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The Alternaria genomes database: a
comprehensive resource for a fungal genus
comprised of saprophytes, plant pathogens,
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Abstract

Background: Alternaria is considered one of the most common saprophytic fungal genera on the planet. It is
comprised of many species that exhibit a necrotrophic phytopathogenic lifestyle. Several species are clinically
associated with allergic respiratory disorders although rarely found to cause invasive infections in humans. Finally,
Alternaria spp. are among the most well known producers of diverse fungal secondary metabolites, especially
toxins.

Description: We have recently sequenced and annotated the genomes of 25 Alternaria spp. including but not
limited to many necrotrophic plant pathogens such as A. brassicicola (a pathogen of Brassicaceous crops like
cabbage and canola) and A. solani (a major pathogen of Solanaceous plants like potato and tomato), and several
saprophytes that cause allergy in human such as A. alternata isolates. These genomes were annotated and
compared. Multiple genetic differences were found in the context of plant and human pathogenicity, notably the
pro-inflammatory potential of A. alternata. The Alternaria genomes database was built to provide a public platform
to access the whole genome sequences, genome annotations, and comparative genomics data of these species.
Genome annotation and comparison were performed using a pipeline that integrated multiple computational and
comparative genomics tools. Alternaria genome sequences together with their annotation and comparison data
were ported to Ensembl database schemas using a self-developed tool (EnsImport). Collectively, data are currently
hosted using a customized installation of the Ensembl genome browser platform.

Conclusion: Recent efforts in fungal genome sequencing have facilitated the studies of the molecular basis of
fungal pathogenicity as a whole system. The Alternaria genomes database provides a comprehensive resource of
genomics and comparative data of an important saprophytic and plant/human pathogenic fungal genus. The
database will be updated regularly with new genomes when they become available. The Alternaria genomes
database is freely available for non-profit use at http://alternaria.vbi.vt.edu.
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Background
Alternaria species are a major cause of necrotrophic dis-
eases of plants and some of the most common fungi en-
countered by humans. There are several noteworthy
examples of Alternaria spp. as major plant pathogens in-
cluding but not limited to, A. brassicicola and A. solani. A.
brassicicola causes black spot disease (also called dark leaf
spot) on virtually every important cultivated Brassica spp.
[1-3]. Black spot disease is of worldwide economic import-
ance. For example, black spot can be a devastating foliar
and seed-borne disease resulting in severe yield reductions
in crops such as cabbage, broccoli, canola and rapeseed
[4-6]. A. solani is the causal agent of early blight disease of
several major Solanaceous crops including potato and to-
mato. Early blight caused by A. solani is considered one of
the most destructive diseases of potatoes and tomatoes in
the world [7,8].
Alternaria spp. are among the most well known pro-

ducers of diverse secondary metabolites, especially
toxins [9]. Over 70 small molecule compounds have
been reported from Alternaria [9]. Some of these metab-
olites are potent mycotoxins (e.g. alternariol, alternariol
methyl ether, tenuazonic acid, etc.) with mutagenic and
teratagenic properties, and have been linked to certain
forms of cancer [10]. The occurrence of potentially
harmful Alternaria metabolites in food and food prod-
ucts is becoming an increasing environmental concern
[11]. Other toxins are host specific or non-host specific
phytotoxins and are important virulence factors during
plant pathogenesis. To date many of the genes respon-
sible for the production of these specialized metabolites
are unknown although recently the genes responsible for
production of the HDAC inhibitor depudecin in A. bras-
sicicola was elucidated as well as the toxin Alternariol
and Alternariol methyl ether in A. alternata [12-14]. An-
notated genome sequence information was critical for
these discoveries.
In addition to harboring many important plant patho-

genic species, Alternaria spores are one of the most com-
mon and potent indoor and outdoor sources of airborne
allergens. Epidemiological studies from a variety of loca-
tions worldwide indicate that Alternaria sensitivity is
closely linked with the development of atopic asthma and
up to 70% of mold-allergic patients have skin test reactiv-
ity to Alternaria [15-17]. Alternaria sensitivity has been
shown to not only be a risk factor for asthma, but can also
directly lead to the development of severe and potentially
fatal asthma often more than any other fungus [15-19]. Al-
though some research has been performed on the physio-
logical and molecular identification of Alternaria allergens
only three major and several minor allergenic proteins
have been described [20]. The biological role of these aller-
gens and other secreted fungal products in the develop-
ment of allergy and asthma is very poorly understood.
Thus there is clearly a need to elucidate the role of Alter-
naria immunoreactive proteins and other molecules such
as secondary/specialized metabolites in the development
of allergic diseases from both diagnostic and immunother-
apeutic perspectives.
In this article, we introduce the Alternaria genomes

database that provides tools to browse and visualize gen-
ome sequences, genome annotations, whole genome
alignments, and homologous data of the fungal genus
Alternaria.

