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X-inactivation informs variance-based testing for
X-linked association of a quantitative trait
Li Ma1,2*, Gabriel Hoffman2,3 and Alon Keinan2*
Abstract

Background: The X chromosome plays an important role in human diseases and traits. However, few X-linked
associations have been reported in genome-wide association studies, partly due to analytical complications and
low statistical power.

Results: In this study, we propose tests of X-linked association that capitalize on variance heterogeneity caused
by various factors, predominantly the process of X-inactivation. In the presence of X-inactivation, the expression
of one copy of the chromosome is randomly silenced. Due to the consequent elevated randomness of expressed
variants, females that are heterozygotes for a quantitative trait locus might exhibit higher phenotypic variance for
that trait. We propose three tests that build on this phenomenon: 1) A test for inflated variance in heterozygous
females; 2) A weighted association test; and 3) A combined test. Test 1 captures the novel signal proposed herein
by directly testing for higher phenotypic variance of heterozygous than homozygous females. As a test of variance it is
generally less powerful than standard tests of association that consider means, which is supported by extensive
simulations. Test 2 is similar to a standard association test in considering the phenotypic mean, but differs by
accounting for (rather than testing) the variance heterogeneity. As expected in light of X-inactivation, this test is
slightly more powerful than a standard association test. Finally, test 3 further improves power by combining the results of
the first two tests. We applied the these tests to the ARIC cohort data and identified a novel X-linked association near
gene AFF2 with blood pressure, which was not significant based on standard association testing of mean blood pressure.

Conclusions: Variance-based tests examine overdispersion, thereby providing a complementary type of signal to a
standard association test. Our results point to the potential to improve power of detecting X-linked associations in the
presence of variance heterogeneity.
Background
The X chromosome (ChrX) plays a role in complex hu-
man disease and quantitative traits [1-4]. Sex-specific
differences in prevalence, age of onset and severity have
been reported in many human diseases, including car-
diovascular diseases, asthma, and autoimmune diseases,
as well as a few birth defects, neurological and psychi-
atric disorders, and some common cancers [4-9]. While
many X-linked genes undergo X-inactivation, some de-
gree of expression heterogeneity among females has
been reported: 15% of X-linked genes escape inactivation
and 10% of X-linked genes exhibit variable patterns of
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inactivation, which might help explain the widespread
gender disparity in disease risk and pathogenesis [3]. As
many genome wide association studies (GWAS), how-
ever, disregarded or ineffectively analyzed ChrX [10,11],
its function in complex diseases and traits remains vague
at best. A prerequisite for the development and applica-
tion of powerful ChrX-wide association studies (XWAS)
is a coherent understanding of the problems that have
hindered such studies [12-17]. ChrX’s mode of inheritance
entails different phenotypic consequences of X-linked
polymorphisms, including the exposure of recessive muta-
tions in hemizygous males, a higher chance of dominant
mutations affecting females, and more complex mutation
models [14,15]. These, in turn, lead to many differences
between ChrX and the autosomes that should be carefully
accounted for in extending GWAS of the autosomes to ef-
ficient XWAS [14].
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Why did many GWAS ignore ChrX? Why have studies
that took on the challenge of analyzing it rarely found sig-
nificant associations? Differences between ChrX and the
autosomes require special attention lest they lead to re-
duced statistical power and fewer associations, or—in
some cases—even to false positives [17,18]. Among many
others, these differences reside in allelic sample size, SNP
density on arrays, sex-specific effect sizes, X-inactivation,
gene-gene interactions, ascertainment biases, population
stratification, and quality control. In addition to many
studies discarding ChrX completely due to such analytical
complications, some studies initially attempted analysis
of ChrX but eventually excluded it after having obtained
inflated results, indicative of false positives [personal com-
munications]. A recent meta-analysis that identified 95
loci associated with lipid levels reported four of these
exhibited striking sex-specific patterns, while seven
additional loci showed a significant association in one
sex but not in the sex-combined analysis [19]. Like
most studies, it excluded data from ChrX, which we
hypothesize is even more likely to harbor such loci with
sex-specific association patterns. Another problem of
ChrX is introduced by differential ascertainment biases
of X-linked variants, which we have shown to plague
not only genotyping arrays [20,21], but also next-
generation sequencing platforms [22], as well as geno-
typing arrays designed based on variants discovered
from the 1000 Genomes Project [22,23].
Here, we focus on one crucial feature of ChrX that

