESP AF≤ 0.01 ESP AF≤ 0.03

SNV 85111 17944 60714 6453 1033 862 1033

InDels 11162 3076 7711 375 170 152 169

Columns report the total number of variants (Total Number), the number of variants that belong to classes A, B and C, the number of RRA loci studied by ESP (Total
ESP), the number of RRA loci with allele frequency calculated by ESP smaller than 0.01 (ESP AF ≤ 0.01) and 0.03 (ESP AF ≤ 0.03).

(see Methods for more details), only 1033 of the 85,111
SNVs and 170 of the 11162 InDel overlap with the ESP
variants. Despite the limited number of shared variants,
and the fact that ESP sequenced individuals affected by
several disorders, we found strong concordance between
the two datasets. All the 1033 SNVs have a reference AF
< 0.05 and 862 SNVs < 0.01, while 152 of the 170 InDels
have a reference AF < 0.01 (Table 1).
To investigate the genetic characteristics of these loci,

we calculated their genotype counts (see Methods for
more details) and we classified them into three classes.
The first class (A) contains the loci in which the refer-
ence allele has never been observed in 1000GP individuals
and for this reason it could have loss-of-function as well
as gain-of-function role. In class B, the reference allele has
been observed only in the heterozygous state and could
consequently have a loss-of-fuction role. Finally, for class
C loci, the reference allele has been observed in both
heterozygous and homozygous state in at least one indi-
vidual and for this reason the reference allele could have
moderate phenotypic impact. The results of this analysis
are summarized in Table 1 and show that 17,940 SNVs
and 3,080 InDel loci (1870 insertions and 1210 deletions)
are of class A, 60,711 SNVs and 7,715 InDel loci (4,616
insertions and 3,099 deletions) of class B and 6,460 SNVs
and 369 InDels loci (214 Insertions and 155 deletions) of
class C.
To understand if these alleles are sequencing artifacts

belonging to complex and hard-to-sequence regions of the
genome, we calculated the GC content and mappability

of the 100 bp region surrounding each RRA locus and
we compared them with 100 bp regions randomly sam-
pled from the genome. Although a small fraction of these
regions have values of GC-content and mappability that
could affect the correct identification of variant alleles,
globally the distributions of GC content and mappability
calculated for RRA loci (Figure 1a-b) are identical to the
distributions of randomly sampled regions. These results
suggest that the presence of RRA alleles in the human
genome reference sequence can not be fully ascribable
to issues of genome complexity or sequencing errors.
As a further step, in order to understand if RRAs are
rare/private variants of individuals used by the human
genome project, we studied the presence of these alleles in
the four different macro populations of the 1000GP: Euro-
pean (EUR), American (AMR), Asian (ASN) and African
(AFR) (Figure 1c). Almost 45% of the RRAs are shared
by two, three or all four macro populations, while more
than 7% belong to individuals from European, American
or Asian origins. Interestingly, more than 25% of the
RRAs are private/rare variants of individuals fromAfrican
populations, and this is in accordance with the fact that
the majority of the reference DNA used by the human
genome project was from donor RP11, an individual likely
of African-American ancestry [23,24]. Overall, from these
results we can conclude that the presence of these rare
alleles in the reference assembly of the human genome can
be ascribed to both sequencing errors and private variants
of the anonymous individuals used by the human genome
project.

Figure 1 GC content, mappability and population distribution of RRA loci. Panels a and b report the distribution of GC-content percent and
mappability of the 100 bp region surrounding each RRA locus (for RRA classes A, B and C) compared to randomly sampled 100 bp regions. Panel c
report the distribution of RRA loci across macro populations: African (AFR), American (AMR), Asian (ASN), European (EUR), shared by none (None),
two (Two Pop), three (Three Pop) and four populations (Four Pop).
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Variant annotation
GENCODE
SNVs and small InDels in protein-coding genes can
severely affect the function of the encoded proteins and
lead to disease states [25,26]. Exonic SNVs such as mis-
sense mutations resulting in amino acid substitutions and
nonsense mutations introducing new stop codons can
seriously disrupt the function of human protein-coding
genes. Frameshifting InDels result in a completely dif-
ferent translation of the original protein that could be
abnormally shorter or longer, likely altering its function.
Variants in intronic regions affecting constitutive splice
sites may have severe functional consequences similar to
nonsense or missense mutations, resulting in aberrantly
included introns or skipped exons, and sometimes in
nonsense-mediated decay. Moreover, in the last few years,
it has become clear that also the non-protein-coding por-
tion of the genome is of crucial importance for normal
development and physiology and for and for the appear-
ance of disease phenotypes. This is particularly evident
for microRNAs for which it has been shown that genetic
changes are hallmark of cancers, but also variants in large
intergenic non-coding RNAs (lincRNAs), small nucleo-
lar RNAs (snoRNAs) and other ncRNAs might contribute

to the development of many different human disorders
[27]. To understand the functional relevance of all the
RRA loci we studied their overlap with the biotypes anno-
tated by the GENCODE consortium (see Methods for
more details) and we found that more than half (44790
SNVs, 3788 Insertions and 2,593 Deletions, see Table 2
and Additional file 1: Table S1) belong to GENCODE fea-
tures. Specifically, 35,428 SNVs and 5,060 InDels (2983
insertions and 2,077 deletions) are part of protein-coding
genes, while 8,628 SNVs and 1,230 InDel (744 insertions
and 486 deletions) belong to ncRNA features. The most
represented non-coding biotype is lincRNA, followed by
antisense and processed transcripts, while 734 SNVs and
91 InDels (61 insertions and 30 deletions) belong to pseu-
dogenes. Genotype counts analysis show that around 25%
of the GENCODE loci belongs to class A variants (9,940
SNVs, 1119 insertions and 702 deletions) and around 70%
to class B (31,663 SNVs, 2,564 insertions and 1,798 dele-
tions), suggesting that for a large part of these loci the
reference allele could have phenotypic consequences.
To facilitate the interpretation of these RRA loci and

discern between phenotypically relevant and neutral vari-
ants we used the Genomic Evolutionary Rate Profiling
(GERP) “rejected substitutions” (RS) score (see Methods

Table 2 GENCODE and ENCODE annotations of all the RRA loci for GRCh37 and GRCh38

Type Total variants (GRCh37) Class A Class B Class C Total variants (GRCh38) Class A Class B Class C

