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analysis of bZIP transcription factors and their
expression profiles in response to multiple abiotic
stresses in Brachypodium distachyon

Xiang Liu and Zhaoging Chu’

Abstract

Background: Plant basic leucine zipper (bZIP) transcription factors are one of the largest and most diverse gene
families and play key roles in regulating diverse stress processes. Brachypodium distachyon is emerging as a widely
recognized model plant for the temperate grass family and the herbaceous energy crops, however there is no
comprehensive analysis of bZIPs in B. distachyon, especially those involved in stress tolerances.

Results: In this study, 96 bZIP genes (BdbZIPs) were identified distributing unevenly on each chromosome of B.
distachyon, and most of them were scattered in the low CpG content regions. Gene duplications were widespread
throughout B. distachyon genome. Evolutionary comparisons suggested B. distachyon and rice's bZIPs had the
similar evolutionary patterns. The exon splicing in BdbZIP motifs were more complex and diverse than those in
other plant species. We further revealed the potential close relationships between BdbZIP gene expressions and
items including gene structure, exon splicing pattern and dimerization features. In addition, multiple stresses
expression profile demonstrated that BdbZIPs exhibited significant expression patterns responding to 14 stresses,
and those responding to heavy metal treatments showed opposite expression pattern comparing to the treatments
of environmental factors and phytohormones. We also screened certain up- and down-regulated BdbZIP genes with
fold changes 22, which were more sensitive to abiotic stress conditions.

Conclusions: BdbZIP genes behaved diverse functional characters and showed discrepant and some regular
expression patterns in response to abiotic stresses. Comprehensive analysis indicated these BdbZIPs' expressions
were associated not only with gene structure, exon splicing pattern and dimerization feature, but also with abiotic
stress treatments. It is possible that our findings are crucial for revealing the potentialities of utilizing these
candidate BdbZIPs to improve productivity of grass plants and cereal crops.
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Background

In plants, the leucine zipper (bZIP) transcription factors
are one of the largest and most conserved gene families
and play key roles in regulating diverse biological pro-
cesses [1-5]. The bZIP domain contains about 60 to 80
amino acids and characteristically harbors two distinct
function regions: a highly conserved basic region N-x7-
R/K-x9 and a less conserved leucine zipper coiled-coil
motif [6]. And the basic region and leucine zipper
coiled-coil motif region was linked by a hinge region.
The bZIP proteins bind to DNA by forming heterotypic
or homotypic complexes [7,8]. The basic region is re-
sponsible for nuclear localization and DNA binding spe-
cifically, and the following leucine zipper motif
consisting of several repeats of leucine or other hydro-
phobic amino acids and grant for recognition and
dimerization specificity [9]. The intron patterns within
the basic and the hinge region are very important for
their functional evolution due to different status of exon
splicing in these regions. In plant species such as rice,
maize and Arabidopsis, the patterns of those motifs ex-
hibited regular conservation and diversity [10,11]. The
bZIP proteins are dimerized transcription factors in all
eukaryotes, and the leucine zipper is responsible for the
dimerization of bZIP proteins. The rules of dimerization
specificity for bZIP proteins have been depicted [12-14].
Depend upon the basis of the presence of attractive or
repulsive interhelical g«»e electrostatic interactions and
the presence of polar or charged amino acids in the a
and d positions of the hydrophobic interface of the leu-
cine zipper region, dimerization specificity of bZIP pro-
teins in plant species such as Arabidopsis, maize and
rice have been predicted [10,11,15].