should be considered in association studies, namely dosage
compensation and X-inactivation [3,24-28]. X-inactivation
was discovered over fifty years ago [29], but it is still un-
clear whether and how X-inactivation is associated with
human complex traits. Most GWAS studies of X-linked
variants either ignored X-inactivation [12,30] or addressed
it by simply changing the male genotype coding from 0/1
to 0/2, i.e. considering hemizygous males as equivalent to
female homozygotes [13,28]. Tailored modeling and
testing of X-linked variants is needed to properly in-
corporate X-inactivation. Wang et. al. recently pro-
posed a likelihood-based test of X-linked association by
considering three possible states of X-inactivation—ran-
dom X-inactivation, skewed X-inactivation, and escape
from X-inactivation—and applying three respective associ-
ation tests that have better power in each scenario [16].
These studies addressed the challenge that X-inactiva-
tion poses for association testing. Here, we consider
this problem as an opportunity in disguise, as the pres-
ence of X-inactivation predicts unique patterns that can
be incorporated into association testing. In the pres-
ence of X-inactivation female heterozygotes are ex-
pected to exhibit elevated stochasticity of expressed
variants. For a variant affecting a quantitative trait, this
can translate to higher variance in the trait in
heterozygous than homozygous females. Several other
factors can also lead to different variances: A recent
study suggested that gene-gene interactions (epistasis)
may cause increased variance in heterozygotes [31], and
more generally a mutation can directly disturb the
homeostasis of the level of expression of a gene, thus
changing the phenotypic variances between genotypic
classes of the quantitative trait locus (QTL) [32,33].
While the standard association test considers genetic ef-

fect on phenotypic means, a test of genetic effect on pheno-
typic variance has been developed and applied to detect
genetic variants which affect gene expression levels [34,35]
and quantitative traits [33,36]. In this study, we extend the
test of variance and standard association test to ChrX and
tailor them to leverage the observation that heterozygous
females are expected to exhibit different variance than
homozygous females due to X-inactivation and other fac-
tors. We evaluated the performance of the tests of X-linked
associations proposed herein by extensive simulations and
report scenarios in which they facilitate improved power.
Finally, we applied the proposed tests to associate X-linked
quantitative trait loci in data from the Atherosclerosis Risk
in Communities (ARIC) cohort and report one novel asso-
ciation which was missed by the standard association test.

Methods
A simple illustration of X-inactivation and other factors
increasing phenotypic variation of heterozygous females
For an X-linked variant affecting a quantitative trait, ran-
dom X-inactivation can translate to higher variance in
the trait in heterozygous females compared to homozy-
gous females. For illustration, consider a simple scenario
of one X-linked QTL with two alleles, Q and q, then the
phenotypic model will be,

yi ¼ μþ gi þ ei;

where yi is the phenotype of individual i, μ is the popula-
tion mean, gi is the genotypic value of the QTL for indi-
vidual i, and ei is a random error of individual i, with
Var(ei) = σ2. First, consider an extreme case of the QTL
undergoing a completely random and uniform X-
inactivation, i.e. the same allele is inactivated in all cells
that contribute to the studied phenotype. This scenario
translates into a genotypic value of females as following:

gi ¼
0; if QTL ¼ qq

0 or a with equal probability of 0:5; if QTL ¼ Qq
a; if QTL ¼ QQ

8<
:

ð1Þ
where a is the additive effect of the QTL. For individuals
with one of the homozygotes (QQ or qq) genotype, the
phenotypic variation would be just the variance of the
random error, σ2. For individuals with a heterozygous
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genotype (Qq), on average, half of the individuals ex-
press the phenotype of Q allele and half exhibit the
phenotype of q allele. Therefore, the phenotypic vari-
ance of the heterozygous females will be a2/4 + σ2,
which is larger than the phenotypic variance of the ho-
mozygotes. The level of variance heterogeneity depends
on the effect size of the QTL with the difference in
variance between heterozygous and homozygous indi-
viduals being a2/4.
This exact equation will not hold in more complex

scenarios such as non-uniform inactivation or multiple
QTLs. For example, let’s now consider a scenario where
the X-inactivation is incomplete: the probability of ex-
pressing one QTL allele, Q, is 0.75 rather than 0.5. We
derived the variance of heterozygous individuals to be
3a2/16 + σ2, which is slightly less than the variance of
heterozygotes when the inactivation ratio is 0.5. In a
general situation of an inactivation ratio of θ, the variance
of heterozygous individuals is equal to θ(1 − θ)a2 + σ2.
When considering multiple X-linked QTLs or multiple
tissues with tissue-specific inactivation ratios, the variance
heterogeneity will be similar or less pronounced. However,
the variance of heterozygous females is expected to be
higher in any scenarios of X-inactivation, except for genes
that escape X-inactivation.
Besides random X-inactivation, many other factors can

also cause differing variances in phenotype across the
three genotypic classes. A mutation may affect the
homeostasis of the level of expression of a gene, the pro-
tein level, or even the level of the final phenotype, thus
changing the phenotypic variances across genotypic clas-
ses of the QTL [32]. Recent studies have also indicated
that genetic interactions may give rise to genotype-
dependent variances [31]. Finally, parent-of-origin effect
may increase phenotypic variance among those individ-
uals who are heterozygous at the QTL [37].
A test for X-linked association via inflated variance in
heterozygous females
First, we set out to directly test for higher phenotypic
variance of heterozygous than homozygous females. For-
mally, we propose a modified Brown-Forsythe test of
equal variances [38]. Suppose yi|g=j is the phenotypic
value of the ith individual in the jth genotype group (g)
with j = 0, 1, or 2 copies of the reference allele. We first
transform the original phenotype to a median-centered
phenotypic value by zi|g = j = |yi|g = j − ỹg = j|, where ỹg = j is
medial yi|g=j taken over i. The null hypothesis is that
phenotypic variances of the three genotype groups with
j = 0, 1, and 2 copies of the reference allele are all
equal. The alternative hypothesis is that female hetero-
zygotes have a larger phenotypic variance than others.
A test statistic is derived as
Tvar ¼
Z1
�
−Z0=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1
þ s2

0=2

n0þn2

r

where Z1
�

is the sample mean of zi|g=1 over i, Z0=2

�
is the

sample mean of zi|g=0 and zi|g=2 combined, s21 and s20=2
are the sample variances respectively, and nj is the sam-
ple size of zi|g=j. Under the null hypothesis, the statistic
follows a t-distribution with degrees of freedom given

by df ¼
s21=n1þs2

0=2
= n0þn2ð Þ

� �2

s21=n1ð Þ2= n1−1ð Þþ s2
0=2

= n0þn2ð Þ
� �2

= n0þn2−1ð Þ
. This formu-

lation assumes that female homozygotes for either allele
exhibit similar phenotypic variance. However, this as-
sumption can be relaxed with a generalization to an analysis
of variance (ANOVA)-based test statistic that allows each
of the three genotypes to exhibit different variances. Add-
itionally, this test aims for variable levels of X-inactivation
or other contributing factors by simply comparing variances
between heterozygous and homozygous females.

A weighted test for X-linked association that accounts for
differential variances
Second, we propose a weighted regression [39] approach
for testing X-linked associations to account for the vari-
ance inflation caused by factors including X-inactivation.
A weighted regression is commonly applied when the re-
sidual variance is not constant by assigning less weight
to the less precise measurements, and more weight to
the more precise measurements. We propose to use the
inverse of the empirical variance for each genotypic

group as weights, i.e. wi g¼jj ¼ 1= ^Var yg¼j

� �
; since the

true variances are unknown. Note that wi|g=j can be different
for each of j = 0, 1, or 2 copies of an allele, thereby allowing
for different variances between the two female homozygote
genotypes and the female heterozygote genotype.