Total SNVs 85111 17944 60714 6453 77274 11827 59055 6392

Intergenic 40321 8004 29053 3264 36774 5465 28072 3237

Gencode 44790 9940 31661 3189 40500 6362 30983 3155

Functional 580 167 373 40 402 31 335 36

Pseudogenes 734 135 518 81 633 68 487 78

Non coding RNA 8628 2040 5965 623 7673 1229 5828 616

Encode Elements 20438 4723 14138 1577 18458 3098 13811 1549

Total Insertions 6700 1870 4616 214 17 5 10 2

Intergenic 2912 751 2052 109 7 1 5 1

Gencode 3788 1119 2564 105 10 4 5 1

Functional 56 23 31 2 1 0 1 0

Pseudogenes 61 14 44 3 1 0 0 1

Non coding RNA 744 243 477 24 4 2 2 0

Encode Elements 1744 569 1122 53 4 1 3 0

Total Deletions 4462 1206 3095 161 3703 689 2857 157

Intergenic 1869 504 1298 67 1523 290 1168 65

Gencode 2593 702 1797 94 2180 399 1689 92

Functional 24 8 15 1 9 1 7 1

Pseudogenes 30 10 20 0 19 17 2 0

Non coding RNA 486 137 333 16 392 64 312 16

Encode Elements 1023 304 682 37 823 154 633 36

Columns report the total number of variants (Total Variants), the number of variants that belong to classes A, B, and C for all RRA SNVs and InDels in GRCh37 and
GRCh38. Rows report the annotation features at which each RRA has been annotated.
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more details) and we calculated the total number of SNVs
and insertions with RS score larger than 2 and the total
number of deletions that contain at least one base with RS
score larger than 2. Moreover, to study the functional con-
sequence of RRA loci that belong to protein-coding genes,
we annotated them as missense, nonsense, frameshift
and splicing variants by using the Variant Effect Predic-
tor (VEP) tool (see Methods). Among GENCODE RRAs,
4,104 SNVs and 745 InDels (408 insertions and 337 dele-
tions) have RS≥2 (Additional file 1: Table S1, number in
brackets), and more than 90% belong to class A or B.
Moreover, 580 SNVs and 80 InDels (56 insertions and
24 deletions) have functional consequences by changing
or disrupting the protein sequence, and around 50% (289
SNVs and 44 InDels) of these belong to classes A or B
and have or contain bases with RS≥2. These results sug-
gest that for more than 300 loci of the human reference
genome in coding genes the reference allele could have
loss-of-function or gain-of-function effects.
As a further step, to evaluate the impact of GENCODE

RRA loci on rare and complex phenotypes, we exploited
the annotation of the Genetic Association Database
(GAD) and the Online Mendelian Inheritance in Man
resource (OMIM) (see Methods). We found that around
25% of the genic RRA loci (8,704 SNVs, 707 insertions
and 505 deletions) has positive association with a complex
phenotype annotated at the GAD (Additional file 1: Figure
S1.a-c) and 95% belong to class A or B. For both SNVs
and InDels, the most represented GAD class is Psychiatric
followed by Chemdependency, Neurological, Metabolic,
Immune and Cardiovascular classes. Concerning ncR-
NAs (Additional file 1: Figure S1.d-f ), 163 SNVs and 27
InDels (16 insertions and 11 deletions) are annotated at
the GAD and the most represented categories are Cancer
and Immune followed by Metabolic, Psychiatric, Devel-
opmental and Cardiovascular. Also for ncRNAs, around
95% of RRA loci belong to class A or B. Among the func-
tionally relevant variants (missense, frameshift, nonsense
and splicing), 113 (106 SNVs, 3 insertions and 4 deletions)
belong to genes annotated in the OMIM database and 49
are of class A or B and have or contain bases with RS ≥ 2.

Regulatory elements
Genomic elements involved in the regulation of transcrip-
tion and in the processing and control of RNA transcripts
play important cellular and developmental roles, and in
some cases mutations within them contribute to diseases.
Experimental evidences have shown that the presence
of variants in regulatory regions can lead to differences
in transcription factor (TF) binding between individuals
[28], altering the regulation of gene transcription. This
can be explained by the fact that variants can generate an
increase or a decrease in the binding affinity of a given TF
and leading to a change in gene expression. In some cases,

SNVs and InDels may eliminate an existing binding site
and/or generate a new one for a different TF, which can
have a dramatic effect on the gene expression pattern.
For these reasons, to evaluate the impact of RRA loci

on binding variation and regulatorymechanisms, we stud-
ied their overlap with the regulatory elements discovered
by the ENCODE project (see Methods). We found that
20,438 SNVs and 2,767 small InDels (Additional file 1:
Table S1) are part of at least one of the regulatory elements
annotated by the ENCODE project. Furthermore, around
10% of these loci overlap with all the three different reg-
ulatory features (TFP, DHS and enhancers), 25% belong
at least to two, while 65% are part of only one regulatory
element. More than 90% of them (18,861 SNVs and 2,677
InDels) belong to class A or B (1,869 SNVs and 359 InDels
with RS≥2). GAD annotation of the total set of regula-
tory RRA loci showed that 2558 SNVs and 387 InDels are
associated with a complex phenotype (Additional file 1:
Figure S1.g-i). The reference allele of more than 90% of
them has never been observed in homozygous state (class
A or B). Also for regulatory RRA loci the most repre-
sented GAD phenotypes are Cardiovascular, Psychiatric,
Metabolic and Neurological.
As a final step, we scored the regulatory impact of

RRA loci by using the RegulomeDB tool [29]. Regu-
lomeDB combines experimental datasets from ENCODE
and other sources with computational predictions and
manual annotations to score the functional impact of
genomic variants. The scoring system represents with
increasing confidence that a variant lies in a functional
location and likely results in a functional consequence.
Lower scores indicate increasing evidence for a variant to
be located in a functional region (see Methods). These
analyses are summarized in Additional file 1: Figure S1.j-l
and show that 45,790 SNVs and 6731 InDels (3,959 inser-
tions and 2,772 deletions) are predicted to have a func-
tional role by RegulomeDB. In particular, 2,149 SNVs and
457 InDels (287 insertions and 170 deletions) are pre-
dicted to lie in a functional region and to affect TF binding
(RegulomeDB score ≤ 3) and more than 90% belong to
class A or B.
Taken as a whole, these results evidence that the

GRCh37 assembly contains tens of thousands of loci
located into coding, non coding and regulatory elements
for which the presence of the reference allele may imply
deleterious functional consequences. Missing these vari-
ants in re-sequencing studies could affect the interpre-
tation of the whole results and hamper the discovery of
disease-related loci.