The evolution of genetic network complexities in flow-
ering plants has revealed the important roles of regula-
tory transcription factor evolution to physiological
variation among species [16,17]. As one of important
transcription factor family, the plant bZIP transcription
factors play pivotal roles in developmental processes and
multiple stresses in response to environmental tolerance.
The ancestor of green plants possessed four bZIP genes
functionally involved in oxdative stress and unfolded
protein responses that are bZIP-mediated processes in
all eukaryotes [18]. Furthermore, bZIP genes regulate di-
verse biological processes such as seed development,
flower maturation, pathogen defense, and light and
stress signaling [3,6]. Fundamentally, various transcrip-
tion factors had been observed to regulate the ABA-
responsive gene expression [19,20]. The transcriptional
drought, cold, and salinity stress gene expression have
been concluded [21]. So far, members of bZIP transcrip-
tion factors have been identified or predicted in most of
plant species analyzed [22-26]. In cucumber, 64 bZIPs
were observed and all of the select genes displayed
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down-regulated with PEG treatment [24]. In maize,
ZmbZIP17 functions as an endoplasmic reticulum stress
transducer and interact with ABA-responsive cis-
elements (ABRE) [5]. In rice, plenty of OsbZIPs dis-
played different expression patterns when dealed with
cold or salt stresses [10]. OsbZIP71 was strongly induced
in ABA-mediated drought and salt tolerance in rice [27].
OsbZIP46 expression was strongly induced by drought,
heat, and ABA, and functions as a positive regulator of
ABA signaling and drought stress tolerance of rice de-
pending on its activation [28]. OsbZIP52/RISBZS could
function as a negative regulator in cold and drought
stress environments [29]. A bZIP gene ABI5 played an
important role in ABA-arrested seed germination, was
robustly associated with the flower transition in Arabi-
dopsis [30]. A bZIP gene ThbZIP1 from Tamarix hispida
in response to abiotic stresses had been characterized
and showed to have an increased tolerance to drought
and salt. Microarray analysis had been shown that many
ROS scavenging genes were up-regulated by ThbZIPI
under salt stress conditions [31]. MabZIP3 was isolated
from banana fruit, it was responsive to MeJA, ABA, and
chilling stress [32]. As the most dangerous pollutions,
heavy metals had been regarded as the new stress factors
affecting the growth of plants. Foods contaminated with
heavy metal tolerance profile of different native or gene-
modified plant species had been applied [33-39]. Though
studies had shown that bZIP transcription factors played
key roles when plants grew under environmental factors
and phytohormones, there was few research of bZIP
genes study in heavy metal stresses so far.

B. distachyon is a new emerging model plant of
Poaceae family and the first species of sequenced grass
subfamily Pooideae [40]. Due to its high efficiency for
genetic manipulation and compact genome, B. distach-
yon has become more crucial in applied functional gen-
omics [41]. Researches on B. distachyon are moving
forward rapidly, and the research field has covered grain
development and starch deposition, biotic and abiotic
stress responses, and biofuel production [42-44]. Global
gene expression in B. distachyon had revealed extensive
network plasticity in response to abiotic stress [45]. Evo-
lutionary studies on bZIP gene families had been shown
that a shifting landscape of biochemical functions related
to signaling and gene expression contributed to species
diversity [46]. Although these studies reported were in-
volved in various plant species, none of researches were
associated with the evolution and the molecular biology
of stress in detail, especially in the grain model plant B.
distachyon. There is no investigation of bZIP transcrip-
tion factors in B. distachyon so far. Understanding the
detailed evolutionary history of BdbZIPs and their corre-
sponding functions in stress biology is of great import-
ance in B. distachyon.
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In this study, we identified BdbZIP genes genome-
widely in B.distachyon and further investigated their
chromosomal localization and evolutionary relationship
with their counterparts from monocot O. sativa and
dicot A. thalinana. We analyzed their exons splicing of
basic and hinge region of bZIP domain, which are very
important for bZIP functional evolution. We also char-
acterized dimerization pattern within the leucine zipper
motif and gene structures, and obtained tissue-specific
gene expression profile and genes expression profile
responding to multiple stresses including environmental
factors, phytohormones, and heavy metals. This study
increased our understanding of BdbZIP family genes as-
sociated with stress adaptation and tolerance, which was
crucial for further study to improve the productivity of
grass plants and cereal crops.

Methods

Plant growth condition and treatments

The seeds of B. distachyon Bd21-3 were surface steril-
ized with 20% NaOCI and planted on 0.6% agar contain-
ing 0.5x Murashige and Skoog and 0.3% Sucrose. Plants
were grown at 22°C under 16-h-light/8-h-dark condi-
tions and the light intensity was 120 um m™> s™*. As for
stress expression analysis, 2-week-old seedlings were
treated with 3 major treatment groups including group
1-environmental factors ( cold, heat, H,O,, PEG, and
NacCl), group 2-heavy metals (Cu, Zn, Mn, Cd, and Pb)
and group 3-phytohormones (SA, 6-BA, ABA, and MeJA)
(As for detailed treatments, please refer to Additional
file 1: Table S1).

bZIP sequence extraction and structure analysis

The sequences of B. distachyon bZIP genes were ob-
tained from BGD (Brachypodium Genome Database)
(http://Brachypodium.org) and Plant Transcription Factor
Database verition 3.0 (Plant-TFDB 3.0) (http://planttfdb.
cbi.pku.edu.cn) [47]. The Arabidopsis and rice bZIP genes
were retrieved from The Arabidopsis Information
Resource (TAIR), Plant-TFDB and National Rice Gene
Database (http://www.ricedata.cn/gene). The status
of intron and exon were annotated according to the
database. All bZIP domains were verified by SMART
(http://smart.embl-heidelberg.de) and Pfam (http://
pfam.sanger.ac.uk). All BAbZIP motifs were analyzed
by MEME (http://meme.nbcr.net/meme). The limits of
minimum width, maximum width and maximum num-
ber of motifs were specified as 10, 50 and 50 respect-
ively. Fifteen motifs including bZIP domain were
finally verified with the low E-value (<-43). The motifs
were numbered according to their order displayed in
MEME.
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Evolutionary analysis