Combined test of variance and weighted association by
Stouffer’s approach
As the two tests described above, the variance-based
test and the weighted association test, can capture par-
tially uncorrelated signals and are independent under
the null hypothesis, we propose to further improve
power of associating X-linked variants by combining
the two into a single test statistic using the Stouffer’s Z-
score method: p-values of the two tests are transformed
to Z scores, Z1 and Z2, and the Z-statistic of the com-
bined test would be Z1þZ2ffiffi

2
p . Since the power of the variance

test and the weighted association test can be very differ-
ent, it is desirable to also use a weighted Z-statistic,
w1Z1þwZ2ffiffiffiffiffiffiffiffiffiffiffi

w2
1þw2

2

p ; where w1 and w2 are the weights of the two tests
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respectively. In this study, we used equal weights for
the two tests, but this can be improved in future stud-
ies. Implementation of all three tests developed in this
study, including source code, will be made available as
part of the next release of our chromosome X-Wide
Analysis tool-Set, which is freely available for
download from http://keinanlab.cb.bscb.cornell.edu/
content/tools-data.
Implementation of standard association testing without
variance heterogeneity
For comparison purposes, we also implemented a stand-
ard association test in the same way as how ChrX is
handled in PLINK [30]. The standard test is similar to
the weighted test but assuming equal variances between
genotypic groups. Basically, a linear regression model
was fitted with females coded as 0, 1, or 2 without con-
sidering variance heterogeneity.
Simulations
Genotype data were simulated under the Hardy-
Weinberg Equilibrium (HWE) with given allele frequen-
cies of the QTL. When simulating phenotype data, we
considered a null scenario of no association vs. a simple
alternative scenario of one X-linked causal variant.
Under the null hypothesis, genotype and phenotype data
were simulated independently. Under the alternative hy-
pothesis, the genotypic value of an individual was simu-
lated with a complete and uniform X-inactivation
process by randomly assigning heterozygous females to
express one of the QTL alleles as described in Equation
(1), equivalent to female heterozygotes having a geno-
typic value equal to that of either female homozygotes
with equal probability. The phenotypic value was then
generated by adding a random error from a standard
normal distribution to the genotypic value. To consider
scenarios where other factors than X-inactivation con-
tribute to increased variance in heterozygous females,
we also simulated increased variance heterogeneity by
directly introducing additional random noises to individ-
uals with heterozygous genotypes (10% and 20% of the
residual variance). In addition, we varied the sample size
from 1000 to 5000, the minor allele frequency of QTL
from 0.1 to 0.3, and the effect size of QTL from 0.1 to
0.2. Note that we only included female individuals in
our study. For each simulated dataset, we applied the
three test statistics as well as a standard association
test. To evaluate the Type-I error and power of the
proposed tests, for each scenario we repeated the
simulation 100,000 times and calculated the type-I
error rate and power as the fraction of simulations
with a p-value < 0.05 under the null and alternative hy-
potheses, respectively.
Application to GWAS data from ARIC
Ethics statement
The ARIC study has been approved by the Institutional
Review Boards (IRB) of all participating institutions, in-
cluding the IRB boards of the University of Minnesota,
Johns Hopkins University, University of North Carolina,
University of Mississippi Medical Center, and Wake
Forest University. Because this study analyzed publicly
available data, no additional ethical concerns need to
be considered beyond those mentioned in the original
publications [40].
The Atherosclerosis Risk in Communities (ARIC)