RRAs detection
The identification of SNVs and InDels from HTS data is
accomplished by means of the so-called SNV and InDel
callers that can be categorized into two main classes:
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germline and somatic methods. Somatic callers have been
properly developed to detect variants occurring de novo
within groups of somatic cells. To date, they have been
mainly applied in cancer studies and the basic idea behind
these methods consists in finding variant alleles that are
present in the tumor sample but not in the matched con-
trol. The first computational method for somatic variants
detection [16] relied on independently calling the geno-
type of the two samples followed by subtraction of the
normal sample calls from the cancer calls to obtain a
candidate somatic mutation set. Recently, several authors
introduced somatic methods, such as VarScan2 [21] and
Mutect [22], that use a probabilistic framework to simul-
taneously compare the reads of a tumor sample and a
matched normal sample to identify statistically signifi-
cant differences at each variant site. Since these methods

are devised to detect every kind of differences between
normal and tumor samples, in principle, they are able to
identify somatic variants that belong to RRA loci. How-
ever, the probabilistic calling step is followed by a filtering
step [21,22] in which germline variants found in normal
sample are used to discard somatic calls (Figure 2). For this
reason, in RRA loci, somatic variants in heterozygous state
are rejected when the normal sample has the alternative
allele (the most frequent allele) in homozygous state.
On the other hand, germline callers are devised to detect

variants from the solely comparison to the reference
genome. They are all based on probabilistic frameworks
that use the number of reads presenting differences from
the reference genome to detect a variant. Clearly, they
are not able to detect variants in RRA loci when the ref-
erence allele is in homozygous state. Moreover, also the

Classical Germline Caller

Classical Somatic Caller

No Call

Cancer

Normal

Homo Ref

Hetero Freq Filter

Hetero

Homo Alt

RAREVATOR Germline

RAREVATOR Somatic

Unknown

Homo Ref

Hetero Hetero RRA

Homo RRA

Cancer

Normal Homo Ref RRA

Somatic RRA

Hetero RRA

Reference Allele
Alternative Allele

a

b

c

d

Figure 2 Variant calling scheme for classical SNP and InDel caller and RAREVATOR. Panels a and b report the calling scheme of classical germline and
somatic variant callers. Panels c and d report the calling scheme of RAREVATOR for germline and somatic variants. Classical germline callers (panel
a) are devised to detect variants from the comparison to the reference genome and, clearly, they are not able to detect variants in RRA loci when the
reference allele is in homozygous state. Also heterozygous calls are missed by classical resequencing analysis pipelines, since variant calling is usually
followed by a filtering step in which known variants with allele frequency larger than a predefined threshold (usually 0.01) are discarded. Somatic
callers (panel b) are devised to detect every kind of differences between normal and tumor samples. However, the probabilistic calling step is
followed by a filtering step in which germline variants found in normal sample are used to discard somatic calls. RAREVATOR exploits the GATK
Unified Genotyper for interrogating all the RRA loci and detecting germline and somatic variants that contain the reference allele (panels c and d).
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reference alleles in heterozygous state are missed by clas-
sical resequencing analysis pipelines, since variant calling
is usually followed by a filtering step in which known vari-
ants [30,31] with allele frequency larger than a predefined
threshold (usually 0.01) are discarded (Figure 2).
Following these considerations, currently available

callers are not able to identify variants that contain the
reference allele in RRA loci. To overcome these limits, we
developed a novel tool, RAREVATOR (RAre REference
Variants annotaTOR), that exploits the GATK Unified
Genotyper for interrogating all the RRA loci and detect-
ing, among them, variants that contain the reference
allele (see Figure 2 and Methods). RAREVATOR takes
into account only GATK high-quality calls (variant quality
score, QUAL≥ 30). The variant quality score is a Phred-
scaled estimation of the calling confidence of GATK, and
QUAL≥ 30 corresponds to an error rate smaller than
0.1%. For this reason, the sensitivity and specificity of our
tool completely reflect the performance of the algorithms
at the base of the Unified Genotyper GATK compu-
tational pipeline. RAREVATOR is able to call germline
RRA variants in single- and multi-samples experiments
(germline mode) as well as somatic RRA variants in pairs
of matched tumor and normal samples (somatic mode).
To demonstrate the usefulness of our tool in re-

sequencing studies, we applied it to the analysis of a
publicly available whole-exome sequencing dataset of 18
pairs of metastasizing uveal melanomas and matched
peripheral blood lymphocytes samples [32]. We first
applied RAREVATOR on the 18 peripheral blood samples
for the identification of germline variants. This analysis
(Additional file 1: Table S2) shows that classical germline
calling pipelines missed the detection of 1476 RRA SNVs
(778 in homozygous and 694 in heterozygous state) and
112 InDels (58 in homozygous and 54 in heterozygous
state). More than 80% of these variants (1217 SNVs and 86
InDels) belong to class B, and only a small fraction are of
class A (121 SNVs and 13 InDels) or class C (138 SNVs and
13 InDels). Among the RRAs calls we also found variants
that lead to protein functional consequences (missense
and splicing) and variants that have a positive associa-
tion with a complex phenotype annotated at the GAD (25
SNVs are associated with CANCER phenotype).
Then we used RAREVATOR on the 18 matched tumor-

normal pairs to identify somatic variants in RRA loci and
we compared these results to those obtained by Mutect
and VarScan2. Our tool was able to identify 22 somatic
variants that were missed by the other two state-of-the-
art methods, and 8 of these variants are missense (see
Additional file 1: Table S2). RRA missense mutations
affected five different genes: DCC, CR1, FAT2, GCC2 and
CLCN1. To understand the relevance of these five genes in
tumorigenesis we studied their role in other cancer stud-
ies by using the DriverDB database [33]. DriverDB is a

web resource that includes mutation profiles from 6079
tumor-normal pairs (4397 from TCGA, 861 from ICGC,
112 from PCGP, 238 from TARGET and 471 from pub-
lished papers) of 14 different cancer types and exploits
eight computational methods to identify driver cancer
genes for each tumor type. We downloaded all the driver
genes inferred by the DriverDB resources and we found
that all the five genes affected by missense RRAs in our
uveal melanoma dataset were predicted as driver gene in
at least one cancer type by one of the eight computational
methods (Additional file 1: Table S3). Surprisingly, four
of the genes containing RRA missense mutaions in Uveal
Melanoma (DCC, CR1, GCC2 and CLCN1) were pre-
dicted as diver genes in TCGA skin cutaneous melanoma
dataset. Although skin and uveal melanoma have differ-
ent genetic and molecular features, are known to have the
same cellular origin (they both derive from melanocytes)
and the four genes predicted as driver in skin melanoma
could be related to some key basic functions also in uveal
melanoma.
To evaluate the potential involvement of the RRA

somatic mutations on the uveal melanoma tumorigenesis,
we searched for significantly mutated genes (SMG) and
pathways (SMP) that contain the RRA mutations. SMGs
are genes that have a higher mutation rate with respect
to a background mutation rate [34]. A gene can be found
to be a SMG because it contains driver mutations that
are selected during tumorigenesis, and therefore can con-
tribute to disease progression. In the same way, SMPs are
pathways (or gene sets) with a high mutation rate and
that are selected during tumorigenesis and can contribute
to disease progression. To identify SMGs and SMPs, we
applied the MutSigCV [35] and DrGaP [36] algorithms
to the sets of somatic mutations identified by muTect
and VarScan2 and separately to the same sets integrated
with the RRAmutations identified by RAREVATOR.Mut-
SigCV estimates the background mutation rate for each
gene-patient-category combination based on the observed
silent mutations in the gene and non-coding mutations
in the surrounding regions and is considered one of the
best methods for the identification of SMGs. DrGaPmod-
els the probability of observing a given set of mutations
in a gene with the Poisson distribution and then calcu-
lates a Likelihood Ratio Test to evaluate if there is an
increased rate of mutation. The Poisson model for a sin-
gle gene is extended to analyze a pathway or gene set by
treating multiple genes within a pathway as a “big” gene.
We used DrGaP to test several curated pathways and com-
putational gene sets (see Methods for more details). The
MutSigCV did not identify any SMG in all the datasets
we tested. However, the results of these analyses show
that RRA variants affect calculation and significance of
the mutation rate: Additional file 1: Table S4 shows that
the five genes that contain missense RRA mutations have