Phylogenetic and molecular evolutionary analyses were
calculated in MEGA 5.0 package by using the p-distance
model, and the Neighbor-joining statistical method
followed by 1000 bootstrap replications were applied
[48]. The bZIP protein sequences of B. distachyon,
Arabidopsis and rice were loaded into MEGA 5.0. In
addition, homology searches were performed in rice and
Arabidopsis with BLAST, and the SCORE value and
E-value were taken into account for judging the homo-
logous genes. bZIP gene duplication events among B.
distachyon, Arabidopsis and rice were analyzed through
Plant Genome Duplication Database (http://chibba.
agtec.uga.edu/duplication) [49]. The Ka and Ks values
were listed as Additional file 1: Table S2. The data of
the phylogenetic tree was deposited in Treebase Web
(Accession URL: http://purl.org/phylo/treebase/phylows/
study/TB2:517110).

Chromosomal distribution and duplication of BdbZIPs
The location information of each BdbZIP gene on each
chromosome was detected from BGD (Brachypodium
Genome Database). The genetic linkage map was con-
structed with MapDraw [50]. The number of CpG in
every 100 kb scale was measured and the status of CpG
content was constructed by PermutMatrix. Every dupli-
cated BdbZIP gene pairs were put in same bracket.

Expression data analyses

To analyze tissue (root, stem, leaf and early spikelet)
specific expression, 2-week-old seedlings and early
spikelets from 5-week-old of B. distachyon were sam-
pled. Total RNA was extracted as described previously
[51]. The cDNA was synthesized with 3.0 pg of total
RNA by using PrimeScript Reverse Transcriptase
(TAKARA). The reaction mixtures were diluted 20
times with distilled water and used as templates for
quantitative real-time PCR. The primers used in this
paper were listed in Additional file 1: Table S3. The
qPCR was conducted and repeated three times. The re-
action condition was as follows: 95°C for 3 mins, 40 cy-
cles of 95°C for 10 s, 55°C for 30 s. The expression
profiles were calculated with —AACT values. Fold
changes were also calculated with the formula “fold
change = 27**“™” Expression data and hierarchical
clustering analysis of all the samples were carried out
using PermutMatrix 1.9.3, and shown with green-red
gradient. The up-regulated genes were defined as a fold
change of = 2 with p-value <0.05 and marked with red
color, and a fold change of < 0.5 were defined as down-
regulated genes with p-value <0.05 and marked with
green color. All qPCR data were submitted to NCBI
GEO dataset. The accession number is GSE66458.
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Results and discussion

Identification of bZIP genes in plants

To investigate the evolution of bZIP genes in plant spe-
cies, 21 plants from low to high grade were selected and
the numbers of their bZIP genes were identified. The
green plants were covered from Chlorophyta to Embyo-
phyta subkingdoms. The evolutionary tree for these spe-
cies was constructed as in Figure 1. After searching BGD
and TFDB database and further validated by SMART
and Pfam domain analysis, 96 unique bZIP genes were
identified from B. distachyon.The number of bZIP genes
in plants examined varied from 7 to 136. Some plant
species maintained the high number of bZIP genes,
which might contribute to their numerous tandem du-
plications and large-scale segmental duplications [52].
Except Zea mays had a little bit more (126). bZIP genes,
the plant species sub-grouped in monocot clades had
approximately the close numbers (95-104), which might
due that the species in this clade shared the common
ancestor of Poaceae and had similar whole genome
duplication [53]. B. distachyon fell into monocot and
shared the same clade with Triticum aestivum, which
was consistent with the notion that these two species
had closer relationships. Comparing to Embrophyte, the
Chlorophyta species had much less bZIPs. We inferred
that high grade plants had stronger environment adapta-
tion abilities with more bZIP genes. Speculatively, during
evolution, B. distachyon and other monocot species
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maintained the high number of bZIP genes might con-
tribute to large-scale segmental duplications.

Chromosomal location and duplication of BdbZIP genes
Although the basic leucine zipper transcription factors
are widely distributed in all plant kingdoms, the chromo-
somal location of bZIP genes in B. distachyon is still
unclear. Based on our analysis, bZIP genes existed in
B. distachyon were designated as BdbZIP1-96 accord-
ing to their top-to-bottom position on chromosomes
from I to V (Figure 2 and Additional file 1: Table S4).
BdbZIP genes were scattered on each chromosome,
but their distributions were obviously not uniform in
density. Certain chromosome regions had relatively
high density of BdbZIP genes. Except for the smallest
chromosome V, there were one or two BdbZIP clusters
on each chromosome.