Content and construction
The Alternaria genomes database houses genome se-
quences, genome annotation and genome comparison
data from 25 species, including saprophytes, necro-
trophic plant pathogens and species associated with hu-
man diseases like allergic airway disorders (Table 1).
These genomes were analyzed using a pipeline that in-
corporated multiple computational and comparative
genomics tools. Genomes (i.e. genomic sequences, in the
form of contigs or supercontigs) were assembled from
Sanger or next-generation sequencing reads and then
used as the input for the pipeline. These sequences were
analyzed through multiple annotation modules, including
repetitive sequence annotation, gene prediction, protein
function and domain structure annotation. Comparative
genomics analyses were also performed including whole
genome alignment and homology analysis.

Genome sequencing and assembly
Alternaria genomes were sequenced using various se-
quencing technologies including whole genome shotgun
method with Sanger sequencing, GS-FLX 454, and Illu-
mina HiSeq (Table 1). Genomes were assembled from se-
quencing reads using PCAP [21] (for Sanger sequencing),
Newbler [22] (for GS-FLX 454), and Velvet [23] (for
Illumina HiSeq). The physical map of A. brassicicola
was constructed by generating fingerprints from the
CSU-K35 A. brassicicola BAC library that were then
used to scaffold the genome (Dang et al., unpublished).

Genome annotation
Genome annotation was performed using a custom pipe-
line (Figure 1). Assembled genomes were first scanned for
repetitive sequences (both transposable elements and sim-
ple repeats) using multiple tools including REPET [24],
RepeatScout [25], RepeatModeler and RepeatMasker
(http://www.repeatmasker.org). Protein-coding gene predic-
tion was then carried out using JIGSAW [26] that com-
bined gene models discovered by various de novo and
homology-based gene prediction tools including Genewise
[27], FgeneSH (http://softberry.com), AUGUSTUS [28],
Genemark-ES [29], and GeneID [30]. We also gener-
ated RNA-Seq data for A. alternata ATCC 66981 which

http://www.repeatmasker.org/
http://softberry.com/


Table 1 Description of the sequenced Alternaria genomes

Species name Strain codes Additional information Sequencing
technologies

Genome
sequence
size (Mb)

Contigs/
super-contigs

Contigs/
super-contigs
N50(kb)

Predicted
genes (#)

A. alternata ATCC 66891,
EGS 34–016, BMP 0269

Allergic diseases of human,
leaf spot, rots of plants

454 33.2 499 300 11635

A. alternata ATCC 11680, BMP 0238,
IHEM 4706

Allergic diseases of human,
leaf spot, rots of plants
(possibly A. tenuissima)

454 33.8 797 450 12323

A. brassicicola ATCC 96836,
EGS 42–002, BMP 1950

Blackspot of brassica Sanger 29.6 4039/838 18/ 2400 10514

A. alternata ATCC 66982,
EGS 34–039, BMP 0270

Allergic disease of human,
leaf spot, rots of plants

Illumina 33.5 393 757 12290

A. arborescens ATCC 204491,
EGS 39–128, BMP 0308

Stem canker of tomato Illumina 34.0 1332 624 14741

A. citriarbusti EGS 46–140, BMP 2343,
SH-MIL-8 s

Brown/black spot of citrus Illumina 34.1 2273 48 12606

A. destruens ATCC 204363,
EGS 46–069, BMP 0317

Infecting and suppressing
dodder (weed)

Illumina 41.8 31070 3 14814

A. fragariae BMP 3062, NAF-8 Black spot disease of
strawberry

Illumina 33.2 1027 78 12272

A. gaisen EGS 90–0512, BMP 2338 Black spot, ring spot disease
of pear

Illumina 34.6 7485 10 13902

A. tangelonis EGS 45–080, BMP 2327,
BC2-RLR-1 s

Leaf spot of citrus Illumina 34.0 2459 37 12639

A. longipes EGS 30–033, BMP 0313 Black/brown leaf spot of
tobacco

Illumina 36.3 3412 137 13219

A. mali BMP 3064, IFO8984 Leaf ring spot of apple Illumina 34.7 2682 35 12715

A. mali BMP 3063, M-71 Leaf ring spot of apple Illumina 34.1 4439 21 12727

A. turkisafria BMP 3436, SH-MIL-20s Leaf spot of citrus Illumina 34.0 2347 33 12739

A. tenuissima ATCC 96828,
EGS 34–015, BMP 0304

Leaf spot of plants Illumina 33.5 676 662 12276

A. limoniasperae EGS 44–159, BMP 2335 Leaf spot of citrus Illumina 35.1 2796 50 12966

A. carthami BMP 1963, CBS 635.80 Leaf spot and blight of
safflower

Illumina 34.5 9340 72 12071

A. capsici ATCC MYA-998,
EGS 45–075, BMP 0180

Leaf spot of solanaceae
(pepper)