Study is a prospective study of atherosclerotic diseases
[40]. A total of 15,792 European American and African
American individuals were recruited in the baseline
examination in 1987–1989, with three triennial follow-
up examinations. We included 9,713 European Ameri-
cans, for whom both phenotype and genotype data were
available, in this study. Many atherosclerotic disease re-
lated traits were measured in the ARIC study, including
total cholesterol (TC), low-density lipoprotein choles-
terol (LDL-C), high-density lipoprotein cholesterol
(HDL-C), triglyceride (TG), systolic blood pressure
(SBP), diastolic blood pressure (DBP), and body mass
index (BMI). We obtained ~1 million directly measured
SNP genotypes with the Affymetrix 6.0 SNP array and
considered 34,527 X-lined SNPs. We applied standard
quality control (QC) procedures, including minor allele
frequency (>5%), missing rate of SNP (<10%), missing
rate of individual (<10%), and Hardy-Weinberg Equilib-
rium p-value in females (>5 × 10−5) [30]. We included a
total of 24313 X-linked SNPs after QC, indicating a
ChrX-wide significance level of 2 × 10−6 after Bonferroni
correction. We applied the three proposed tests that in-
corporate variance heterogeneity as well as the standard
association test to the seven quantitative traits from
ARIC as described above. In addition, we applied similar
QC procedures to the autosomal SNPs and applied the
weighted and standard association tests to the autosomal
SNPs after QC.

Results and discussion
Evaluation of power and error of tests involving variance
heterogeneity
We carried out extensive simulations to evaluate the
type-I error and power of the three tests of X-linked as-
sociation we proposed (Methods), including (1) a test of
inflated phenotypic variance in heterozygous females (re-
ferred to as variance throughout), (2) a weighted test
that accounts for differential variance between heterozy-
gous females and homozygous females for each allele
(weighted), and (3) a combined test of the above two using
Stouffer’s Z-score method (combined). We also compared
this with a standard association test (standard). We
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Table 1 Type-I error rate of the four tests of X-linked
associations under various scenarios

Sample
size

Type-I error

Standard Variance Weighted Combined

1000 0.0500 0.0492 0.0533 0.0514

2000 0.0504 0.0503 0.0498 0.0503

3000 0.0494 0.0490 0.0505 0.0514

5000 0.0510 0.0486 0.0500 0.0511
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calculated type-I error rates and power of the four tests as
the proportion of simulations with a p-value less than the
preselected significance level under the null and alternative
hypotheses, respectively. We repeated this for four sample
sizes, 1000, 2000, 3000, and 5000. All four tests accurately
control for type-I error rate at the desired nominal level of
significance (0.05; Table 1).
Next, we compared the power of the four tests using

simulations. We considered two types of scenarios where
variance heterogeneity is caused either by random X-
inactivation alone or by X-inactivation plus other poten-
tial noises affecting heterozygous females (Table 2). In
general, the variance test of X-inactivation is less power-
ful than the other association tests, as expected by this
test being based on variance, which is generally less
powerful than tests of means. However, enhancing the
standard by accounting for the variance as incorporated
in the variance test, as accomplished by the weighted
test, always leads to an increase in power, if only a slight
one (Table 2). The performance of the combined test
largely depends on the power of the variance test: it out-
performs the standard test when the variance test has
any power and thereby contributes to the combined test
Table 2 Power of the four tests of X-linked associations unde

Simulation parameters X-inactivation in heterozygous females

Standard Variance Weighted Comb

N = 1000 MAF = 0.1 a = 0.1 26.7 5.3 28.8 21.

N = 1000 MAF = 0.3 a = 0.1 53.8 6.5 54.2 42.

N = 1000 MAF = 0.1 a = 0.2 75.7 7.5 75.9 54.

N = 1000 MAF = 0.3 a = 0.2 98.1 11.1 98.2 85.

N = 2000 MAF = 0.1 a = 0.1 47.5 5.9 48.2 28.

N = 2000 MAF = 0.3 a = 0.1 82.4 6.9 82.4 56.

N = 2000 MAF = 0.1 a = 0.2 96.3 10.6 96.3 82.

N = 3000 MAF = 0.1 a = 0.1 63.8 5.7 64.0 39.

N = 3000 MAF = 0.3 a = 0.1 94.7 7.0 94.7 72.