To probe the potential evolutionary mechanisms of
BdbZIP gene family, according to described in [50] both
tandem and segmental duplication events in terms of
intragenome were examined in B. distachyon. It was ob-
served that gene duplications were widespread through-
out B. distachyon lineages (Figure 2). About 66% of
BdbZIP genes were found to be duplicated at a maximal
length of 100 kb. All the duplicated genes were confined
to chromosomal block duplication and none of BdbZIP
genes were found to be arranged in tandem form. The
phenomena were very similar to the bZIP gene family in

Evolutionary relationships for plant species
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Figure 1 bZIP family transcription factors distribution in plant species.
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Figure 2 Chromosomal locations and regional duplication for B. distachyon bZIP genes with CpG profile. BdbZIP genes are numbered
from 1 to 96. The chromosome information of BdbZIPs was given in Additional file 1: Table S4. B. distachyon CpG distributions were calculated
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rice [10]. This result further revealed why B. distachyon
had high amount of bZIP genes.

Much evidence showed that CpG content and distri-
bution might have influence on variability in chromatin
structure and gene distribution [54]. Based on this, we
infered CpG content might affect the functional proper-
ties of BdbZIPs. To dig into the evolutionary relation-
ships between BdbZIPs distribution and CpG content,
we also counted the CpG content in the whole B. dis-
tachyon genome (Additional file 1: Table S5). The land-
scape of CpG content was generated and integrated to
the genetic linkage map (Figure 2). It was observed that
the distribution of CpG content was not uniform. Each
chromosome had several relatively high CpG content re-
gions (Figure 2). Except a few of BdbZIPs (BdbZIP5-7,
32-35, 65, 66, 73, and 83-87) were distributed in the re-
gions of high CpG content, most of BAbZIP genes were
scattered in the regions of low CpG content. This find-
ing showed that those BdZIPs located in the regions of
low CpG content might have high frequent mRNA tran-
scripts, which required to implement their functions.

Phylogenetic and molecular evolutionary analysis of
BdbZIP genes

Furthermore, to evaluate the evolutionary history of
BdbZIP genes and relationships with other plant bZIP

family genes, the bZIP proteins from other two model
plants, Arabidopsis and rice, were performed for analyzing
and comparing. A total of 268 bZIPs (Additional file 1:
Table S6 and Additional file 1: Table S7) were de-
tected and a phylogenetic tree was constructed (Figure 3).
All bZIP proteins were grouped into 9 clades, designated
as clade I to IX (Figure 3). It was observed that each
clade had both AthZIP and OsbZIP genes, which indicat-
ing that the evolution of bZIP genes was conservative
between dicots and monocots. Most of the BdbZIP and
OsbZIP genes were hierarchical clustered together in the
same clades and exhibited closer relationship than those
in AtbZIP genes (Figure 3). To identify the bZIP genes
in terms of intragenome or cross-genome syntenic rela-
tionships among species B. distachyon, rice, and Arabi-
dopsis, we also calculated the synonymous (Ks) and
non-synonymous (Ka) substitution rates of bZIP genes
among them [50]. We found that most of BdbZIP genes
had syntenic regions in rice, but few in Arabidopsis
(Additional file 1: Table S2). These results were consist-
ent with the notion that B. distachyon and rice were
monocots and their bZIP families might have the similar
evolutionary patterns. However, it was still mentioned
that some BdbZIP proteins were hierarchical clustered
together with AtbZIP proteins in the same clade, the
reason was that these BdbZIPs were expected to be
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Figure 3 Phylogenic analyses of bZIP proteins in B. distachyon, O. sativa and A. thaliana. The phylogenetic analysis of bZIP proteins based
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orthologs of the AtbZIP proteins and they shared other genes in B. distachyon had closer relationships with rice
additional conserved motifs outside of bZIP domains. than those in Arabidopsis.

Furthermore, homologous bZIP genes were detected in

rice and Arabidopsis using BLAST tools. Seventy-two  Gene structure analysis of BdbZIP genes

and forty-seven BdbZIPs were found to have homolo-  Alternative splicing events were spread in the whole B.
gous bZIP genes in rice and Arabidopsis respectively  distachyon genome [55]. As the overall pattern of intron
(Additional file 1: Table S8). The comparative phylogen-  position acted as an index to the phylogenetic relation-
etic analysis and BLAST results showed that the bZIP  ships in a gene family evolution [56], so we also examined
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the intron and exon organization of BdbZIPs (Additional
file 1: Table S4). It showed that most of BdbZIPs (81 of 96
BdbZIPs) containing introns, only 15 of total BdbZIP
genes were intronless. As for the genes containing introns,
the numbers of introns varied from 1 to 13. Diverse status
of exon and intron splicing might be meaningful for
BdbZIP gene evolution.