Magi et al. BMC Genomics  (2015) 16:340 Page 8 of 16

a significant increase in SMG ranking when the analy-
sis comprised the mutations identified by RAREVATOR.
The RRAs have the same effect also in the calculation of
the significantly mutated pathways. DrGaP identified four
SMPS that contain the RRAmutations (Table 3). All these
pathways are related to the immune response and inter-
estingly, one of them (the IMMUNE_SYSTEM pathway
curated by the Reactome database) reached the statistical
significant threshold (p ≤ 0.1) thanks to the contribution
of RRA mutations. These results do not demonstrate at
all that RRA mutations actively participate to the tumori-
genesis in the Uveal Melanoma cancer, but the missing
of these variants can seriously affect the identification of
genes and pathways that might have an important role in
tumorigenesis and cancer progression.

RRAs in pathways and driver genes
The results described in previous section on a small can-
cer dataset demonstrated that the identification of muta-
tions in RRA loci can affect the discovery of driver genes
and pathways in cancer studies. To obtain a global picture
of the potential impact of RRA loci on biological pro-
cesses and functional pathways, we selected all the genes
in the human genome that contains at least one func-
tionally relevant RRA loci (602 genes with at least one
splicing, missense, nonsense or frameshift variant) and we
searched for enriched gene sets. The enrichment analysis
was applied to the Gene Ontology (GO) terms Biologi-
cal Process (BP), Molecular Function (MF), and Cellular
Component (CC), and to pathway databases curated by
KEGG, Reactome and Biocarta, by using the DAVID web
resource [37,38]. The enrichment analysis identified 59
statistically significant gene sets (ease p-value ≤ 0.05): 21
GO CC terms, 9 MF terms, 21 BP terms, 4 Reactome and
3 KEGG pathways (Additional file 1: Table S5). Signifi-
cantly enriched GO MF terms are mainly related to ion
binding function, while many enriched BP terms are asso-
ciated to lipid metabolism and transport. Interestingly,
among BP terms and pathways, we observed a recur-
rent enrichment for functions related to cell adhesion and
extracellular matrix (ECM) interaction, and for the DNA
repair pathway. Strikingly, adhesion and interaction with

extracellular matrix and surrounding cells are extremely
important for integrity and homeostasis maintenance in
normal tissues, and alterations in microenvironment and
related functions are notoriously associated with cancer
transformation and metastasis [39]. Moreover, the DNA
repair pathway is one of the crucial processes responsible
for genome integrity and cell survival. Strictly connected
to cell cycle checkpoints, alterations of genes involved in
this pathway support genetic instability and DNA damage
tolerance, typically leading to death escape for tumor cells.
Being this pathway a hallmark of cancer it is currently
exploited for molecular targeted therapeutic approaches
[40]. Overall, these results indicated that functionally
relevant RRAs are involved in basic cellular processes
essential for normal cell functions, whose impairment
is strictly associated with malignant transformation and
tumorigenesis.
To evaluate the potential impact of RRA loci in cancer

studies, we assessed the overlap between genes containing
RRA loci and the cancer driver genes predicted by TCGA.
Recently, [41], by exploiting the TCGA whole-exome
sequencing datasets (including 3,205 tumors from 12 dif-
ferent cancer types) and eight different algorithms for
SMG identification, provided a list of 291 high-confidence
cancer driver genes. Among them (Figure 3), we found
that 187 genes (187/291, 64.2%) showed at least one RRA
locus in exons, introns or UTR, while 10 genes (10/291,
3.4%) contained a functionally relevant RRA (nine mis-
sense and one splicing variant). All these genes with a
missense or splicing RRA locus were predicted to be com-
mon driver genes in at least 11 or all the 12 cancer types
taken into consideration, thus emphasizing their involve-
ment in essential tumorigenic processes (Additional file 1:
Table S6). Eight of these genes have a mutation frequency
larger than 0.1 in at least one of the 12 cancer types.
Notably, among them, we found the serine/threonine
kinase PI3/PI4-kinase ATM gene, which encodes a cru-
cial checkpoint kinase controlling several downstream
proteins, including TP53 and BRCA1, required for cell
cycle arrest and DNA damage repair activation. Given its
centrality for many cancer types, this apical master con-
troller is currently used as clinically actionable target for

Table 3 DrGaP pathways analysis

MSigDB category Gene set name Somatic variant caller Gene P-value RAREVATOR P-value

BP SYSTEM PROCESS VarScan CLCN1 0.0054 0.0051

CM MODULE 46 VarScan CR1 0.0009 0.0009

CM MODULE 75 VarScan CR1 0.0032 0.0031

REACTOME IMMUNE SYSTEM muTect CR1 0.0103 0.0099

Significantly mutated pathways identified by DrGaP algorithm by using the somatic mutations detected by MuTect and VarScan2 on the uveal melanoma dataset. The
table reports the p-value calculated by DrGaP on MuTect and VarScan2 mutations, with and without the RRA variants. Columns report the MSigDB gene set category,
the gene set name, the algorithm used for calling somatic variants, the RRA gene that belong to gene set, the DrGaP p-values calculated on the somatic variants
(p-value) before and after the addition of the RRA variants detected by RAREVATOR (RAREVATOR P-value).
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Figure 3 Network of TCGA driver genes containing RRA loci in GRCh37. To build the network we selected all the interactions of HumanNet v1 that
link the 291 TCGA driver genes [41]. Node colors represent the most severe RRA variant contained by each gene: none RRA (white), non-exonic
(grey), synonymous (orange), splicing (red) and missense RRA (magenta). Node border colors represent the TCGA cancer type for which the gene
has been predicted to be a driver with maximummutation frequency: AML (Acute Myeloid Leukemia), BLCA (Bladder Urothelial Carcinoma), BRCA
(Breast invasive carcinoma), COAD (Colon adenocarcinoma), GBM (Glioblastoma multiforme), HNSC (Head and Neck squamous cell carcinoma), KIRC
(Kidney renal clear cell carcinoma), LUAD (Lung adenocarcinoma), LUSC (Lung squamous cell carcinoma), OV (Ovarian serous cystadenocarcinoma),
UCEC (Uterine Corpus Endometrial Carcinoma), UVM (Uveal Melanoma). Node radius gives a measure of the maximummutation frequency of the
driver gene in the TCGA cancer dataset coded by the border color.

anti-cancer therapies [40]. Taken as a whole, these results
demonstrated that RRA loci with potential functional
consequences could impact genes and pathways that play
fundamental roles in several disease states.