N = 3000 MAF = 0.1 a = 0.2 99.6 12.5 99.6 94.

N = 5000 MAF = 0.1 a = 0.1 85.4 6.6 85.5 59.

Shown are percentages of simulations where the test in the column positively iden
sizes (N), minor allele frequencies of the QTL (MAF), and effect sizes of the QTL (a).
statistic. In the set of simulations reported in Table 2,
this is only the case in scenarios when an additional
source of noise is simulated, especially in cases where
the power of the standard test is moderate. More gener-
ally, the tests that specifically test for variance hetero-
geneity (variance and combined) performs much better
when faced with higher level of phenotypic noise for het-
erozygous females as can be observed by comparing the
right hand to the left hand of Table 2.

The variance and standard tests captures different
association signals
We have shown in Table 2 that the combined test out-
performs the standard test when the variance test has
power, indicating the different signals captured by the
variance and standard tests. To evaluate this difference,
we conducted a similar set of simulations as described
in Table 2, and focused on the results of the variance
and standard tests. To clearly show the difference of
the two, we added one scenario with a higher level of vari-
ance heterogeneity (20% additional noise in heterozygous
individuals). In Table 3, we summarized the fraction of
simulations with p-value less than 0.05 for each of the two
tests and the fraction of simulations with both tests having
a p-value less than 0.05 (shared), with the difference be-
tween these fractions measuring the independent signals
captured by each test. The expected value of the shared
fractions matched the observed shared fractions well
(Table 3), thus suggesting the independence of the two
tests under the alternative hypothesis. As these two tests
capture different signals, when the variance heterogeneity
is largely increased without changing the means (in the
case of 20% additional noise in heterozygous females), the
r various scenarios

X-inactivation and additional noise in heterozygous females

ined Standard Variance Weighted Combined

3 26.6 18.0 28.0 33.8

4 52.0 28.9 53.3 63.4

5 73.3 24.4 73.3 72.2

9 97.9 39.0 98.1 96.5

4 45.0 29.3 45.9 56.8

3 81.8 45.4 82.4 87.2

4 94.6 41.1 95.1 95.1

1 62.1 39.5 62.1 73.6

8 93.2 58.8 93.5 96.4

1 99.3 54.3 99.3 99.1

4 83.6 57.5 84.6 92.2

tifies the QTL with p-value < 0.05. Simulation scenarios include varying sample



Table 3 Standard and variance tests capture different signals in simulations

Simulation parameters X-inactivation and 10% additional noise in
heterozygous females

X-inactivation and 20% additional noise in
heterozygous females

Standard Variance Shared (expected) Standard Variance Shared (expected)

N = 1000 MAF = 0.1 a = 0.1 26.5 17.8 4.5 (4.7) 26.9 40.6 10.6 (10.9)

N = 1000 MAF = 0.3 a = 0.1 51.0 29.2 15.1 (14.9) 49.9 62.5 30.8 (31.2)

N = 1000 MAF = 0.1 a = 0.2 73.8 24.0 18.0 (17.7) 73.6 47.5 34.6 (34.9)

N = 1000 MAF = 0.3 a = 0.2 98.1 39.2 37.7 (38.5) 97.8 71.2 63.6 (69.6)

N = 2000 MAF = 0.1 a = 0.1 46.7 29.6 14.2 (13.8) 45.9 65.9 29.8 (30.2)

N = 2000 MAF = 0.3 a = 0.1 81.1 45.2 36.9 (36.7) 80.8 87.2 70.5 (70.5)

N = 2000 MAF = 0.1 a = 0.2 95.7 41.4 39.7 (39.6) 95.2 75.8 72.2 (72.2)

N = 3000 MAF = 0.1 a = 0.1 62.3 39.4 25.4 (24.5) 62.5 82.2 51.5 (51.4)

N = 3000 MAF = 0.3 a = 0.1 93.1 57.9 54.1 (53.9) 93.1 96.0 89.3 (89.4)

N = 3000 MAF = 0.1 a = 0.2 99.3 54.8 53.6 (54.4) 99.2 89.7 88.9 (89.0)