In addition, the intron patterns within the basic and
hinge region of the bZIP domain are most conserved
and particularly important for their functional evolution.
Any splicing change in the hinge region would change
the code of the bZIP domain of the proteins and further
affect their function. Among the 81 genes containing in-
trons, 17 had 1-2 intron/introns in this region. Based on
the intron presence, position, and splicing phase, BdbZIP
genes were divided into 8 patterns, which were desig-
nated as pattern a to pattern h (Figure 4 and Additional
file 2: Figure S1). The pattern a, b, e, and h were the
most prevalent. Both pattern a and pattern b had one in-
tron, pattern e had two introns and pattern h was
intronless. But the pattern a had one intron in phase 2
(P2) in the basic region, whereas pattern b had an intron
in phase 0 (PO) in the hinge region. Pattern c, d, f and g
were uncommon. Compared with those in rice and
maize [10,11], pattern f and pattern g were novel types.
Pattern c¢ and pattern d had one intron in PO and P2 re-
spectively. Pattern f and pattern g had two introns in PO.
Pattern h was found in 27 BdbZIP genes, of which only
17 were intronless. The result showed that when the in-
trons existed in the hinge region, the phase and position
were conserved. However, when the introns were
present in the basic regions, the positions of PO and P2
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were variable. The results showed that in B. distachyon,
the splicing phase had remained conserved during the
course of evolution of BdbZIP family genes, which were
very consistent with those in rice [10]. In brief, our re-
sults showed that the intron patterns in the BdbZIP do-
mains demonstrated more diverse than those in rice and
maize.

Dimerization properties of BdbZIP proteins

The amino acids at positions nearing leucine zipper
interface of leucine zipper determined the dimerization
stability and specificity [13-15]. To predict the dimerization
specificity and stability of all BAbZIP proteins, we adopted
the standard nomenclature for the amino acid positions in
heptads to arrange manually leucine zipper regions [15].
The N-terminal and C-terminal boundaries of BdbZIP
leucine zippers were demarcated following the criteria
used for the bZIP proteins of Arabidopsis, rice and maize
[10,11,15]. According to their positions, the amino acids
in the heptad repeats in leucine zipper region were named
as position a, b, ¢, d, e, f, and g (Additional file 3: Figure
S2). The types of amino acids present at the g, e, a, and d
positions in BAbZIP proteins were analyzed and compared
with those of Arabidopsis and rice. We found that
BdbZIPs had the lowest frequency of charged amino acids
in these positions. This result showed that interactions be-
tween g«e pairs might be more prominent in regulating
specificity in BdbZIPs (Figure 5A). However, the frequency
of charged amino acids of BdbZIPs and OsbZIPs at g and
e positions had a closer proximity than that in AtbZIPs.
This might due that BdbZIPs and OsbZIPs had closer evo-
lutionary relationships. As Asns existing in a position

-

Intron No. of Basic region __Hinge  no.of
patterns  introns - ~  BdbzIP
P2
a 1 _ 24
PO
b 1 — 24
PO
c 1 — 3
p2
d 1 * 3
PO PO
e 2 # 12
PO PO
f 2 # 1
PO
g 2 ———
h 0 I 27
Figure 4 Patterns of intron within the basic and hinge regions of the bZIP domains of BdbZIP proteins. Intron patterns (a-h) are
depicted. The number of introns and the number of BdbZIP proteins having a particular pattern are also indicated. PO and P2 indicate the
splicing phases of the basic and hinge regions of the bZIP domains. PO represent the intron splicing site between codons, P2 means the intron
splicing site locating between the second nucleotide and the third nucleotide in one codon.
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contribute the most to dimerization specificity [57], we
also examined the frequency of Asn in a position. About
23% of amino acids presenting at a position are Asns
(Figure 5A), and about 55% of Asns in a position in heptad
2 and heptad 5 were observed in BdbZIPs (Figure 5B).
The similar phenomena had been observed in AtbZIP,
OsbZIPs and ZmbZIPs [10,11,15]. It was known that the
leucine present in d position was responsible for
dimerization stability [57], so the leucine in the d positions
was calculated. The abundance of leucine of BAbZIPs in d
positions was 68%, which was slightly lower than that in
OsbZIPs (71%) and significantly greater than that in Atb-
ZIPs (56%). The number of heptads was variable and
ranged from four to nine (Additional file 3: Figure S2),
and higher frequency of leucine was speculated to be re-
sponsible for dimer stability of long zippers.