GRCh38
Recently, the GRC announced the public release
of GRCh38, the latest version of the human refer-
ence genome assembly. In the announcement (http://

http://genomeref.blogspot.it
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genomeref.blogspot.it), the GRC reports that “large scale
studies of human variation, such as the 1000 Genomes
Project, identified a number of bases and indels in
GRCh37 that were never seen in any individuals, suggest-
ing they may represent errors in the assembly.” For these
reasons several thousand individual bases were updated
in GRCh38.
To understand the extent of this update we com-

pared the reference alleles between GRCh37 and GRCh38
assemblies and we found that the great majority of SNVs
(77,274, 90.8%) and deletions (3,703, 83%) was not cor-
rected, while almost all insertions (6,683, 99.7%) were
updated (see Methods, Table 2 and Additional file 1: Table
S7 for more details). Among the unchanged RRA loci we
found 37,345 SNVs and 2,088 deletions of class A or B
belonging to GENCODE features, and among them, 3,262
SNVs and 251 deletions have RS≥2. Although a signifi-
cant fraction of coding RRA loci of class A was corrected
(see Table 2 and Additional file 1: Table S6), the GRCh38
assembly still contains 374 class A or B variants (366 SNVs
and 8 deletions) with functional consequences and 68 (66
SNVs and 2 deletions) are located into OMIM genes.
Moreover, 10,917 SNVs and 545 deletions have a

positive association with a GAD phenotype and as in
the analysis of GRCh37, the most represented pheno-
types are CHEMDEPENDENCY, CARDIOVASCULAR,
METABOLIC and IMMUNE (Additional file 1: Figure
S2.a-i). For regulatory elements (Additional file 1: Table
S7), 18458 SNVs and 823 deletions are part of ENCODE
features and of these variants, 90% (16,903 SNVs and 787
deletions) belongs to class A or B. Furthermore, 41,407
SNVs and 2,338 deletions are still annotated by Regu-
lomeDB and around 5% have a score ≤ 3 (Additional
file 1: Figure S2.j-l). Concerning cancer genes, 173 TCGA
driver genes still contain at least one RRA locus, and as in
GRCh37, for 10 of them the RRA is functionally relevant
(Additional file 1: Figure S3 and Additional file 1: Table
S6). Taken as a whole, these results show that although
the GRC corrected almost all the RRA insertions and a
significant fraction of SNVs and deletions for which the
reference allele has never been observed, a large number
of functionally relevant RRA loci still remain unchanged
in GRCh38.

Discussion and conclusion
The development of HTS technologies is revolutionizing
the molecular diagnosis of human diseases. The ability to
generate enormous amount of sequence data in a short
time at an affordable cost makes this approach ideal for
a wide range of applications from sequencing a group of
candidate genes, all coding regions to the entire human
genome. The identification of variants with these tech-
nologies is based on comparing the reads produced by
HTS platforms with the haploid sequence of the human

reference genome and finding the bases that differ from
the reference genome sequence. HTS-based approaches
have been successfully used to identify disease causing
variants in mendelian disorders as well as in the study
of genomic instability in cancer samples. In this work we
demonstrate that the haploid sequence of the human ref-
erence genome GRCh37 contains almost 20000 loci in
which the reference allele has never been observed in
healthy individuals and around 70000 loci in which it has
been observed only in the heterozygous state. We stud-
ied the genomic complexity of the regions surrounding
these loci and the geographical origins of their alleles
and we found that their presence in the human refer-
ence assembly can be due to both sequencing errors and
rare/private variants of the anonymous individuals used
by the Human Genome Project. By analyzing the genomic
position of these loci we found that more than half of them
belong to GENCODE biotypes and around 25% are part of
regulatory elements discovered by the ENCODE project.
Moreover, we also discovered that 1% of these loci

belongs to coding portions of the genome and that a sig-
nificant fraction has potential functional consequences
on genes that have been previously linked to Mendelian
disorders, complex diseases and cancer. The complete
list of these functionally relevant RRA loci is reported
in Additional files 2 and 3. In these tables the genomic
information is enriched with functional and disease anno-
tations (from RegulomeDB, GAD and OMIM databases).
Among the OMIM annotation of the genes containing
functionally relevant SNV and InDel RRA loci, we found
genetic phenotypes causing developmental delay, intel-
lectual disability/mental retardation, cardiomyopathy and
cancer (prostate, ovarian, breast and leukemia).
To emphasize the impact that many of these loci could

have on human health, we report some examples of RRA
variants present in genes that have been demonstrated
to be causative of neurological disorders and cancer. The
ASPM gene, that is associated with primary autosomal
recessive microcephaly type 5 and seizures [42,43], con-
tains a missense RRA SNV of class B. Another missense
RRA SNV of class B belongs to FAT4 gene, whose biallelic
disruption was recently associated with a human recessive
syndrome including periventricular neuronal heterotopia
[44]. GRIA3, that is an important gene associated with
a X-linked intellectual disability known as lissencephaly,
and RECQL4, that is responsible for some cases of the
autosomal recessive Rothmund-Thomson syndrome, con-
tain a frameshift insertion and a splicing insertion of
class B, respectively. Among class A variants, we found
missense, splicing and frameshift RRA loci in COL4A1,
PIGN and ATM genes. COL4A1 has been associated to
several disorders and has been reported to carry causal
heterozygous mutations in patients with porencephaly
and in patients with schizencephaly [45]. PIGN encodes

http://genomeref.blogspot.it
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a protein involved in glycosylphosphatidylinositol-anchor
biosynthesis, and recently a missense mutation has been
found in patients with an autosomal recessive syndrome
characterized by dysmorphic features and multiple con-
genital anomalies together with severe neurological
impairment, chorea and seizures leading to early death
[46]. ATM gene encodes a protein belonging to the
PI3/PI4-kinase family and functions as a regulator of a
wide variety of downstream proteins, including tumor
suppressor proteins p53 and BRCA1. Somatic mutations
in this gene have been identified in T-cell prolympho-
cytic leukemia, mantle cell lymphoma, and B-cell chronic
lymphocytic leukemia [47], while germline mutations
have been found associated to increased susceptibility
to early-onset breast cancer [48] and risk of glioma and
meningioma [49].
This brief list of variants which contains genes associ-

ated with severe disorders might represent an underes-
timate of the relevance of RRA. The analyses reported
in the results section show that there is huge amount
of other genes and regulatory regions containing RRA.
Failure to identify these RRA could seriously limit the
identification of disease-causing variants in Mendelian
and polygenic disorders and driver genes in cancer
studies.
To overcome the limits of currently available variant