Illumina 34.0 13743 31 11487

A. crassa BMP 0172, ACR1 Leaf spot of solanaceae Illumina 35.0 12126 54 11663

A. dauci ATCC 36613, BMP 0167 Leaf blight of carrots Illumina 32.1 12030 13 11981

A. macrospora BMP 1949, CH3 Leaf spot of cotton Illumina 31.7 3153 37 11961

A. porri BMP 0178, Z6B Purple blotch, leaf blight and
bulb rot of Allium (onion)

Illumina 31.2 16767 9 12232

A. solani BMP 0185 Early blight of potatoes and
tomatoes

Illumina 32.9 5613 144 11726

A. tagetica EGS 44–044, BMP 0179 Leaf spot of marigold Illumina 35.1 16372 72 11999

A. tomatophila BMP 2032, CBS 109156 Leaf spot of tomato Illumina 34.1 10185 22 12601
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were aligned to the genome using TopHat [31] with Bow-
tie [32], and de novo transcripts were constructed using
Cufflinks [33]. These data were used internally to evaluate
gene predictions. Predicted genes were then conceptually
translated to protein sequences that served as the input
for most of the functional annotation tasks. Non-coding
genes were also annotated using tRNAScan-SE [34] and
RNAmmer [35].
Various computational functional annotations were

performed on the conceptual protein sequences. The
proteins were first searched against Genbank [36] and
SwissProt [37] using BLAST to identify known proteins



Figure 1 Alternaria genome annotation pipeline.
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with similar sequences. The name/description of the
known proteins was then transferred to the predicted
proteins following the standard operating procedure
(SOP) developed for fungi by the Broad Institute [38].
Protein domain and family annotation was performed
using the Interpro database [39] and PFAM [40]. Gene
ontology annotation was performed using Blast2GO [41]
and Interpro.
Various fungal-related and additional annotations were

also carried out using the pipeline. Signal peptides were
predicted using SignalP [42], WoLF-Psort [43], and Pho-
bius [44]. Transmembrane proteins were predicted using
TMHMM [45]. Pathogenicity-related gene candidates
were identified via multiple annotation data including
BLAST search against PHI-base [46]. Carbohydrate Ac-
tive Enzymes were identified according to the CAZY
database [47] and dbCAN [48]. Potential allergens were
identified using BLAST based homology searches and
Allerdictor [49]. Proteases were annotated using the
batched BLAST search tool from the MEROPS database
[50]. Secondary metabolites were identified using
SMURF [51].

Genome comparison
Multiple genome comparison tasks were performed that
utilized the genome sequences as well as the predicted
genes/proteins from multiple species. Whole genome pair-
wise alignment was performed using Mauve progressive
alignment software [52,53]. Orthologs and paralogs were
identified using bidirectional best BLAST hits and Markov
clustering via OrthoMCL [54].
Porting data to Ensembl database schema
Annotation and comparison data of Alternaria genomes
are presented via the popular Ensembl genome browser
platform [55] that was customized and installed at the Vir-
ginia Bioinformatics Institute. Outputs from the genome
annotation pipeline as well as outputs from comparative
genomics analyses were processed and converted to
Ensembl compatible MySQL databases (both core and
compara databases) using EnsImport, a custom suite of
scripts we developed in Perl. EnsImport supports mul-
tiple standard file formats such as FASTA, AGP, GFF3
and XMFA, and outputs from widely-used tools such
as BLAST, Interpro, RepeatMasker, OrthoMCL and
Blast2GO.

Utility and discussion
Using Ensembl genome browser platform, the Alternaria
genomes database provides a rich set of user-friendly
tools to browse and visualize sequences, annotation, and
comparison data. Data export and search features are
also available. Detailed instructions on how to use the
Ensembl browser are available on the ‘Help & Documen-
tation’ section of the database. Here we only describe the
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most relevant features in the context of the Alternaria
genomes project.