To evaluate the contribution of charged residues re-
sponsible for dimerization properties of BdbZIPs, the
frequency of attractive and repulsive g«e pairs in each
heptad of BAbZIP leucine zippers was computed and the
corresponding histogram was demonstrated (Figure 5C).
It was found that the frequency of interactive g«e pairs
was the maximum in the first heptad, with a sharp de-
crease in the next three heptads (L2, L3, and L4). Then
the trend increased in the fifth heptad and decreased
sharply in the eighth heptad. Moreover, only repulsive
gee pairs were observed in the eighth heptad and at-
tractive g<>e pairs were observed in the ninth heptad.
Attractive g«e pairs and presence of Asns in a position
contribute to homo-dimerization. Repulsive and incom-
plete g«e pairs, and charged residues in a positions may
favour hetero-dimerization. Based on this principle, all
BdbZIPs were classified into three sub-families (sub-
family I, II, and III, Additional file 3: Figure S2). Accord-
ing to above analyses, we observed that the dimerization
patterns in the leucine zippers of BdbZIPs were more
complex and diverse than those in other species. Our re-
sults indicated that there were many BdbZIPs with trends
to form homo-dimerization.

BdbZIP proteins structure and expression patterns

It was important to answer the question whether
BdbZIP protein structure had any correlation with their
functions in different tissues/organs. Due that motifs
contributed to determine specific functions for gene
members, the additional conserved motifs of bZIPs had
been detected and classified in plant species [10,11,23].
Based on sequence similarity of conserved motifs, a total
of 15 conserved motifs including the bZIP domain were
identified (Figure 6). According to the presence of the
bZIP region and the additional conserved motifs, we
classified 96 BdbZIP proteins into 5 groups (group I-V,
Figure 6). All the predicated motifs were exhibited as
Additional file 4: Figure S3.
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Furthermore, we also investigated tissues/organs spe-
cific expression pattern of BdbZIPs genes. Four tissues/
organs including root, stem, leaf, and early spikelet were
selected. The —AACT changes and fold changes of 96
BdbZIP genes were calculated (Figure 6 and Additional
file 1: Table S9). Our results showed that the expression
levels of BdbZIP genes in four tissues/organs displayed
with different patterns.

BdbZIP protein structure results showed that except
for motif 1 and 7, most of motifs had just one copy. Cer-
tain motifs appeared in specific groups and some motifs
were shared by several groups. This phenomenon might
reflect the case that the functions of some conserved
motifs were important and diverse in BdbZIPs. A large
number of BdbZIP genes belonged to group I and II be-
haved high expression levels. Except some members in
group III, IV, and V had higher expression, the expres-
sion for most of the BdbZIP genes in these three groups
was relatively low. It should be noted that though some
of BdbZIP genes with same structure were grouped to
the same groups, the expression patterns were not com-
pletely consistent with the gene structural profiles. These
results indicated that the structure of BAbZIP protein
was not the single factor in determining their functions
in different tissues/organs.

Stress expression analysis of BdbZIP genes

Plant growth and productivity are greatly affected by
various environmental stresses. Stress tolerance is an intri-
cate phenomenon because plants may undergo multiple
abiotic stresses, which are the principle cause of reducing
crop yields. Given the potential roles of BdbZIP genes
may play in response to environmental stresses in B. dis-
tachyon, it is of great importance to demonstrate all
BdbZIP gene expression profiles under multiple stresses.
To investigate the expression patterns, we treated B. dis-
tachyon with 3 major types of abiotic stresses including
environmental factors (cold, heat, H,O,, PEG, and NaCl),
heavey metals (Cu, Zn, Mn, Cd, and Pb) and phytohor-
mones (SA, 6-BA, ABA, and MeJA) respectively. We
obtained 4 major clusters (I, II, III, and IV) after hier-
archical clustering analysis of all the data upon different
types of stress treatments (Figure 7 and Additional file 1:
Table S10). According to the expression profile, BdbZIPs
in cluster I showed down regulation upon almost all
three major treatments except ABA and MeJA treat-
ments. As for BdbZIP genes in cluster II, we observed
that they were up-regulated upon both environmental
factors and phytohormone treatments, but they were
down-regulated under heavy metal treatments (Figure 7).
The BdbZIP genes in cluster III and cluster IV had no
obvious expression patterns upon different types of stress
treatments (Figure 7).
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(See figure on previous page.)