callers, we developed therefore RAREVATOR, a novel
tool that interrogates all the RRA loci and detects vari-
ants that contain the reference allele. RAREVATOR is
able to identify germline variants in single- and multi-
samples experiments (germline mode) as well as somatic
variants in pairs of matched tumor and normal sam-
ples (somatic mode). The use of our tool on a publicly
available whole-exome sequencing cancer dataset demon-
strated its uniqueness in the identification of germline and
somatic variants: RAREVATOR was able to identify more
than 1500 germline and 22 somatic RRA variants that
we demonstrated to participate to significantly mutated
pathways. The results obtained by RAREVATOR on this
very small dataset emphasize the importance of our tool
for reanalyzing the huge amount of HTS data generated
in the last few years and aligned against the human ref-
erence genome GRCh37 for complementing the results
obtained with classical variant callers in HTS-based stud-
ies. Moreover, although the GRC corrected almost all
the RRA insertions and a significant fraction of SNVs
and deletions for which the reference allele has never
been observed, a large number of functionally relevant
RRAs still remain unchanged in the latest version of the
human reference genome. This will make of RAREVA-
TOR a valuable instrument for complementing the results
of classical variant caller also for the analysis of future
sequencing data that will be aligned against the GRCh38
assembly.

Methods
1000 Genome project data analysis
The 1000GP [4] is the first project aiming to sequence
genomes of a large number of people, to provide a
comprehensive resource on human genetic variation
and find most genetic variants that have frequencies
of at least 1% in the populations studied. The 1000GP
consortium, by combining low-coverage whole-genome
sequencing and high-coverage whole-exome sequencing
of 1092 individuals from 14 populations drawn from
Europe, East Asia, sub-Saharan Africa and the Ameri-
cas, has identified around 38 million single nucleotide
polymorphic positions, 1.4 million short insertions and
deletions and more than 14,000 larger deletions. All the
variant calls are stored in VCF format and freely avail-
able at the 1000GP FTP site. We downloaded Variant
calls from ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
release/20110521/, we filtered out structural variants and
we calculated allele frequency for all SNVs and InDels
by using the VCFTools [50] --freq option. We found
that 85111 SNVs and 11162 InDels loci have a refer-
ence allele frequency smaller than 0.01. As a further step,
in order to study the genotype frequency of these loci
across the 1092 individuals, we converted the genotype
data by using the --012 of the VCFTools. We found
that 6453 SNVs and 375 InDels have all the three geno-
types represented across the 1092 individuals, 17,944
SNVs and 3,076 InDels are present only in homozy-
gous alternative state and 60,714 SNVs and 7,711 InDels
appear in heterozygous and homozygous-alternative
state.

GC-content andmappability
For each RRA variant we selected a 100 bp region sur-
rounding the locus and we calculated GC content and
mappability. GC content was calculated by using the ’nuc’
option of the bedtools package [51], while the mappa-
bility was calculated by using the UCSC ’bigWigAver-
ageOverBed’ program and the mappability track gen-
erated by the GEM mapper aligner [52]. This track
provides a measure of the uniqueness of a sequence
within the human genome. By using the GEM map-
per aligner, where up to two mismatches were allowed,
the method is equivalent to mapping sliding windows
of k-mers back to the genome (where k has been
set to 36, 40, 50, 75 or 100 nucleotides to produce
these tracks). For each window, a mappability score
was computed as S = 1/(number of matches found in
the genome). S=1 means one match in the genome,
S=0.5 is two matches in the genome, and so on).
For our analysis we used the wgEncodeCrgMapabil-
ityAlign100mer.bigWig (with k equal to 100 nucleotides)
file that we downloaded at ftp://hgdownload.cse.ucsc.
edu/gbdb/hg19/bbi/.

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/
ftp://hgdownload.cse.ucsc.edu/gbdb/hg19/bbi/
ftp://hgdownload.cse.ucsc.edu/gbdb/hg19/bbi/
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Exone Sequencing Project (ESP)
ESP is a NHLBI project that aims to discover novel
genes and mechanisms contributing to heart, lung and
blood disorders by pioneering the application of next-
generation sequencing of the protein-coding regions of
the human genome across diverse, richly-phenotyped
populations and to share these datasets and findings with
the scientific community to extend and enrich the diag-
nosis, management and treatment of related disorders.
The current ESP data release (ESP6500SI-V2) is obtained
from 6503 samples drawn from multiple ESP cohorts and
represents all of the ESP exome variant data. Sequences
were aligned to NCBI build 37 human genome reference
using BWA. PCR duplicates were removed using Picard.
Alignments were recalibrated using GATK. Lane-level
indel realignments and base alignment quality (BAQ)
adjustments were applied. Allele frequency data for the
ESP6500SI-V2 release were downloaded from http://
evs.gs.washington.edu/evs_bulk_data/ESP6500SI-V2-
SSA137.protein-hgvs-update.snps_indels.vcf.tar.gz.

GENCODE
The GENCODE Consortium [19] aims to identify all
gene features in the human genome using a combina-
tion of computational analysis, manual annotation, and
experimental validation. Current version of the GEN-
CODE (version 19) contains the annotation of 57,820
genes (20,345 Protein-coding genes, 13,870 Long non-
coding RNA genes, 9,013 Small non-coding RNA genes
and 14,206 Pseudogenes) and has more than 30,000 cod-
ing transcripts not represented in UCSC genes and RefSeq
databases. It also has the most comprehensive annotation
for long non-coding RNA (lncRNA) loci publicly avail-
able with the predominant transcript form consisting of
two exons. GENCODE 19 is publicly available from www.
gencodegenes.org.

Functional annotation with VEP
For each RRA loci, functional annotation was performed
by using the Variant Effect Predictor (VEP) tool. The
VEP was previously known as the Ensembl SNP Effect
Predictor [53]. The VEP tool can be used to quickly
and accurately predict the effect of variants (SNPs,
insertions, deletions, CNVs or structural variants) on
genes, transcripts, and protein sequences, as well as
regulatory regions. It is available as a Web interface
(http://www.ensembl.org/Homo_sapiens/Tools/VEP) and
a stand-alone perl script (https://github.com/Ensembl/
ensembl-tools/archive/release/75.zip). All RRA loci were
annotated by using the web interface of VEP.