Genome region view
For each species, users can access and visualize a genomic
region along with annotated functional and non-
functional elements such as repetitive elements, predicted
protein-coding gene models, and RNA coding gene
models (Figure 2). A genomic region can be a whole (or
part of ) a contig or supercontig. Zooming functionality
allows for intuitively scaling region views based on loca-
tion. Each type of element (functional and non-functional)
is displayed in a separate track using a unique color. Users
can click on an individual element (e.g. repeats, genes,
transcripts) to open a popup menu to access available an-
notation. The tracks can be displayed or hidden using the
display configuration tool.

Annotation view
The majority of functional annotation data in the database
is for protein coding genes. For each gene/protein, exten-
sive annotations include gene structure and sequence,
gene description, location, protein domain architectures
(e.g. Interpro, PFAM), gene ontology assignments, signal
peptides, transmembrane structures and other annotation
data (Figure 3). These annotation data are available and
Figure 2 A screenshot of the Alternaria genomes database that shows a
genes and transcripts.
presented in multiple tightly linked web interfaces in the
browser.

Comparative genomics view
The comparative browsing feature of Ensembl platform al-
lows for conveniently viewing and visualizing comparative
genomics data side-by-side with annotation data. Aligned
regions between two genomes identified via whole genome
pairwise alignments are displayed together with functional
and non-functional elements such as repetitive elements
and gene models (Figure 4). This feature allows for easy
investigation of the conserved genomic regions between
multiple genomes. Whole genome alignments can be visu-
alized using graphical representation as well as displayed
in text formats such as FASTA and ClustalW. Orthologs
and paralogs of a gene can be easily retrieved in a table
that contains links to access protein alignments and re-
lated annotation data (Figure 3C).

Database search
Users may query the database using sequence alignment
search (e.g. BLAST) and text search. The built-in search
feature of the Ensembl platform allows for BLAST
searches against genomic sequences, predicted transcript
and protein sequences (Figure 5). Full text search for
gene names is also available as a built-in feature in
region of an A. brassicicola supercontig along with the predicted



Figure 3 Examples of annotation and comparison views for an Alternaria alternata polyketide synthase gene (AAT_PG02879). (A) Contig
view of the gene, (B) Domain annotation, (C) Orthologous genes in other Alternaria genomes, (D) Gene ontology annotation.
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Esembl platform. However, for newly sequenced species,
a large portion of the predicted genes are not named or
annotated with highly reliable descriptions. In such
cases, information on the hits with known proteins or
protein families and domains can be used to explore the
functions of the genes. Therefore, we implemented a
more comprehensive search module that allows for full
text search within annotation from multiple sources in-
cluding BLAST and Interpro hits and incorporated this
module in the Alternaria genomes database (Figure 5).

Data export
Ensembl built-in functionality allows for exporting mul-
tiple types of data to various formats. Raw sequence and
annotation data can be easily exported in multiple
formats such as FASTA and GFF via available tools in
Ensembl. A button to access data export feature is lo-
cated on the left pane in the interface of the database. It
is also possible to export the graphical visualization of
multiple types of annotation and comparison data to
multiple image formats that are suitable for publication
or further editing.

Conclusion
Over the past few years, efforts in sequencing fungal ge-
nomes have facilitated the studies of the molecular basis
of fungal pathogenicity as a whole system [56-59]. The
Alternaria genomes database provides a comprehensive
resource of genomics and comparative genomics data of
an important plant and human pathogenic fungal genus



Figure 4 An example of a syntenic region between Alternaria brassicicola and A. alternata. The aligned blocks (in pink) between
genomic sequences are connected by green bands.

Figure 5 Search features of Alternaria genomes database that allows for sequence alignment search using BLAST (left) and Interepro
and BLAST hit description search (right).
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Alternaria. In addition, the database may prove useful
for discovery of genes encoding industrial enzymes, anti-
biotics, and other molecules with utility in medicine and
agriculture.
These genome annotation and comparison data have re-

cently facilitated several large-scale functional genomics
studies that resulted in the discovery of many new genes
that contribute to virulence especially secondary metabol-
ite genes, mitogen-activated protein (MAP) kinases, and
transcription factors in A. brassicicola [13,14,60-68].
Alternaria genome annotation and comparison data
have also enabled comprehensive comparative studies
of Alternaria genomes in the context of plant and hu-
man pathogenicity [69] (several other manuscripts are
under preparation).
The use of the familiar Ensembl browser platform

makes browsing and visualizing Alternaria genome anno-
tation and comparison data convenient. As we continue
our efforts in Alternaria genome sequencing and analysis,
we will update this database as new genomes and relevant
annotation data become available.

Availability and requirements
The Alternaria genomes database is freely available for
non-commercial use at http://alternaria.vbi.vt.edu.
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