Figure 6 Tissue-specific expression profiles of BdbZIP genes with bZIP domain and motif information identified by MEME. Tissue-specific
expression analysis was performed. Four tissues/organs including root, stem, leaf, and early spikelet were examined. The position of the bZIP domain
and the presence of additional conserved motifs outside the bZIP domain were identified by MEME. BdbZIP domains are shown in blue. Additional
motifs are marked in different color boxes with numbers 1 to 14, where the same number refers to the same motif present in the different BdbZIP
proteins. The details of predicted conserved motifs are given in Additional file 2: Figure S1.

We also investigated whether the BdbZIP genes expres-
sion cluster had any enrichment with specific phylogenic
clade genes, intron pattern, dimerization pattern or motif
groups. It was observed that the expression of BdbZIPs
in cluster II behaved heavy metal specific expression
(Figure 7). We found that this cluster was composed of
the high proportion of BdbZIPs belong to intron pattern
b (46%), ¢ (67%), d (67%), and e (50%). So we proposed
that the 4 type of intron patterns were crucial in regula-
tion of BdbZIPs responding to heavy metal stresses.

In order to further look BdbZIP genes expression pat-
tern to specific group of treatments, we also did hier-
archical cluster analysis of the BdbZIP genes expression
according to environment factors, heavy metal stresses
and phytohormone treatments respectively (Additional
file 5: Figure S4, Additional file 6: Figure S5, Additional
file 7: Figure S6).

Environmental factors (cold, heat, H202, PEG, and NaCl)

The proportion of down-regulated to up-regulated BdbZIP
genes under environmental factors’ treatment was ap-
proximately 50% to 50%. Too high and low temperature
were major negative factors on plant development due to
the limiting the geographical locations suitable for plant
growing and led to catastrophic loss of crop yield [58,59].
To uncover mechanism underlying temperature stresses,
B. distachyon plants were subjected to heat and cold stress
and a set of up- and down- regulated genes were identi-
fied, suggesting a prominent role for the bZIP genes
responding to these environmental factors. Compared
with the global analysis of the transcriptome of B. distach-
yon in cold, heat, drought and salt stress [45], 22 BdbZIPs
were fell into 13 of 22 modules (Additional file 1: Table
S11), which illustrated certain BdbZIPs were significant in
processes of stress tolerance. Previous studies had shown
that when rice was treated with cold, the bZIP genes Osb-
ZIP14, 65, and 83 behaved down-regulated [60]. The ex-
pression patterns of these OsbZIPs were similar to their
homologous BdbZIP54, 63, and 80 respectively. Moreover,
many evidences had proposed that excessive NaCl was
toxic to plants, because NaCl caused cellular ion imbal-
ances and hyperosmotic stress [61]. So, we also examined
the expression profiles of BdbZIPs under NaCl and os-
motic (PEG) tolerance (Additional file 5: Figure S4 and
Additional file 1: Table S10). In salt stress environment,
the expressions of BdbZIP30 and BdbZIP41 were increased,

which were very similar to their homologous OsbZIP63 and
OsbZIPO05 respectively [60].

Heavy metal stresses

With the development of industry, heavy metals contam-
inations are well known serious problems. Phytoreme-
diation technologies including hyperaccumulation and
uptake widely used to remove heavy metal pollutants are
particularly important. Significant progresses have been
made in recent years in native plants or genetic modified
plants for phytoremediation of pollutants.

Genes associated with heavy metal tolerance or accu-
mulation were identified in green alga, poplar, and maize
[62-67]. To gain further insight of the potential roles of
BdbZIPs may play in phytoremediation, we examined
their expression patterns under heavy metals of Zn, Mn,
Cu, Cd, and Pb. A series of BdbZIPs sensitive to heavy
metal were detected (Additional file 6: Figure S5). Eighty
percent of the BdbZIP genes were suppressed by heavy
metal treatments (Additional file 6: Figure S5). The ex-
pression patterns of the BdbZIP genes under Zn and Mn
were similar (Additional file 6: Figure S5).

It was notable that after dealing with heavy metals, there
existed a few of BdbZIPs with high expression levels.
Those BdbZIP genes with specific expression under
heavy metal treatments might be potential for application
of phytoremediation.