N = 5000 MAF = 0.1 a = 0.1 83.5 57.0 47.6 (47.6) 82.3 95.7 78.7 (78.7)

Shown are percentages of simulations where the test in the column positively identifies the QTL with p-value < 0.05. The shared column denotes the case where
both the standard and the variance test significantly identify the QTL, and the differences between the shared and the two tests indicate the different signals the
two tests capture. The expected is calculated by assuming the standard and variance tests are independent. Simulation scenarios include varying sample sizes (N),
minor allele frequencies of the QTL (MAF), and effect sizes of the QTL (a).
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variance test can possibly outperform the standard test of
association (Table 3).

Application to XWAS in ARIC data
We applied the three newly proposed tests to the ARIC
data, as well as a standard association test. We included
a total of 24313 X-linked SNPs and 7 quantitative traits,
including total cholesterol (TC), low-density lipoprotein
cholesterol (LDL-C), high-density lipoprotein cholesterol
(HDL-C), triglyceride (TG), systolic blood pressure
(SBP), diastolic blood pressure (DBP), and body mass
index (BMI). Using a Bonferroni-corrected significance
level for ChrX and one trait, we identified only one sig-
nificant association for SBP using the variance test
(Table 4). Interestingly, our results indicate that signals
with this variance test are not in the same loci as those
with a standard association test, in line with these two
capturing very different types of signals (Figure 1). Spe-
cifically, the most significant locus associated with SBP
according to the variance test is not detected by the
standard association test, and vice versa. The most sig-
nificant SNP in the novel locus discovered with the
Table 4 P-values of four association tests between SNP
rs4427330 and 7 quantitative traits in ARIC

Tests TC LDL HDL TG SBP DBP BMI

Standard 0.37 0.46 0.37 0.77 0.90 0.89 0.56

Variance 0.28 0.7 0.95 0.12 1.1 × 10−6 5.6 × 10−4 0.22

Weighted 0.77 0.62 0.37 0.62 0.45 0.59 0.096

Combined 0.54 0.72 0.82 0.27 2.9 × 10−4 0.016 0.071
variance test is rs4427330 (P = 1.1 × 10−6; Pc = 0.027
following conservative Bonferroni correction for the
number of X-linked SNPs tested). In contrast, no SNPs
are chromosome-wide significant using the standard
test. We found rs4427330 to also be nominally associ-
ated with DBP (P = 5.6 × 10−4). These results support
the unique perspective added by tests for increased vari-
ance in heterozygous females in associating X-linked
QTLs. Finally, in reported results of association with
blood pressure from the Framingham Heart Study,
rs4427330 has been nominally significant, though not re-
ported since did not meet genome-wide significance
[41]. Rs4427330 is located upstream of gene AFF2 (also
called FMR2), which might regulate splicing of ATRX, a
gene that is associated with alpha-thalassemia (as a com-
ponent of X-linked alpha-thalassemia mental retardation
syndrome) [42]. The type of thalassemia observed in this
disorder (Hb H thalassemia) can cause anemia and has
been associated with hypertension [43].
Although no significant associations were identified

using the other two variance-based tests, we further com-
pared the power between the weighted and standard asso-
ciation tests using those empirical results. To reduce
noises, only the top associated SNPs were included in the
comparison with at least one of the two p-values (weighted
and standard tests) smaller than a cutoff value. If the two
tests are equally powerful, we expect the proportion of
SNPs with a smaller p-value from the weighted test to be
50%. We observed that the weighted test was more
powerful than the standard test for X-linked SNPs for
six out of the seven traits across all the cutoff values in
the ARIC data with the difference being larger for