GERP
Genomic Evolutionary Rate Profiling (GERP) is a method
for producing position-specific estimates of evolutionary

constraint using maximum likelihood evolutionary rate
estimation [54]. Given a multiple sequence alignment and
a phylogenetic tree with branch lengths representing the
neutral rate between the species within that alignment,
GERP quantifies constraint intensity at each individual
position in terms of rejected substitutions, the difference
between the neutral rate and the estimated evolutionary
rate at the position. Constraint intensity at each individ-
ual alignment position is quantified in terms of a “rejected
substitutions” (RS) score, defined as the number of sub-
stitutions expected under neutrality minus the number of
substitutions “observed” at the position. Positive scores
represent a substitution deficit and thus indicate that a
site may be under evolutionary constraint, while negative
scores indicate that a site is probably evolving neutrally.
GERP RS scores in BigWig format for the human reference
genome hg19 were downloaded at http://hgdownload.cse.
ucsc.edu/gbdb/hg19/bbi/All_hg19_RS.bw. The RS scores
for each position in the human genome were generated
by using GERP++ [55] to analyze the Threaded Blockset
Aligner [56] alignment of hg19 to 35 other mammalian
species (the most distant mammalian species being platy-
pus), spanning over 3 billion positions. The alignment
was compressed to remove gaps in the human sequence,
and GERP++ scores were computed for every position
with at least 3 ungapped species present. Importantly, the
human sequence was removed from the alignment and
not included in either the neutral rate estimation or the
site-specific “observed” estimates, and therefore it is not
included in the RS score. This is done to eliminate the
confounding influence of deleterious derived alleles seg-
regating in the human population that are present in the
reference sequence and allowed to evaluate at our best the
evolutionary constraint of our set of RRAs. In order to dis-
cern between phenotypically relevant and neutral variants
we calculated the total number of SNVs and insertions
with RS score greater than 2 and the total number of dele-
tions that contain at least one base with RS score larger
than 2. We chose 2 as RS cutoff because in [55] Davy-
dov and colleagues found that coding exons exhibit the
strongest levels of evolutionary constraint with an average
RS score of around 2.

Genetic Association Database (GAD)
The Genetic Association Database (GAD) [57] is an
archive of human genetic association studies of com-
plex diseases and disorders. This includes summary data
extracted from published papers in peer reviewed jour-
nals on candidate gene and GWAS studies. The goal
of this database is to allow the user to rapidly identify
medically relevant polymorphisms from the large vol-
ume of polymorphism and mutational data, in the context
of standardized nomenclature. GAD currently contains
approximately 40,000 individual gene records of genetic

http://evs.gs.washington.edu/evs_bulk_data/ESP6500SI-V2-SSA137.protein-hgvs-update.snps_indels.vcf.tar.gz
http://evs.gs.washington.edu/evs_bulk_data/ESP6500SI-V2-SSA137.protein-hgvs-update.snps_indels.vcf.tar.gz
http://evs.gs.washington.edu/evs_bulk_data/ESP6500SI-V2-SSA137.protein-hgvs-update.snps_indels.vcf.tar.gz
www.gencodegenes.org
www.gencodegenes.org
http://www.ensembl.org/Homo_sapiens/Tools/VEP
https://github.com/Ensembl/ensembl-tools/archive/release/75.zip
https://github.com/Ensembl/ensembl-tools/archive/release/75.zip
http://hgdownload.cse.ucsc.edu/gbdb/hg19/bbi/All_hg19_RS.bw
http://hgdownload.cse.ucsc.edu/gbdb/hg19/bbi/All_hg19_RS.bw


Magi et al. BMC Genomics  (2015) 16:340 Page 13 of 16

association studies taken from over 23,000 independent
publications. Importantly, a large number (11,568) of the
records in GAD has a designation of whether the gene
of record was reported to be associated (Y) or not (N)
associated with the disease phenotype for that specific
record. Many records, for various reasons, do not have
such a designation. Genomic variants are associated to
phenotypic descriptions captured at multiple levels. The
top level is made of 19 “disease class” that comprise aging,
cancer, cardiovascular, chemdependency, developmental,
hematological, immune, infection, metabolic, mitochon-
drial, neurological, normalvariation, pharmacogenomic,
psych, renal, reproduction, vision other or unknown
(if the author did not identify a disease class). GAD
annotation was downloaded in txt format from http://
geneticassociationdb.nih.gov/.

ENCODE
The main goal of the Encyclopedia of DNA Elements
(ENCODE) project is to identify all functional elements
in the human genome, including coding and non-coding
transcripts, marks of accessible chromatin, and protein-
binding sites (The ENCODE Project Consortium 2004,
2007, 2011). The data sets generated by the ENCODE
Consortium are therefore particularly well suited for the
functional interpretation of genomic variants identified
in resequencing studies. To date, a total of 147 differ-
ent cell types have been studied using a wide variety
of experimental assays [20]. Chromatin accessibility has
been studied using DNase-seq, which led to the iden-
tification of 2.89 million DNase Iypersensitive sites that
may exhibit regulatory function. DNase footprinting was
used to detect binding between proteins and the genome
at a nucleotide resolution. To study the overlap between
RRAs and regulatory elements, we used the annota-
tion data produced by [58]. TF peaks, motifs, DHSs and
enhancers are the same as used in ENCODE Integrative
paper [20]. In total, there are 88 sequence-specific TFs
(TFSSs), 16 general TFs (like Pol2- and Pol3- associated
factors), and 15 chromatin-associated factors. A union set
of enhancer elements is used consisting of those obtained
using ChromHMM/Segway segmentation and distal reg-
ulatory modules obtained by discriminative training. All
the annotation files were downloaded from: http://funseq.
gersteinlab.org/data/.

RegulomeDB
RegulomeDB [29] is a very powerful tool that guides the
interpretation of regulatory variants in the human genome
by combining experimental datasets from ENCODE and
other sources with computational predictions and manual
annotations.
RegulomeDB makes use of large sets of data including

the following:

• Manually curated regions that have been
experimentally characterized to be involved in
regulation

• ChIP-seq information for a variety of important
regulatory factors across a diverse set of cell types

• chromatin state information across over 100 cell types
• expression quantitative trait loci (eQTL) information

allowing the association of distal sites with gene
promoters

RegulomeDB currently includes all available ENCODE
transcription factor (TF) ChIP-seq, histone ChIP-seq,
FAIRE, and DNase I hypersensitive site data, transcription
factor ChIP-seq data available from the NCBI Sequence
Read Archive, a large collection of eQTL, dsQTL and
ChIP-exo data. A total of 962 experimental datasets are
included, covering over 100 tissues and cells lines and
representing nearly 60 million annotations. These high-
throughput data sources are supplemented through man-
ual curation of literature sources. These provide valuable
information from low-throughput but high-quality assays
to aid in assigning function to SNVs. As an initial release,
RegulomeDB contained manual curation from 97 papers
focused on six loci, resulting in 188 genomic annotations.
It also included 1448 validated enhancer regions from the
VISTA Enhancer Browser and 855 SNVs shown to directly
affect NFKB and RNA Pol 2 binding in lymphoblastoid
cells. RegulomeDB authors developed a heuristic scoring
system based on functional confidence of a variant. The
scoring system represents with increasing confidence that
a variant lies in a functional location and likely results in a
functional consequence. Lower scores indicate increasing
evidence for a variant to be located in a functional region.
We applied RegulomeDB to all RRA loci for GRCh37 and
GRCh38 assemblies and we summarized the results in the
barplots of Additional file 1: Figure S1.j-l and Figure S2.j-l.