Pytohormones’ treatments

Phytohormones act as endogenous messengers when
plants go through stress. During responding to environ-
mental stresses, phytohormones such as auxin, ABA,
salicylic acid, gibberellic acid play key roles and coordin-
ate various signal transduction pathways [68]. In plant
treated with exogenous hormones, the genome-wide
transcript profiles changed rapidly and transiently [69].
Complex networks of transcription factors regulation by
phytohormones under abiotic stresses had been reported
[68]. In this part, we treated B. distachyon seedlings with
4 types of phytohormones (SA, 6-BA, ABA, and MeJA)
and investigated the BdbZIPs expression patterns. We
found about 75% of BdbZIP genes were up-regulated
upon these phytohormes treatments (Additional file 7:
Figure S6). The expression profile of BdbZIP genes
under SA and 6-BA treatments had similar expression
patterns. The expression pattern of BdbZIP genes under
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ABA and MeJA were similar. Our findings showed that
the expression patterns of BdbZIPs can be regulated by
different phytohormones. So we proposed that stress tol-
erance of B. distachyon could be adjusted by applying
different phytohormones.

Conclusions

Ninety six bZIP genes were first identified from the new
grass model plant B.distachon. The BdbZIP genes
chromosomal localization with gene duplication and
CpG density were analyzed. Phylogenic analysis of these
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genes with their counterpart species of rice and Arabidopsis
were investigated. Further characterization of bZIP domain
of these genes in terms of exon splicing of basic and hinge
region and identification of dimerization groups were per-
formed. Finally, genes expression profiling of all BdbZIP
genes upon 14 different stress conditions in B.distachon
were obtained.

Most of the BdbZIP genes were located in the regions
with low CpG density in chromosomes. BdbZIP gene du-
plications were widespread throughout the B. distachyon
genome. Evolutionary analyses suggested that B. distachyon
and monocot species have the similar evolutionary patterns,
which lies two points: (1) B. distachyon and other monocot
species maintained the similar and high number of bZIP
genes, and (2) Seventy-five percent of total BdbZIPs have
homologous genes in rice. bZIP domain characterization
in terms of exon splicing of basic and hinge region and
dimerization patterns of leucine zipper exhibited more
complex and diverse than those in O. sativa and A. tha-
linana. All BAbZIP domains were classified into 3 major
dimerization groups, and those BdbZIPs forming homo-
dimerization were clustered into the same expression
clusters.

Multiple stresses expression profile showed that BdbZIPs
exhibited significant expression patterns, and those BdbZIPs
responding to heavy metal treatments showed opposite
expression pattern to those of the treatments of environ-
mental factors and phytohormones. Certain BdbZIPs with
expression level of fold changes >2 up- and down-
regulated upon multiple-stress treatments were screened.

Abiotic stresses are important research areas of investi-
gating mechanisms associated with crops yields under
stress conditions. Identification of novel BAbZIP genes as-
sociated with stress tolerance and development of some
strategies to obtain stress-tolerant plants are our currently
major topics or future researches. Determination of the
up-regulated, down-regulated, or stress specific BdbZIP
genes, and utilizing the BdbZIP genes to improve product-
ivity of grass plants and cereal crops upon complicated
stress environment are crucial and significant.
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syntenic relationships of bZIPs in B. distrachyon , rice, and Arabidopsis.
Table S3. Primers used in this study. Table S4. Identification of BdbZIP
proteins and their related information. Table S5. CpG numbers in B.
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classified as three major sub-families according to the predicted
dimerization specificity. BdbZIPs in Sub-family | are homo-dimerization
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specific. BdbZIPs in Sub-family Il are homo-hetero-dimerization, and
BdbZIPs in sub-family Ill are hetero-dimerization specific. The leucine zipper
regions are divided into heptads (gabcdef) from LO to L9 to display the
potential g« e' pairs. Based on the electrostatic charges at the g and e
positions, the g«>e pairs were grouped into 4 types, which were displayed
with 4 different colors: the frequency of the attractive basic-acidic pairs
(+/—) was displayed with green color, attractive acidic-basic pairs (=/+) was
displayed with blue color, repulsive acidic pairs (—/—) was displayed with
purple color, and repulsive basic pairs (+/+) was displayed with pink color. If
single amino acid at the positions e or g is charged, the residue is colored
pink for basic amino acid and purple for acidic amino acid. If a or d position
is polar, it is colored grey and if either is charged, it is colored orange.
Asparagines at a position are colored red. The prolines and glycines are
boxed to indicate a potential break in a-helix. The predicted C-terminal
boundary is denoted by the symbol e.

Additional file 4: Figure S3. The additional conserved motifs of BdbZIP
proteins predicted by MEME.

Additional file 5: Figure S4. Exression profiles of BdbZIP genes
differentially expressed under environmental factors (cold, heat, H,0O,,
PEG, Nacl).

Additional file 6: Figure S5. Exression profiles of BdbZIP genes
differentially expressed under heavy metal factors (Cu, Zn, Mn, Cd, Pb).

Additional file 7: Figure S6. Exression profiles of BdbZIP genes
differentially expressed under hytohormones (SA, 6-BA, ABA, MeJA).
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