Figure 1 Variance and standard association tests point to different loci. Manhattan plots are shown for the X chromosome for both the
variance test (top) and a standard association test (bottom) for association with systolic blood pressure in the ARIC study.
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smaller or more stringent cutoff values (Figure 2A). In
addition, the weighted test provided a smaller p-value
than the standard test for all the seven traits on the top
associated SNP from the standard test (Table 5). However,
the same analysis applied to the autosomes failed to reveal
the trend (Figure 2B), suggesting X-inactivation that is
unique to chromosome X might have a larger effect on
the variance heterogeneity than other factors that are as-
sociated with both chromosome X and autosomes. These
empirical results from the ARIC study further support the
existence of variance heterogeneity on chromosome X in
real data and the potential of increasing power by incorp-
orating it.
Figure 2 Power improvement of weighted association test for the X chr
nominal significance level (x-axis) in either the weighted test or the standard as
p-value in the former. Colors denote different traits. Fraction greater than 0.5 (d
higher power of the weighted association test over the standard test for chrom
Conclusions
In this study, we demonstrated a phenomenon of in-
flated phenotypic variation in females that are heterozy-
gous for an X-linked QTL compared to females that are
homozygous, which can be caused by random X-
inactivation and other factors. Inspired by this, we pro-
posed several tests for associating X-linked QTLs that
are based on either directly testing for the inflated
phenotypic variance or accounting for it as part of the
testing for mean phenotypic effect. We have shown by
simulations that the variance-based test captures differ-
ent signals than the standard association test, thus can
be used as a complementary test. After studying the
omosome (A) and the autosomes (B). For all SNPs with p-value below a
sociation test, the figure presents the fraction that have a more significant
otted horizontal line) and its increase with significance level both point to
osome X (A), while the trend is not obvious for the autosomes (B).



Table 5 P-values of the standard and weighted
association tests on the top associated SNP from the
standard test for 7 quantitative traits in ARIC

Trait Top SNP Standard Weighted

TC rs182215359 2.0 × 10−5 3.4 × 10−6

LDL rs2257384 4.3 × 10−7 1.9 × 10−6

HDL rs6530184 1.1 × 10−4 9.5 × 10−5

TG rs5934418 7.3 × 10−6 2.4 × 10−6

SBP rs5905825 1.2 × 10−5 1.2 × 10−5

DBP rs7885152 2.8 × 10−6 2.6 × 10−6

BMI rs1120140 5.7 × 10−6 3.8 × 10−6

The weighed test outperformed the standard test, even though this
comparison favored the standard test by using SNPs that had the smallest
p-value from the standard association test for each of the seven traits.
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power of these tests by simulations, we applied them to
GWAS data from the ARIC study and identified an asso-
ciation between rs4427330 and systolic blood pressure
that is not captured by standard association testing.
The newly proposed tests have similar or slightly bet-

ter power than a standard association test in certain sce-
narios, but they capture unique signals using a different
type of information based on variances, as demonstrated
in simulations and the analysis of ARIC data. We there-
fore recommend using the variance-based tests as a
complementary test to the standard mean-based test.
While our simulations are restricted to a simplistic sce-
nario of complete and random X-inactivation, these re-
sults point to the potential of a test of X-linked variance
heterogeneity and for improvement in power of X-linked
association testing when variance heterogeneity is in-
volved. Interestingly, our results indicate that signals
with this test are not in the same loci as those with a
standard association test. The low correlation between
the two statistics reinforces the fact that they each seek
different features in the data.
Combined with our simulation studies that support a

potential improvement in power when variance hetero-
geneity is involved, these results suggest that these tests
merit further investigation. We will continue to develop
such statistics and apply them to datasets that may re-
flect different types or levels of X-linked variance hetero-
geneity. For example, an ANOVA-like test for variance
heterogeneity in general—rather than inflated variance
in heterozygous females—can be similarly derived. We
think this work will also pave the way to more sophisti-
cated test statistics that combine the variance heterogen-
eity and tests of association of the means that further
increase the power for detecting X-linked associations.
Note that these variance-based tests are for quantitative
traits, but can be potentially generalized for binary traits
by making them quantitative so their variance can be
considered, e.g. via liability threshold modeling [44]. We
also hope this work will provide the incentive for the
analysis and re-analysis of underutilized data for the X
chromosome in many genome-wide association studies.
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