RAREVATOR
RAREVATOR is a Perl script that executes the Uni-
fiedGenotyper module of GATK for genotyping all the
SNVs and InDels that belong to RRA loci and a series
of R scripts that have been devised to filter and anno-
tate the resulting variants. The UnifiedGenotyper module
of GATK is a multiple-sample, technology-aware SNV
and InDel caller. It uses a Bayesian genotype likelihood
model to estimate simultaneously the most likely geno-
types and allele frequency in a population of N samples,
emitting an accurate posterior probability of there being
a segregating variant allele at each locus as well as for the
genotype of each sample. When the --output_mode
argument of GATK is set to “EMIT_ALL_SITES”, the Uni-
fiedGenotyper produces calls at any site specified in a
.BED file. Moreover, when --genotyping_mode is set
to “GENOTYPE_GIVEN_ALLELES” the genotype calls

http://geneticassociationdb.nih.gov/
http://geneticassociationdb.nih.gov/
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are forced to use only the alleles provided in a VCF file.
Thanks to these output settings, RAREVATOR is able to
make genotype calls for all the RRA loci by using the
exact position and the alleles of the 85111 SNVs and
the 11162 InDels stored in BED and VCF files. Once
the results of the genotype calls have been stored in
two VCF files (a file for SNVs and a file for InDels), R
scripts are used tomake germline or somatic calls for RRA
positions in which the reference allele is present. When
RAREVATOR is set in germline mode (--germline),
the R scripts analyze one sample at a time by remov-
ing all the GATK low quality calls, all the variants that
do not contain the reference allele and stores the results
in a VCF file. On the other hand, when the tool is set
on somatic mode (--somatic), the R script compares
the calls made by GATK for each pair of matched tumor
and normal samples. For each RRA locus, if the refer-
ence allele is not present in the normal sample and is
present in the tumor sample, then a Fisher exact test is
applied on the normal and tumor reads aligned at that
locus and if the p-value is statistically significant (< 0.01)
then the RRA somatic variant is annotated and stored in
a tab-delimited file. A tab-delimited file for each pair of
normal-tumor samples is generated. Each variant called
by RAREVATOR is annotated by using the VEP annota-
tion combined with GENCODE, GAD and RegulomeDB
annotation. RAREVATOR is freely available at http://
sourceforge.net/projects/rarevator. The package includes
the Perl and R codes, the VCF and BED files with all
the RRA variants informations and the manual describing
how to use the tool in detail.

DriverDB, Significantly mutated genes and pathways
DriverDB (http://ngs.ym.edu.tw/driverdb/) is a database
which incorporates 6079 cases of exome-seq data, anno-
tation databases (such as dbSNP, 1000 Genome and
Cosmic) and bioinformatics algorithms dedicated to
driver gene/mutation identification. DriverDB provide
two points of view, “Cancer” and “Gene”. The “Cancer”
section summarizes the calculated results of driver genes
by eight computational methods for a specific cancer
type/dataset and provides three levels of biological inter-
pretation for realization of the relationships between
driver genes. The “Gene” section is designed to visualize
the mutation information of a driver gene in five differ-
ent aspects. We interrogated all the tumor types of the
Cancer section of the database and we downloaded the
lists of driver genes identified by each of the eight driver
identification tools.
MutSigCV [35] analyzes lists of mutations discovered

in DNA sequencing, to identify genes that are mutated
more often than expected by chance given background
mutation processes. The input data to MutSigCV is
lists of mutations (and indels) from a set of samples

(patients) that were subjected to DNA sequencing, as well
as information about how much of the genomic region
is covered in the sequencing. To create the input lists
of mutations for MutSig, we annotated the muTect and
VarScan2 somatic variants with the VEP annotator and
we then converted the VCF annotated files in mac format
by using the vcf2maf tool (https://github.com/ckandoth/
vcf2maf). We applied MutSigCV with default settings on
somatic mutations identified by VarScan2 and muTect
with and without the somatic RRA variants detected by
RAREVATOR. DrGaP [36] is a powerful and flexible sta-
tistical framework for identifying driver genes and driver
signaling pathways in cancer genome sequencing stud-
ies. We downloaded DrGaP at http://code.google.com/p/
drgap/ and we applied it with default settings to the lists
of somatic mutations identified by muTect and VarScan2
and on the same lists augmented with the RAREVA-
TOR somatic calls. We used DrGaP to test pathways and
computational gene sets curated by Molecular Signatures
Database (MSigDB, http://www.broadinstitute.org/gsea/
msigdb/). The MSigDB is a collection of annotated gene
sets that are divided into 7 major collections, and sev-
eral subcollections. For DrGaP analysis we used the three
Gene Ontology sets (CC, BP, MF), the pathways curated
by Biocarta, KEGG and REACTOME and the 431 cancer
modules.

TCGA drivers interaction network
The interaction network of Figure 3 was built by using
the HumanNet v1 [59] as backbone. In [59], Lee et al.
developed a Bayesian statistical method that allows for the
evaluation of functional associations between gene prod-
ucts by integrating many heterogeneous functional data.
The HumanNet v1 is a probabilistic functional gene net-
work made of 18714 validated protein-coding genes of
Homo sapiens, constructed by Bayesian integration of 21
types of ’omics’ data from multiple organisms, with each
data type weighted according to how well it links genes
that are known to function together in Homo sapiens.
To build the networks of Figure 3 and Additional file 1:
Figure S3 we selected all the interactions of HumanNet
v1 that link the 291 TCGA driver genes. Colors nodes are
assigned according to the class of RRA variant they con-
tain and color border according to the cancer type for
which the gene was predicted as driver.

GRCh38
GRCh38 represents the first major assembly update since
GRCh37 in 2009, and introduces changes to chromosome
coordinates. We downloaded the GRCh38 assembly from
the GenBank FTP site: ftp://ftp.ncbi.nlm.nih.gov/gen
bank/genomes/Eukaryotes/vertebrates_mammals/Homo_
sapiens/GRCh38/. To understand the extent of this update
with respect to the set of loci studied in this work, we
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remapped the genomic positions of all the RRA loci from
GRCh37 to the GRCh38 assembly by using the NCBI
Genome Remapping Service (http://www.ncbi.nlm.nih.
gov/genome/tools/remap).

Additional files

Additional file 1: Supplemental methods. Supplemental methods to
Characterization and identification of hidden rare variants in the human
genome.

Additional file 2: Functionally relevant RRA SNVs. Tab-delimited Table
of missense, nonsense and splicing RRA SNVs.

Additional file 3: Functionally relevant RRA InDels. Tab-delimited
Table of Frameshift and splicing RRA InDels.
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